Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T08:28:46.871Z Has data issue: false hasContentIssue false

Observational Aspects Of Stellar Nucleosynthesis

Published online by Cambridge University Press:  12 August 2009

David L. Lambert
Affiliation:
Department of Astronomy, University of Texas, Austin, TX 78712, USA
C. Esteban
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
R. J. García López
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
A. Herrero
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
F. Sánchez
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Get access

Summary

Introduction

The origins of the chemical elements must rank highly in any intelligent citizen's list of questions about the natural world. Thanks to the efforts of observers and theoreticians over the last half-century, the citizen may now be provided with answers to ‘Where, when, and how were the elements made?’ This remarkable achievement of astrophysics provides one focus for this set of lectures. It is impossible to tell in the available space the complete story of nucleosynthesis from hydrogen to uranium (and beyond) with full justice to the observational and theoretical puzzles that had to be addressed.

Nucleosynthesis began with the Big Bang (see Steigman's contribution to this volume). According to the standard model of this event, nucleosynthesis completed in the first few minutes of the Universe's life resulted in gas composed of 1H, and 4He with 1H/4He ≃ 0.08 by number of atoms, and trace amounts of 2H, 3He, and 7Li. The inability of the rapidly cooling low density Big Bang to synthesise nuclides beyond mass number 7 is due to the fact that all nuclides of mass number 5 and 8 (i.e., potential products from 1H + 4He and 4He + 4He) are highly unstable.

Ashes of the Big Bang cooled. The photons of the cosmic microwave background radiation were set free to roam the Universe. Then came what is known as ‘The Dark Ages’ before galaxies were formed.

Type
Chapter
Information
Cosmochemistry
The Melting Pot of the Elements
, pp. 81 - 114
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×