Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T12:16:46.555Z Has data issue: false hasContentIssue false

15 - The Reward of Musical Emotions and Expectations

from Part II - Applications

Published online by Cambridge University Press:  18 September 2020

Laurence J. Kirmayer
Affiliation:
McGill University, Montréal
Carol M. Worthman
Affiliation:
Emory University, Atlanta
Shinobu Kitayama
Affiliation:
University of Michigan, Ann Arbor
Robert Lemelson
Affiliation:
University of California, Los Angeles
Constance A. Cummings
Affiliation:
The Foundation for Psychocultural Research
Get access

Summary

Music exists in all cultures and appears to elicit intense emotions and pleasure in the vast majority of people. Recent scientific advances have linked the pleasure of music listening to biological mechanisms associated with rewarding or reinforcing stimuli, including the activation of the brain’s reward system. Specifically, we and others have shown that the neurotransmitter dopamine is central to this phenomenon, and that it engages one subregion of the reward system in anticipation of pleasurable musical events and another during its realization. This dissociation implies that musical pleasure operates via some predictive mechanism that creates expectations, which the music then either fulfills or not. Accordingly, a growing body of evidence highlights the prevalence of prediction-based neural processing and its importance for learning about and adapting to one’s environment. Drawing on these findings and on related research into the optimization of learning, we propose that musical structures recruit neural systems of reward and emotion by evoking sufficiently uncertain expectations to build anticipation, and sufficiently surprising events to foster learning, reward, and pleasure. We explore the role that musical experience and culture play in engendering expectations, and offer suggestions for future research into the neuroscience of musical aesthetics and reward.

Type
Chapter
Information
Culture, Mind, and Brain
Emerging Concepts, Models, and Applications
, pp. 402 - 415
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anselme, P. (2013). Dopamine, motivation, and the evolutionary significance of gambling-like behaviour. Behavioural Brain Research, 256, 14. https://doi.org/10.1016/j.bbr.2013.07.039Google Scholar
Barascud, N., Pearce, M. T., Griffiths, T. D., Friston, K. J., & Chait, M. (2016). Brain responses in humans reveal ideal observer-like sensitivity to complex acoustic patterns. Proceedings of the National Academy of Sciences of the United States of America, 113(5), E616E625. https://doi.org/10.1073/pnas.1508523113Google Scholar
Bennett, D., Bode, S., Brydevall, M., Warren, H., & Murawski, C. (2016). Intrinsic valuation of information in decision making under uncertainty. PLoS Computional Biology, 12(7), e1005020. https://doi.org/10.1371/journal.pcbi.1005020Google Scholar
Berlyne, D. E. (1960). McGraw-Hill series in psychology. Conflict, arousal, and curiosity. McGraw-Hill Book Company. https://doi.org/10.1037/11164-000Google Scholar
Berlyne, D. E. (Ed.). (1974). Studies in the new experimental aesthetics: Steps toward an objective psychology of aesthetic appreciation. Hemisphere.Google Scholar
Berridge, K. C., & Kringelbach, M. L. (2008). Affective neuroscience of pleasure: Reward in humans and animals. Psychopharmacology, 199(3), 457–80. https://doi.org/10.1007/s00213-008-1099-6CrossRefGoogle ScholarPubMed
Bigand, E., Poulin, B., Tillmann, B., Madurell, F., & D’Adamo, D. A. (2003). Sensory versus cognitive components in harmonic priming. Journal of Experimental Psychology: Human Perception and Performance, 29(1), 159–71. https://doi.org/10.1037/0096-1523.29.1.159Google Scholar
Blood, A. J., Zatorre, R. J., Bermudez, P., & Evans, A. C. (1999). Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nature Neuroscience, 2(4), 382–7. https://doi.org/10.1038/7299Google Scholar
Bogert, B., Numminen-Kontti, T., Gold, B., Sams, M., Numminen, J., Burunat, I., Lampinen, J., & Brattico, E. (2016). Hidden sources of joy, fear, and sadness: Explicit versus implicit neural processing of musical emotions. Neuropsychologia, 89, 393402. https://doi.org/10.1016/j.neuropsychologia.2016.07.005Google Scholar
Brattico, E., Bogert, B., Alluri, V., Tervaniemi, M., Eerola, T., & Jacobsen, T. (2016). It’s sad but I like it: The neural dissociation between musical emotions and liking in experts and laypersons. Frontiers in Human Neuroscience, 9, 676. https://doi.org/10.3389/fnhum.2015.00676Google Scholar
Brattico, E., Jacobsen, T., De Baene, W., Glerean, E., & Tervaniemi, M. (2010). Cognitive vs. affective listening modes and judgments of music: An ERP study. Biological Psychology, 85(3), 393409. https://doi.org/10.1016/j.biopsycho.2010.08.014Google Scholar
Brattico, E., & Pearce, M. (2013). The neuroaesthetics of music. Psychology of Aesthetics, Creativity, and the Arts, 7(1), 4861. https://doi.org/10.1037/a0031624CrossRefGoogle Scholar
Bromberg-Martin, E. S., & Hikosaka, O. (2009). Midbrain dopamine neurons signal preference for advance information about upcoming rewards. Neuron, 63(1), 119–26. https://doi.org/10.1016/j.neuron.2009.06.009CrossRefGoogle ScholarPubMed
Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 68(5), 815–34. https://doi.org/10.1016/j.neuron.2010.11.022Google Scholar
Brydevall, M., Bennett, D., Murawski, C., & Bode, S. (2018). The neural encoding of information prediction errors during non-instrumental information seeking. Scientific Reports, 8(1), 6134. https://doi.org/10.1038/s41598-018-24566-xGoogle Scholar
Burgdorf, J., & Panksepp, J. (2006). The neurobiology of positive emotions. Neuroscience & Biobehavioral Reviews, 30(2), 173–87. https://doi.org/10.1016/j.neubiorev.2005.06.001Google Scholar
Chase, H. W., Kumar, P., Eickhoff, S. B., & Dombrovski, A. Y. (2015). Reinforcement learning models and their neural correlates: An activation likelihood estimation meta-analysis. Cognitive, Affective, & Behavioral Neuroscience, 15(2), 435–59. https://doi.org/10.3758/s13415-015-0338-7CrossRefGoogle ScholarPubMed
Chmiel, A., & Schubert, E. (2017). Back to the inverted-U for music preference: A review of the literature. Psychology of Music, 45(6), 886909. https://doi.org/10.1177%2F0305735617697507Google Scholar
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181204. https://doi.org/10.1017/S0140525X12000477Google Scholar
Demorest, S. M., Morrison, S. J., Jungbluth, D., & Beken, M. N. (2008). Lost in translation: An enculturation effect in music memory performance. Music Perception, 25(3), 213–23. https://doi.org/10.1525/mp.2008.25.3.213Google Scholar
den Ouden, H. E. M., Daunizeau, J., Roiser, J., Friston, K. J., & Stephan, K. E. (2010). Striatal prediction error modulates cortical coupling. Journal of Neuroscience, 30(9), 3210–19. https://doi.org/10.1523/JNEUROSCI.4458-09.2010Google Scholar
den Ouden, H. E. M., Kok, P., & de Lange, F. P. (2012). How prediction errors shape perception, attention, and motivation. Frontiers in Psychology, 3, 548. https://doi.org/10.3389/fpsyg.2012.00548Google Scholar
Egermann, H., Pearce, M. T., Wiggins, G. A., & McAdams, S. (2013). Probabilistic models of expectation violation predict psychophysiological emotional responses to live concert music. Cognitive, Affective, & Behavioral Neuroscience, 13(3), 533–53. https://doi.org/10.3758/s13415-013-0161-yGoogle Scholar
Ferreri, L., Mas-Herrero, E., Zatorre, R. J., Ripollés, P., Gomez-Andres, A., Alicart, H., Olivé, G., Marco-Pallarés, J., Antonijoan, R. M., Valle, M., Riba, J., & Rodriguez-Fornells, A. (2019). Dopamine modulates the reward experiences elicited by music. Proceedings of the National Academy of Sciences of the United States of America, 116(9), 3793–8. https://doi.org/10.1073/pnas.1811878116Google Scholar
Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299(5614), 1898–902. https://doi.org/10.1126/science.1077349Google Scholar
Frank, M. J., Seeberger, L. C., & O’Reilly, R. C. (2004). By carrot or by stick: Cognitive reinforcement learning in parkinsonism. Science, 306(5703), 1940–3. https://doi.org/10.1126/science.1102941Google Scholar
Franklin, R. G. Jr., & Adams, R. B. Jr. (2011). The reward of a good joke: Neural correlates of viewing dynamic displays of stand-up comedy. Cognitive, Affective, & Behavioral Neuroscience, 11(4), 508–15. https://doi.org/10.3758/s13415-011-0049-7Google Scholar
Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–36. https://doi.org/10.1098/rstb.2005.1622Google Scholar
Friston, K. (2008). Hierarchical models in the brain. PLoS Computational Biology, 4(11), e1000211. https://doi.org/10.1371/journal.pcbi.1000211Google Scholar
Gebauer, L., Kringelbach, M. L., & Vuust, P. (2012). Ever-changing cycles of musical pleasure: The role of dopamine and anticipation. Psychomusicology: Music, Mind, and Brain, 22(2), 152–67. https://doi.org/10.1037/a0031126Google Scholar
Gold, B. P., Mas-Herrero, E., Zeighami, Y., Benovoy, M., Dagher, A., & Zatorre, R. J. (2019b). Musical reward prediction errors engage the nucleus accumbens and motivate learning. Proceedings of the National Academy of Sciences of the United States of America, 116(8), 3310–15. https://doi.org/10.1073/pnas.1809855116Google Scholar
Gold, B. P., Pearce, M. T., Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2019a). Predictability and uncertainty in the pleasure of music: A reward for learning? Journal of Neuroscience, 39(47), 9397–409. https://doi.org/10.1523/JNEUROSCI.0428-19.2019CrossRefGoogle Scholar
Grewe, O., Nagel, F., Kopiez, R., & Altenmüller, E. (2005). How does music arouse “chills”? Investigating strong emotions, combining psychological, physiological, and psychoacoustical methods. Annals of the New York Academy of Sciences, 1060(1), 446–9. https://doi.org/10.1196/annals.1360.041Google Scholar
Grewe, O., Nagel, F., Kopiez, R., & Altenmüller, E. (2007). Listening to music as a re-creative process: Physiological, psychological, and psychoacoustical correlates of chills and strong emotions. Music Perception, 24(3), 297314. https://doi.org/10.1525/mp.2007.24.3.297CrossRefGoogle Scholar
Hannon, E. E., Soley, G., & Ullal, S. (2012a). Familiarity overrides complexity in rhythm perception: A cross-cultural comparison of American and Turkish listeners. Journal of Experimental Psychology: Human Perception and Performance, 38(3), 543–8. https://doi.org/10.1037/a0027225Google Scholar
Hannon, E. E., & Trehub, S. E. (2005). Tuning in to musical rhythms: Infants learn more readily than adults. Proceedings of the National Academy of Sciences of the United States of America, 102(35), 12639–43. https://doi.org/10.1073/pnas.0504254102Google Scholar
Hannon, E. E., Vanden Bosch der Nederlanden, C. M., & Tichko, P. (2012b). Effects of perceptual experience on children’s and adults’ perception of unfamiliar rhythms. Annals of the New York Academy of Sciences, 1252(1), 92–9. https://doi.org/10.1111/j.1749-6632.2012.06466.xGoogle Scholar
Hansen, N. C., Dietz, M. J., & Vuust, P. (2017). Commentary: Predictions and the brain: How musical sounds become rewarding. Frontiers in Human Neuroscience, 11, 168. https://doi.org/10.3389/fnhum.2017.00168Google Scholar
Hansen, N. C., & Pearce, M. T. (2014). Predictive uncertainty in auditory sequence processing. Frontiers in Psychology, 5, 1052. https://doi.org/10.3389/fpsyg.2014.01052Google Scholar
Hargreaves, D. J., & North, A. C. (2010). Experimental aesthetics and liking for music. In Juslin, P. N. & Sloboda, J. A. (Eds.), Series in affective science. Handbook of music and emotion: Theory, research, applications (pp. 515–46). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199230143.003.0019Google Scholar
Haumann, N. T., Vuust, P., Bertelsen, F., & Garza-Villarreal, E. A. (2018). Influence of musical enculturation on brain responses to metric deviants. Frontiers in Neuroscience, 12, 218. https://doi.org/10.3389/fnins.2018.00218Google Scholar
Huron, D. (2006). Sweet anticipation: Music and the psychology of expectation. MIT Press.Google Scholar
Jepma, M., Verdonschot, R. G., van Steenbergen, H., Rombouts, S. A. R. B., & Nieuwenhuis, S. (2012). Neural mechanisms underlying the induction and relief of perceptual curiosity. Frontiers in Behavioral Neuroscience, 6, 5. https://doi.org/10.3389/fnbeh.2012.00005Google Scholar
Juslin, P. N., & Laukka, P. (2004). Expression, perception, and induction of musical emotions: A review and a questionnaire study of everyday listening. Journal of New Music Research, 33(3), 217–38. https://doi.org/10.1080/0929821042000317813Google Scholar
Kanai, R., Komura, Y., Shipp, S., & Friston, K. (2015). Cerebral hierarchies: Predictive processing, precision and the pulvinar. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1668), 20140169. https://doi.org/10.1098/rstb.2014.0169Google Scholar
Kang, M. J., Hsu, M., Krajbich, I. M., Loewenstein, G., McClure, S. M., Wang, J. T.-Y., & Camerer, C. F. (2009). The wick in the candle of learning. Psychological Science, 20(8), 963–73. https://doi.org/10.1111/j.1467-9280.2009.02402.xGoogle Scholar
Koelsch, S. (2014). Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 15(3), 170–80. https://doi.org/10.1038/nrn3666Google Scholar
Koelsch, S., Fritz, T., & Schlaug, G. (2008). Amygdala activity can be modulated by unexpected chord functions during music listening. NeuroReport, 19(18), 1815–19. https://doi.org/10.1097/WNR.0b013e32831a8722Google Scholar
Koelsch, S., Vuust, P., & Friston, K. (2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23(1), 6377. https://doi.org/10.1016/j.tics.2018.10.006Google Scholar
Krumhansl, C. L. (2000). Rhythm and pitch in music cognition. Psychological Bulletin, 126(1), 159–79. https://doi.org/10.1037/0033-2909.126.1.159Google Scholar
Lonsdale, A. J., & North, A. C. (2011). Why do we listen to music? A uses and gratifications analysis. British Journal of Psychology, 102(1), 108–34. https://doi.org/10.1348/000712610X506831Google Scholar
Loui, P., & Wessel, D. (2008). Learning and liking an artificial musical system: Effects of set size and repeated exposure. Musicae Scientiae, 12(2), 207–30. https://doi.org/10.1177%2F102986490801200202Google Scholar
Loui, P., Wu, E. H., Wessel, D. L., & Knight, R. T. (2009). A generalized mechanism for perception of pitch patterns. Journal of Neuroscience, 29(2), 454–9. https://doi.org/10.1523/JNEUROSCI.4503-08.2009Google Scholar
Lumaca, M., Haumann, N. T., Brattico, E., Grube, M., & Vuust, P. (2019). Weighting of neural prediction error by rhythmic complexity: A predictive coding account using mismatch negativity. European Journal of Neuroscience, 49(12), 1597–609. https://doi.org/10.1111/ejn.14329Google Scholar
Martindale, C., & Moore, K. (1989). Relationship of musical preference to collative, ecological, and psychophysical variables. Music Perception, 6(4), 431–45. https://doi.org/10.2307/40285441Google Scholar
Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2018). Modulating musical reward sensitivity up and down with transcranial magnetic stimulation. Nature Human Behavior, 2, 2732. https://doi.org/10.1038/s41562-017-0241-zGoogle Scholar
Mas-Herrero, E., Marco-Pallares, J., Lorenzo-Seva, U., Zatorre, R. J., & Rodriguez-Fornells, A. (2013). Individual differences in music reward experiences. Music Perception, 31(2), 118–38. https://doi.org/10.1525/mp.2013.31.2.118CrossRefGoogle Scholar
Menon, M., Jensen, J., Vitcu, I., Graff-Guerrero, A., Crawley, A., Smith, M. A., & Kapur, S. (2007). Temporal difference modeling of the blood-oxygen level dependent response during aversive conditioning in humans: Effects of dopaminergic modulation. Biological Psychiatry, 62(7), 765–72. https://doi.org/10.1016/j.biopsych.2006.10.020Google Scholar
Meyer, L. B. (1956). Emotion and meaning in music. University of Chicago Press.Google Scholar
North, A. C., Hargreaves, D. J., & Mckendrick, J. (2000). The effects of music on atmosphere in a bank and a bar. Journal of Applied Social Psychology, 30(7), 1504–22. https://doi.org/10.1111/j.1559-1816.2000.tb02533.xGoogle Scholar
Omigie, D., Pearce, M. T., Williamson, V. J., & Stewart, L. (2013). Electrophysiological correlates of melodic processing in congenital amusia. Neuropsychologia, 51(9), 1749–62. https://doi.org/10.1016/j.neuropsychologia.2013.05.010Google Scholar
Oudeyer, P. Y., Gottlieb, J., & Lopes, M. (2016). Intrinsic motivation, curiosity, and learning: Theory and applications in educational technologies. In Studer, B. & Knecht, S. (Eds.), Progress in brain research. Motivation: Theory, neurobiology and applications (Vol. 229, pp. 257–84). Academic Press. https://doi.org/10.1016/bs.pbr.2016.05.005Google Scholar
Partanen, E., Kujala, T., Tervaniemi, M., & Huotilainen, M. (2013). Prenatal music exposure induces long-term neural effects. PLoS ONE, 8(10), e78946. https://doi.org/10.1371/journal.pone.0078946Google Scholar
Pearce, J. M., & Hall, G. (1980). A model for Pavlovian learning: Variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological Review, 87(6), 532–52. https://doi.org/10.1037/0033-295X.87.6.532Google Scholar
Pearce, M. T. (2005). The construction and evaluation of statistical models of melodic structure in music perception and composition [Unpublished doctoral dissertation]. City University London. http://openaccess.city.ac.uk/8459/Google Scholar
Pearce, M. T., Müllensiefen, D., & Wiggins, G. A. (2010). The role of expectation and probabilistic learning in auditory boundary perception: A model comparison. Perception, 39(1), 1365–89. https://doi.org/10.1068%2Fp6507Google Scholar
Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: One phenomenon, two approaches. Trends in Cognitive Sciences, 10(5), 233–8. https://doi.org/10.1016/j.tics.2006.03.006Google Scholar
Ripollés, P., Marco-Pallarés, J., Hielscher, U., Mestres-Missé, A., Tempelmann, C., Heinze, H.-J., Rodríguez-Fornells, A., & Noesselt, T. (2014). The role of reward in word learning and its implications for language acquisition. Current Biology, 24(21), 2606–11. https://doi.org/10.1016/j.cub.2014.09.044Google Scholar
Saarikallio, S., & Erkkilä, J. (2007). The role of music in adolescents’ mood regulation. Psychology of Music, 35(1), 88109. https://doi.org/10.1177%2F0305735607068889Google Scholar
Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical learning of tone sequences by human infants and adults. Cognition, 70(1), 2752. https://doi.org/10.1016/S0010-0277(98)00075-4Google Scholar
Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), 257–62. https://doi.org/10.1038/nn.2726Google Scholar
Salimpoor, V. N., Benovoy, M., Longo, G., Cooperstock, J. R., & Zatorre, R. J. (2009). The rewarding aspects of music listening are related to degree of emotional arousal. PLoS ONE, 4(10), e7487. https://doi.org/10.1371/journal.pone.0007487Google Scholar
Salimpoor, V. N., van den Bosch, I., Kovacevic, N., McIntosh, A. R., Dagher, A., & Zatorre, R. J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science, 340(6129), 216–19. https://doi.org/10.1126/science.1231059Google Scholar
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–9. https://doi.org/10.1126/science.275.5306.1593CrossRefGoogle ScholarPubMed
Seymour, B., O’Doherty, J. P., Koltzenburg, M., Wiech, K., Frackowiak, R., Friston, K., & Dolan, R. (2005). Opponent appetitive-aversive neural processes underlie predictive learning of pain relief. Nature Neuroscience, 8(9), 1234–40. https://doi.org/10.1038/nn1527CrossRefGoogle ScholarPubMed
Shany, O., Singer, N., Gold, B. P., Jacoby, N., Tarrasch, R., Hendler, T., & Granot, R. (2019). Surprise-related activation in the nucleus accumbens interacts with music-induced pleasantness. Social Cognitive and Affective Neuroscience, 14(4), 459–70. https://doi.org/10.1093/scan/nsz019Google Scholar
Sloboda, J. A. (1991). Music structure and emotional response: Some empirical findings. Psychology of Music, 19(2), 110–20. https://doi.org/10.1177%2F0305735691192002Google Scholar
Sloboda, J. A., & O’Neill, S. A. (2001). Emotions in everyday listening to music. In Juslin, P. N. & Sloboda, J. A. (Eds.), Series in affective science. Music and emotion: Theory and research (pp. 415–29). Oxford University Press.Google Scholar
Steinbeis, N., Koelsch, S., & Sloboda, J. A. (2006). The role of harmonic expectancy violations in musical emotions: Evidence from subjective, physiological, and neural responses. Journal of Cognitive Neuroscience, 18(8), 1380–93. https://doi.org/10.1162/jocn.2006.18.8.1380Google Scholar
Szpunar, K. K., Schellenberg, E. G., & Pliner, P. (2004). Liking and memory for musical stimuli as a function of exposure. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(2), 370–81. https://doi.org/10.1037/0278-7393.30.2.370Google Scholar
Van de Cruys, S., & Wagemans, J. (2011). Putting reward in art: A tentative prediction error account of visual art. i-Perception, 2(9), 1035–62. https://doi.org/10.1068/i0466aapGoogle Scholar
Virtala, P., Huotilainen, M., Partanen, E., Fellman, V., & Tervaniemi, M. (2013). Newborn infants’ auditory system is sensitive to Western music chord categories. Frontiers in Psychology, 4, 492. https://doi.org/10.3389/fpsyg.2013.00492Google Scholar
Vuoskoski, J. K., Thompson, W. F., McIlwain, D., & Eerola, T. (2011). Who enjoys listening to sad music and why? Music Perception, 29(3), 311–17. https://doi.org/10.1525/mp.2012.29.3.311Google Scholar
Wassiliwizky, E., Koelsch, S., Wagner, V., Jacobsen, T., & Menninghaus, W. (2017). The emotional power of poetry: Neural circuitry, psychophysiology and compositional principles. Social Cognitive and Affective Neuroscience, 12(8), 1229–40. https://doi.org/10.1093/scan/nsx069CrossRefGoogle ScholarPubMed
Wilson, T. D., Lisle, D. J., Kraft, D., & Wetzel, C. G. (1989). Preferences as expectation-driven inferences: Effects of affective expectations on affective experience. Journal of Personality and Social Psychology, 56(4), 519–30. https://doi.org/10.1037/0022-3514.56.4.519Google Scholar
Wong, P. C. M., Roy, A. K., & Margulis, E. H. (2009). Bimusicalism: The implicit dual enculturation of cognitive and affective systems. Music Perception, 27(2), 81–8. https://doi.org/10.1525/mp.2009.27.2.81Google Scholar
Zald, D. H., & Zatorre, R. J. (2011). Music. In Gottfried, J. A. (Ed.), Neurobiology of sensation and reward (pp. 405–28). CRC Press. www.ncbi.nlm.nih.gov/books/NBK92781/Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×