Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T07:54:16.935Z Has data issue: false hasContentIssue false

4 - Solar System and Cosmic Abundances

Elements and Isotopes

Published online by Cambridge University Press:  10 February 2022

Harry McSween, Jr
Affiliation:
University of Tennessee, Knoxville
Gary Huss
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Abundances of elements and isotopes and how they are determined

Type
Chapter
Information
Cosmochemistry , pp. 60 - 84
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggestions for Further Reading

Asplund, M., Grevesse, N., Sauval, A. J., and Scott, P. (2009) The chemical composition of the Sun. Annual Review of Astronomy & Astrophysics, 47, 481522. A comprehensive discussion of the issues around converting stellar spectra to solar abundances.Google Scholar
Palme, H., Lodders, K., and Jones, A. (2014) Solar system abundances of the elements. In Treatise on Geochemistry, 2nd edition, Vol. 2: Planets, Asteroids, Comets and the Solar System, Davis, A. M., editor, pp. 1536, Elsevier, Oxford. An excellent summary of element abundances and how they are determined.Google Scholar
Anders, E., and Grevesse, N. (1989) Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53, 197214.Google Scholar
Bahcall, J. N., Basu, S., and Serenelli, A. M. (2005) What is the neon abundance of the Sun? Astrophysical Journal, 63, 12811285.Google Scholar
Basu, S., and Antia, H. M. (2004) Constraining solar abundances using helioseismology. Astrophysical Journal, 606, L85L88.Google Scholar
Burnett, D. S. (2013) The Genesis solar wind sample return mission: Past, present, and future. Meteoritics & Planetary Science, 48, 23512370.Google Scholar
Burnett, D. S., Jurewicz, A. J. G., and Woolum, D. S. (2019) The future of Genesis science. Meteoritics & Planetary Science, 54, 10921114.Google Scholar
Christensen-Dalsgaard, J. (1998) The ‘standard Sun’. Modelling and helioseismology. Space Science Reviews, 85, 1936.CrossRefGoogle Scholar
Christensen-Dalsgaard, J. (2002) Helioseismology. Reviews of Modern Physics, 74, 10731129.Google Scholar
Clarke, F. W. (1889) The relative abundances of the chemical elements. Bulletin of the Philosophical Society of Washington, 11, 131142.Google Scholar
Gabriel, M. (1997) Influence of heavy element and rotationally induced diffusions on solar models. Astronomy & Astrophysics, 327, 771778.Google Scholar
Grevesse, N., and Sauval, A. J. (1998) Standard solar composition. Space Science Reviews, 85, 161174.Google Scholar
Grevesse, N., Asplund, M., and Sauval, A. J. (2007) The solar chemical composition. Space Science Reviews, 130, 105114.CrossRefGoogle Scholar
Grevesse, N., Scott, P., Asplund, M., and Sauval, A. J. (2015) The elemental composition of the Sun III. The heavy elements Cu to Th. Astronomy & Astrophysics, 573, A27.Google Scholar
Harkins, W. D. (1917) The structure of atoms and the evolution of the elements as related to the composition of the nuclei of atoms II. Science, 46, 443448.CrossRefGoogle Scholar
Hill, V. (2001) From stellar spectra to abundances. Astrophysics & Space Science, 277 (Supplement), 137146.Google Scholar
Kööp, L., Nagashima, K., Davis, A. M., and Krot, A. N. (2020) A refractory inclusion with solar oxygen isotopes and the rarity of such objects in the meteorite record. Meteoritics & Planetary Science, 55, 524534.CrossRefGoogle Scholar
Lockyer, J. N. (1890) The Meteoritic Hypothesis. Macmillan & Co., New York, 560 pp.Google Scholar
Lodders, K. (2003) Solar system abundances and condensation temperatures of the elements. Astrophysical Journal, 591, 12201247.Google Scholar
Lodders, K., Palme, H., and Gail, H. P. (2009) Abundances of the elements in the solar system. In Landolt-Börnstein, New Series, Vol. VI/4B, Trümper, J. E., editor, pp. 560630, Springer-Verlag, New York.Google Scholar
McKeegan, K. D., Kallio, A. P. A., Heber, V. S., et al. (2011) The oxygen isotopic composition of the Sun inferred from captured solar wind. Science, 332, 15281532.Google Scholar
Oddo, G. (1914) Die Molekularstruktur der radioaktiven Atome. Zeitschrift für Anorganische Chemie, 87, 253268.Google Scholar
Payne, C. H. (1925) Stellar Atmospheres; a Contribution to the Observational Study of High Temperature in the Reversing Layers of Stars, Ph.D. Thesis, Radcliffe College.Google Scholar
Russell, H. N. (1929) On the composition of the Sun’s atmosphere. Astrophysical Journal, 70, 1182.Google Scholar
Scott, P., Grevesse, N., Asplund, M., et al. (2015a) The elemental composition of the Sun I. The intermediate mass elements Na to Ca. Astronomy & Astrophysics, 573, A25.Google Scholar
Scott, P., Asplund, M., Grevesse, N., et al. (2015b) The elemental composition of the Sun II. The iron group elements Sc to Ni. Astronomy & Astrophysics, 573, A26.Google Scholar
Suess, H. E., and Urey, H. C. (1956) Abundances of the elements. Reviews of Modern Physics, 28, 5374.Google Scholar
Vagnozzi, S., Freese, K., and Zurbuchen, T. H. (2017) Solar models in the light of new high metallicity measurement from solar wind data. Astrophysical Journal, 839, 55.CrossRefGoogle Scholar
Vauclair, S. (1998) Elemental settling in the solar interior. Space Science Reviews, 85, 7178.CrossRefGoogle Scholar
Wannier, P. G. (1989) Abundances in the galactic center. In The Center of the Galaxy, Morris, M., editor, pp. 107119, IAU Symposium #136.CrossRefGoogle Scholar
Anders, E., and Grevesse, N. (1989) Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53, 197214.Google Scholar
Bahcall, J. N., Basu, S., and Serenelli, A. M. (2005) What is the neon abundance of the Sun? Astrophysical Journal, 63, 12811285.Google Scholar
Basu, S., and Antia, H. M. (2004) Constraining solar abundances using helioseismology. Astrophysical Journal, 606, L85L88.Google Scholar
Burnett, D. S. (2013) The Genesis solar wind sample return mission: Past, present, and future. Meteoritics & Planetary Science, 48, 23512370.Google Scholar
Burnett, D. S., Jurewicz, A. J. G., and Woolum, D. S. (2019) The future of Genesis science. Meteoritics & Planetary Science, 54, 10921114.Google Scholar
Christensen-Dalsgaard, J. (1998) The ‘standard Sun’. Modelling and helioseismology. Space Science Reviews, 85, 1936.CrossRefGoogle Scholar
Christensen-Dalsgaard, J. (2002) Helioseismology. Reviews of Modern Physics, 74, 10731129.Google Scholar
Clarke, F. W. (1889) The relative abundances of the chemical elements. Bulletin of the Philosophical Society of Washington, 11, 131142.Google Scholar
Gabriel, M. (1997) Influence of heavy element and rotationally induced diffusions on solar models. Astronomy & Astrophysics, 327, 771778.Google Scholar
Grevesse, N., and Sauval, A. J. (1998) Standard solar composition. Space Science Reviews, 85, 161174.Google Scholar
Grevesse, N., Asplund, M., and Sauval, A. J. (2007) The solar chemical composition. Space Science Reviews, 130, 105114.CrossRefGoogle Scholar
Grevesse, N., Scott, P., Asplund, M., and Sauval, A. J. (2015) The elemental composition of the Sun III. The heavy elements Cu to Th. Astronomy & Astrophysics, 573, A27.Google Scholar
Harkins, W. D. (1917) The structure of atoms and the evolution of the elements as related to the composition of the nuclei of atoms II. Science, 46, 443448.CrossRefGoogle Scholar
Hill, V. (2001) From stellar spectra to abundances. Astrophysics & Space Science, 277 (Supplement), 137146.Google Scholar
Kööp, L., Nagashima, K., Davis, A. M., and Krot, A. N. (2020) A refractory inclusion with solar oxygen isotopes and the rarity of such objects in the meteorite record. Meteoritics & Planetary Science, 55, 524534.CrossRefGoogle Scholar
Lockyer, J. N. (1890) The Meteoritic Hypothesis. Macmillan & Co., New York, 560 pp.Google Scholar
Lodders, K. (2003) Solar system abundances and condensation temperatures of the elements. Astrophysical Journal, 591, 12201247.Google Scholar
Lodders, K., Palme, H., and Gail, H. P. (2009) Abundances of the elements in the solar system. In Landolt-Börnstein, New Series, Vol. VI/4B, Trümper, J. E., editor, pp. 560630, Springer-Verlag, New York.Google Scholar
McKeegan, K. D., Kallio, A. P. A., Heber, V. S., et al. (2011) The oxygen isotopic composition of the Sun inferred from captured solar wind. Science, 332, 15281532.Google Scholar
Oddo, G. (1914) Die Molekularstruktur der radioaktiven Atome. Zeitschrift für Anorganische Chemie, 87, 253268.Google Scholar
Payne, C. H. (1925) Stellar Atmospheres; a Contribution to the Observational Study of High Temperature in the Reversing Layers of Stars, Ph.D. Thesis, Radcliffe College.Google Scholar
Russell, H. N. (1929) On the composition of the Sun’s atmosphere. Astrophysical Journal, 70, 1182.Google Scholar
Scott, P., Grevesse, N., Asplund, M., et al. (2015a) The elemental composition of the Sun I. The intermediate mass elements Na to Ca. Astronomy & Astrophysics, 573, A25.Google Scholar
Scott, P., Asplund, M., Grevesse, N., et al. (2015b) The elemental composition of the Sun II. The iron group elements Sc to Ni. Astronomy & Astrophysics, 573, A26.Google Scholar
Suess, H. E., and Urey, H. C. (1956) Abundances of the elements. Reviews of Modern Physics, 28, 5374.Google Scholar
Vagnozzi, S., Freese, K., and Zurbuchen, T. H. (2017) Solar models in the light of new high metallicity measurement from solar wind data. Astrophysical Journal, 839, 55.CrossRefGoogle Scholar
Vauclair, S. (1998) Elemental settling in the solar interior. Space Science Reviews, 85, 7178.CrossRefGoogle Scholar
Wannier, P. G. (1989) Abundances in the galactic center. In The Center of the Galaxy, Morris, M., editor, pp. 107119, IAU Symposium #136.CrossRefGoogle Scholar

Other References

Anders, E., and Grevesse, N. (1989) Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53, 197214.Google Scholar
Bahcall, J. N., Basu, S., and Serenelli, A. M. (2005) What is the neon abundance of the Sun? Astrophysical Journal, 63, 12811285.Google Scholar
Basu, S., and Antia, H. M. (2004) Constraining solar abundances using helioseismology. Astrophysical Journal, 606, L85L88.Google Scholar
Burnett, D. S. (2013) The Genesis solar wind sample return mission: Past, present, and future. Meteoritics & Planetary Science, 48, 23512370.Google Scholar
Burnett, D. S., Jurewicz, A. J. G., and Woolum, D. S. (2019) The future of Genesis science. Meteoritics & Planetary Science, 54, 10921114.Google Scholar
Christensen-Dalsgaard, J. (1998) The ‘standard Sun’. Modelling and helioseismology. Space Science Reviews, 85, 1936.CrossRefGoogle Scholar
Christensen-Dalsgaard, J. (2002) Helioseismology. Reviews of Modern Physics, 74, 10731129.Google Scholar
Clarke, F. W. (1889) The relative abundances of the chemical elements. Bulletin of the Philosophical Society of Washington, 11, 131142.Google Scholar
Gabriel, M. (1997) Influence of heavy element and rotationally induced diffusions on solar models. Astronomy & Astrophysics, 327, 771778.Google Scholar
Grevesse, N., and Sauval, A. J. (1998) Standard solar composition. Space Science Reviews, 85, 161174.Google Scholar
Grevesse, N., Asplund, M., and Sauval, A. J. (2007) The solar chemical composition. Space Science Reviews, 130, 105114.CrossRefGoogle Scholar
Grevesse, N., Scott, P., Asplund, M., and Sauval, A. J. (2015) The elemental composition of the Sun III. The heavy elements Cu to Th. Astronomy & Astrophysics, 573, A27.Google Scholar
Harkins, W. D. (1917) The structure of atoms and the evolution of the elements as related to the composition of the nuclei of atoms II. Science, 46, 443448.CrossRefGoogle Scholar
Hill, V. (2001) From stellar spectra to abundances. Astrophysics & Space Science, 277 (Supplement), 137146.Google Scholar
Kööp, L., Nagashima, K., Davis, A. M., and Krot, A. N. (2020) A refractory inclusion with solar oxygen isotopes and the rarity of such objects in the meteorite record. Meteoritics & Planetary Science, 55, 524534.CrossRefGoogle Scholar
Lockyer, J. N. (1890) The Meteoritic Hypothesis. Macmillan & Co., New York, 560 pp.Google Scholar
Lodders, K. (2003) Solar system abundances and condensation temperatures of the elements. Astrophysical Journal, 591, 12201247.Google Scholar
Lodders, K., Palme, H., and Gail, H. P. (2009) Abundances of the elements in the solar system. In Landolt-Börnstein, New Series, Vol. VI/4B, Trümper, J. E., editor, pp. 560630, Springer-Verlag, New York.Google Scholar
McKeegan, K. D., Kallio, A. P. A., Heber, V. S., et al. (2011) The oxygen isotopic composition of the Sun inferred from captured solar wind. Science, 332, 15281532.Google Scholar
Oddo, G. (1914) Die Molekularstruktur der radioaktiven Atome. Zeitschrift für Anorganische Chemie, 87, 253268.Google Scholar
Payne, C. H. (1925) Stellar Atmospheres; a Contribution to the Observational Study of High Temperature in the Reversing Layers of Stars, Ph.D. Thesis, Radcliffe College.Google Scholar
Russell, H. N. (1929) On the composition of the Sun’s atmosphere. Astrophysical Journal, 70, 1182.Google Scholar
Scott, P., Grevesse, N., Asplund, M., et al. (2015a) The elemental composition of the Sun I. The intermediate mass elements Na to Ca. Astronomy & Astrophysics, 573, A25.Google Scholar
Scott, P., Asplund, M., Grevesse, N., et al. (2015b) The elemental composition of the Sun II. The iron group elements Sc to Ni. Astronomy & Astrophysics, 573, A26.Google Scholar
Suess, H. E., and Urey, H. C. (1956) Abundances of the elements. Reviews of Modern Physics, 28, 5374.Google Scholar
Vagnozzi, S., Freese, K., and Zurbuchen, T. H. (2017) Solar models in the light of new high metallicity measurement from solar wind data. Astrophysical Journal, 839, 55.CrossRefGoogle Scholar
Vauclair, S. (1998) Elemental settling in the solar interior. Space Science Reviews, 85, 7178.CrossRefGoogle Scholar
Wannier, P. G. (1989) Abundances in the galactic center. In The Center of the Galaxy, Morris, M., editor, pp. 107119, IAU Symposium #136.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×