Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T03:28:30.776Z Has data issue: false hasContentIssue false

Introduction: Cementochronology in Chronobiology

Published online by Cambridge University Press:  20 January 2022

Stephan Naji
Affiliation:
New York University
William Rendu
Affiliation:
University of Bordeaux (CNRS)
Lionel Gourichon
Affiliation:
Université de Nice, Sophia Antipolis
Get access

Summary

The purpose of this volume is to gather interdisciplinary scholars to explore and implement cementochronology, the analysis of cementum growth, from a chronobiology perspective. Chronobiology, the study of biological rhythms, rests on the premise that the regular rotation of the earth around its central axis and the sun produces two fundamental periodicities to which all life has become adapted. The evolutionary "clock-shop" model posits that circadian clocks govern daily rhythmicity, and circannual clocks provide a seasonal endogenous calendar. We present current theories explaining and interpreting cyclic growth marks observed in hard tissues, especially cementum. Repeated empirical and validation studies are now available to explain cementum's annual/seasonal periodicity, even though specific molecular pathways are still needed. We present our evidence in three parts covering cementum biology, protocols, and anthropological applications and argue that cementochronology with its regular and continuous growth characteristics should have a privileged place among skeletal age indicators.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baglinière, J.-L., Castanet, J., Conand, F., & Meunier, F. J. (1992). Tissus Durs et Âge Individuel des Vertébrés. Paris: ORSTOM/INRA Editions.Google Scholar
Baillon, N. (1992). Otolithometrie, revue et problèmes. In Baglinière, J.-L., Castanet, J., Conand, F., & Meunier, F. J. eds., Tissus Durs et Age Individuel des Vertébrés. Paris: ORSTOM-INRA Editions, 2152.Google Scholar
Ball, G. F., Alward, B. A., & Balthazart, J. (2017). Seasonal changes in brain and behavior. In Kumar, V., ed., Biological Timekeeping: Clocks, Rhythms and Behaviour. New Delhi: Springer India, 571–88.Google Scholar
Black, G. V. (1887). A Study of the Histological Characters of the Periosteum and Peridental Membrane. Chicago: W. T. Keener.Google Scholar
Bosshardt, D., Luder, H. U., & Schroeder, H. E. (1989). Rate and growth pattern of cementum apposition as compared to dentine and root formation in a fluorochrome-labeled monkey (Macaca fascicularis). Journal de Biologie Buccale, 17(1), 313.Google Scholar
Bromage, T. G. (1991). Enamel incremental periodicity in the pig-tailed macaque: A polychrome fluorescent labelling study of dental hard tissues. American Journal of Physical Anthropology, 86, 205–14.Google Scholar
Bromage, T. G., Idaghdour, Y., Lacruz, R. S., … Schrenk, F. (2016). The swine plasma metabolome chronicles “many days” biological timing and functions linked to growth. PLOS ONE, 11(1), e0145919.CrossRefGoogle ScholarPubMed
Bromage, T. G., Juwayeyi, Y. M., Smolyar, I., Hu, B., Gomez, S., Scaringi, V. J. C., Bondalapati, P., Kaur, K., & Chisi, J. (2011). Signposts ahead: Hard tissue signals on rue Armand de Ricqlès. Comptes Rendus Palevol, 10(5), 499507.CrossRefGoogle Scholar
Bromage, T. G., Lacruz, R. S., Hogg, R., … Boyde, A. (2009). Lamellar bone is an incremental tissue reconciling enamel rhythms, body size, and organismal life history. Calcified Tissue International, 84(5), 388404.Google Scholar
Castanet, J. (1980). La squelettochronologie chez les vertébrés supérieurs (Mammifères et Oiseaux). Bulletins de la Société de Zoologie Française, 105, 347–54.Google Scholar
Castanet, J., Francillon-Vieillot, H., Meunier, F. J., & Ricqlès, A. (1993). Bone and individual aging. In Hall, B. K, ed. Bone: A Treatise. Boca Raton, CRC Press, 245–83.Google Scholar
Castanet, J., Meunier, F. J., & Ricqlès, A. de. (1977). L’enregistrement de la croissance cyclique par le tissu osseux chez les vertébrés poïkilothermes: Données comparatives et essai de synthèse. Bulletin Biologique de la France et de la Belgique, 111(2), 183202.Google Scholar
Clerc, W. (1927). Etude de la périodicité de la croissance d’après les plans isodynamiques des os. Revue Suisse de Zoologie, 34, 477–96.Google Scholar
Colard, T., Bertrand, B., Naji, S., Delannoy, Y., & Bécart, A. (2015). Toward the adoption of cementochronology in forensic context. International Journal of Legal Medicine, 129, 18.Google Scholar
Day, G. I., & Carrel, W. K. (1986). Aging Javelina by Tetracycline Labeling of Teeth: A Final Report. Research Branch, Arizona Game and Fish Department.Google Scholar
de Buffrénil, V., & Castanet, J. (2000). Age estimation by skeletochronology in the Nile Monitor (Varanus niloticus), a highly exploited species. Journal of Herpetology, 34, 414.CrossRefGoogle Scholar
Demars, P.-Y., Le Gall, O., & Martin, H. (2007). Saisonnalité, mobilité et spécialisation des sites: Une approche polythématique. In Beaune, S. A. ed. Chasseurs-Cueilleurs: Comment Vivaient les Hommes du Paléolithique Supérieur - Méthodes d’Analyse et d’Interprétation en Préhistoire. Paris: CNRS, 99115.Google Scholar
Dean, C. (2006). Tooth microstructure tracks the pace of human life-history evolution. Proceedings of the Royal Society B: Biological Sciences, 273(1603), 27992808.CrossRefGoogle Scholar
Dean, C., Le Cabec, A., Spiers, K., Zhang, Y., & Garrevoet, J. (2018). Incremental distribution of strontium and zinc in great ape and fossil hominin cementum using synchrotron X-ray fluorescence mapping. Journal of the Royal Society, Interface, 15(138). https://doi.org/10.1098/rsif.2017.0626Google Scholar
Dean, M. C., & Scandrett, A. E. (1996). The relation between long-period incremental markings in dentine and daily cross-striations in enamel in human teeth. Archives of Oral Biology, 41(3), 233–41.Google Scholar
Dopico, X. C., Evangelou, M., Ferreira, R. C., … Todd, J. A. (2015). Widespread seasonal gene expression reveals annual differences in human immunity and physiology. Nature Communications, 6. https://do.org/10.1038/ncomms8000CrossRefGoogle ScholarPubMed
Dumont, M., Tafforeau, P., Bertin, T., … Louchart, A. (2016). Synchrotron imaging of dentition provides insights into the biology of Hesperornis and Ichthyornis, the “last” toothed birds. BMC Evolutionary Biology, 16(1), 178.CrossRefGoogle ScholarPubMed
Dunlap, J. C., Loros, J. J., & DeCoursey, P. J. (2003). Chronobiology: Biological Timekeeping. Sunderland, MA: Sinauer Associates.Google Scholar
Enax, J., Fabritius, H.-O., Rack, A., Prymak, O., Raabe, D., & Epple, M. (2013). Characterization of crocodile teeth: Correlation of composition, microstructure, and hardness. Journal of Structural Biology, 184(2), 155–63.CrossRefGoogle ScholarPubMed
Foster, B. L. (2017). On the discovery of cementum. Journal of Periodontal Research, 52(4), 666–85.CrossRefGoogle ScholarPubMed
Foster, R. G. (2005). Rhythms of Life: The Biological Clocks that Control the Daily Lives of Every Living Thing. New Haven, CT: Yale University Press.Google Scholar
Ganguly, S., & Klein, D. C. (2017). The timezyme and melatonin: Essential elements of vertebrate timekeeping. In Kumar, V., ed., Biological Timekeeping: Clocks, Rhythms and Behaviour. New Delhi: Springer India, 503–20.Google Scholar
García, R. A., & Zurriaguz, V. (2016). Histology of teeth and tooth attachment in titanosaurs (Dinosauria; Sauropoda). Cretaceous Research, 57, 248–56.CrossRefGoogle Scholar
Grosskopf, B. (1996). Cementochronologie – Eine methode zur bestimmung des individualalters. Bulletin de la Société Suisse d’Anthropologie, 2, 2731.Google Scholar
Grue, H. (1976). Nonseasonal incremental lines in tooth cementum of domestic dogs (Canis familiaris L.). Danish Review of Game Biology, 10(2), 18.Google Scholar
Grue, H., & Jensen, B. (1979). Review of the formation of incremental lines in tooth cementum of terrestrial mammals. Danish Review of Game Biology, 11, 148.Google Scholar
Gustafson, G. (1950). Age determination of teeth. Journal of the American Dental Association, 41, 4554.Google Scholar
Helm, B., & Lincoln, G. A. (2017). Circannual rhythms anticipate the earth’s annual periodicity. In Kumar, V., ed., Biological Timekeeping: Clocks, Rhythms and Behaviour. New Delhi: Springer India, 545–69.Google Scholar
Hemelaar, A. (1985). An improved method to estimate the number of year rings resorbed in phalanges of Bufo bufo (L.) and its application to populations from different latitudes and altitudes. Amphibia-Reptilia, 6(4), 323–41.Google Scholar
Hogg, R. (2018). Permanent record: The use of dental and bone microstructure to assess life history evolution and ecology. In Croft, D. A., Su, D. F., & Simpson, S. W., eds., Methods in Paleoecology: Reconstructing Cenozoic Terrestrial Environments and Ecological Communities. Cham: Springer International Publishing, 7598.Google Scholar
Ikegami, K., & Yoshimura, T. (2017). Molecular mechanism regulating seasonality. In Kumar, V., ed., Biological Timekeeping: Clocks, Rhythms and Behaviour. New Delhi: Springer India, 589605.Google Scholar
Kimura, D. K. (1977). Statistical assessment of the age-length key. Journal of Fisheries Research Board of Canada, 34, 317–24.CrossRefGoogle Scholar
Kimura, D. K., & Chikuni, S. (1987). Mixture of empirical distributions: An iterative application of the age-length key. Biometrics, 43, 2355.CrossRefGoogle Scholar
Klevezal’, G. A. (1996). Recording Structures of Mammals: Determination of Age and Reconstruction of Life History. Rotterdam: A. A. Balkema Series.Google Scholar
Klevezal’, G. A., & Kleinenberg, S. E. (1967). Age Determination of Mammals from Annual Layers in Teeth and Bones. Akademiya Nauk SSSR.Google Scholar
Klevezal’, G. A., & Myrick, A. C. (1984). Marks in tooth dentine of female dolphins (Genus Stenella) as indicators of parturition. Journal of Mammalogy, 65(1), 103–10.Google Scholar
Köhler, M., Marín-Moratalla, N., Jordana, X., & Aanes, R. (2012). Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology. Nature, 487(7407), 358–61.CrossRefGoogle ScholarPubMed
Kumar, V. (ed.). (2017). Biological Timekeeping: Clocks, Rhythms and Behaviour, Springer India. https://doi.org/10.1007/978-81-322-3688-7CrossRefGoogle Scholar
Laws, R. M. (1952). A new method of age determination for mammals. Nature, 169, 972–73.Google Scholar
LeBlanc, A. R. H., Brink, K. S., Cullen, T. M., & Reisz, R. R. (2017). Evolutionary implications of tooth attachment versus tooth implantation: A case study using dinosaur, crocodilian, and mammal teeth. Journal of Vertebrate Paleontology, 37(5), e1354006.CrossRefGoogle Scholar
Lemmer, B. (2009). Discoveries of rhythms in human biological functions: A historical review. Chronobiology International, 26(6), 1019–68.Google Scholar
Lieberman, D. E. (1993). Life history variables preserved in dental cementum microstructure. Science, 261, 1162.Google Scholar
Lincoln, G. (2019). A brief history of circannual time. Journal of Neuroendocrinology, 31(3), e12694.Google Scholar
Liu, Y. H., & Panda, S. (2017). Circadian photoentrainment mechanism in mammals. In Kumar, V., ed., Biological Timekeeping: Clocks, Rhythms and Behaviour. New Delhi: Springer India, 365–93.Google Scholar
Luan, X., Walker, C., Dangaria, S., … Rieppel, O. (2009). The mosasaur tooth attachment apparatus as paradigm for the evolution of the gnathostome periodontium. Evolution & Development, 11(3), 247–59.Google Scholar
Martin, M. (1995). La Chasse au post-glaciaire: Les apports de la cémentochronologie, l’exemple de deux sites pyrénéens. Etudes et Recherches Archéologiques de l’Université de Liège, 68, 284–86.Google Scholar
Matson, G. M., & Kerr, K. D. (1998). A method for dating tetracycline biomarkers in black bear cementum. Ursus, 10, 455–58.Google Scholar
Matson, G., Van Daele, L., Goodwin, E., Aumiller, L., Reynolds, H., & Hristienko, H. (1993). A Laboratory Manual for Cementum Age Determination of Alaska Brown Bear PM1 Teeth. Milltown, MT: Alaska Department of Fish and Game; Matson’s Laboratory.Google Scholar
Maxwell, E. E., Caldwell, M. W., & Lamoureux, D. O. (2011). Tooth histology in the cretaceous ichthyosaur Platypterygius australis and its significance for the conservation and divergence of mineralized tooth tissues in amniotes. Journal of Morphology, 272(2), 129–35.Google Scholar
Miller, F. L. (1974). Biology of the Kaminuriak Population of Barren-Ground Caribou. Part 2. Dentition as an Indicator of Age and Sex; Composition and Socialization of the Population. Ottawa, ON: Canadian Wildlife Service.Google Scholar
Mounaix, B. (1992). Validation by calcein injection of ageing European eel Anguilla unguilla in the Vilaine river (Brittany) first results. In Baglinière, J.-L., Castanet, J., Conand, F., & Meunier, F. J., eds., Tissus Durs et Âge Individuel des Vertébrés. Paris: ORSTOM/INRA, 109–19.Google Scholar
Naji, S., Colard, T., & Bertrand, B. (2013). Cementochronology. American Journal of Physical Anthropology, S.56, 52.Google Scholar
Naji, S., Colard, T., Blondiaux, J., Bertrand, B., d’Incau, E., & Bocquet-Appel, J.-P. (2016). Cementochronology, to cut or not to cut? International Journal of Paleopathology, 15, 113–19.CrossRefGoogle ScholarPubMed
Naji, S., & Koel-Abt, K. (2017). Cementochronology – The still underestimated old “new” method for age-at-death assessment. Journal of Forensic Sciences & Criminal Investigation, 3(5), 15.Google Scholar
Naji, S., Rendu, W., & Gourichon, L. (2015). La cémentochronologie. In Balasse, M., Brugal, J.-P., Dauphin, Y., Geigl, E.-M., & Oberlin, C., eds., Message d’Os. Archéométrie du Squelette Animal et Humain. Paris: Editions des Archives Contemporaines, 172–90.Google Scholar
Newham, E., Gill, P. G., Brewer, P., Benton, M. J., Fernandez, V., Gostling, N. J., Haberthür, D., et al. (2020). Reptile-like physiology in Early Jurassic stem-mammals. Nature Communications, 11(1), 5121.Google Scholar
Padian, K., & Lamm, E.-T. (2013). Bone Histology of Fossil Tetrapods: Advancing Methods, Analysis, and Interpretation. Berkeley: University of California Press.Google Scholar
Panda, S., Hogenesch, J. B., & Kay, S. A. (2002). Circadian rhythms from flies to humans. Nature, 417. https://doi.org/10.1038/417329aGoogle Scholar
Perrin, W. F., & Myrick, A. C. (1980). Age Determination of Toothed Whales and Sirenians: Growth of Odontocetes and Sirenians: Problems in Age Determination: Proceedings of the International Conference on Determining Age of Odontocete Cetaceans (and Sirenians), La Jolla, California, September 5–19, 1978. Cambridge: International Whaling Commission.Google Scholar
Piccione, G., Giannetto, C., Casella, S., & Caola, G. (2009). Annual rhythms of some physiological parameters in Ovis aries and Capra hircus. Biological Rhythm Research, 40(6), 455–64.Google Scholar
Reinberg, A. E., Dejardin, L., Smolensky, M. H., & Touitou, Y. (2017). Seven-day human biological rhythms: An expedition in search of their origin, synchronization, functional advantage, adaptive value and clinical relevance. Chronobiology International, 34(2), 162–91.Google Scholar
Scheffer, V. B. (1950). Growth layer on the teeth of Pinnipedia as an indication of age. Science, 112, 309–11.CrossRefGoogle ScholarPubMed
Schwartz, W. J., & Daan, S. (2017). Origins: A brief account of the ancestry of circadian biology. In Kumar, V., ed., Biological Timekeeping: Clocks, Rhythms and Behaviour. New Delhi: Springer India, 322.Google Scholar
Sergeant, D. E., & Pimlott, D. H. (1959). Age determination in moose from sectioned incisor teeth. Journal of Wildlife Management, 23(3), 315–21.Google Scholar
Stallibrass, S. (1982). The use of cement layers for absolute ageing of mammalian teeth: A selective review of the literature, with suggestions for further studies and alternative applications. In Wilson, B., Grigson, C., & Payne, S., eds., Ageing and Sexing Animal Bones from Archaeological Sites. Oxford: British Archaeological Report, 109–26.Google Scholar
Stein, T. J., & Corcoran, J. F. (1994). Pararadicular cementum deposition as a criterion for age estimation in human beings. Oral Surgery, Oral Medicine, Oral Pathology. 77(3), 266–70.Google Scholar
Stevenson, T. J., & Lincoln, G. A. (2017). Epigenetic mechanisms regulating circannual rhythms. In Kumar, V., ed., Biological Timekeeping: Clocks, Rhythms and Behaviour. New Delhi: Springer India, 607–23.Google Scholar
Stock, S. R., Finney, L. A., Telser, A., Maxey, E., Vogt, S., & Okasinski, J. S. (2017). Cementum structure in Beluga whale teeth. Acta Biomaterialia, 48, 289–99.Google Scholar
Stott, G. G., Sis, R. F., & Levy, B. M. (1982). Cemental annulation as an age criterion in forensic dentistry. Journal of Dental Research, 61(6), 814–17.Google Scholar
Streeter, M. (2011). Histological age-at-death estimation. In Crowder, C. & Stout, S., eds., Bone Histology: An Anthropological Perspective. London: CRC Press LLC, 135–52.Google Scholar
von Biela, V. R., Testa, J. W., Gill, V. A., & Burns, J. M. (2008). Evaluating cementum to determine past reproduction in northern sea otters. Journal of Wildlife Management, 72(3), 618–24.Google Scholar
Wedel, V. L. (2007). Determination of season at death using dental cementum increment analysis. Journal of Forensic Sciences, 52(6), 1334–37.Google Scholar
Weinert, D., & Waterhouse, J. (2017). Interpreting circadian rhythms. In Kumar, V., ed., Biological Timekeeping: Clocks, Rhythms and Behaviour. New Delhi: Springer India, 2345.Google Scholar
Wittwer-Backofen, U., & Buba, H. (2002). Age estimation by tooth cementum annulation: Perspective of a new validation study. In Hoppa, R. D. & Vaupel, J. W., eds., Paleodemography, Age Distributions from Skeletal Samples. Cambridge: Cambridge University Press, 107–28.Google Scholar
Woodward, H. N., Padian, K., & Andrew, L. H. (2013). Skeletochronology. In K. Padian, & E.-T. Lamm, eds., Bone Histology of Fossil Tetrapods: Advancing Methods, Analysis, and Interpretation. Berkeley: University of California Press, 195215.Google Scholar
Zheng, L., Ehardt, L., McAlpin, B., … Papagerakis, P. (2014). The tick-tock of odontogenesis. Experimental Cell Research, 325(2), 83–9.Google Scholar
Zucker, I., Lee, T. M., & Dark, J. (1991). The suprachiasmatic nucleus and rhythms of mammals. In Klein, D., Reppert, S., & Moore, R., eds., Suprachiasmatic Nucleus: The Mind’s Clock. Oxford: Oxford University Press, 246–59.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×