Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T05:06:20.103Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  01 February 2019

Franck Laloë
Affiliation:
Ecole Normale Supérieure, Paris
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bohr, N., Atomic Physics and Human Knowledge, Wiley (1958), and Dover (2011), see in particular chapter “Discussions with Einstein on epistemological problems in atomic physics” – or, in French, with bibliography and glossary by C. Chevalley: Physique atomique et connaissance humaine, Folio essais, Gallimard (1991); Essays 1933 to 1957 on Atomic Physics and Human Knowledge, Ox Bow Press (1987); Essays 1958–62 on Atomic Physics and Human Knowledge, Wiley (1963) and Ox Bow Press (1987); Atomic Physics and the Description of Nature, Cambridge University Press (1934 and 1961).Google Scholar
Albert Einstein: Philosopher-Scientist, P.A. Schilpp editor, Open Court and Cambridge University Press (1949).Google Scholar
Bacchiagaluppi, G. and Valentini, A., Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference, Cambridge University Press (2009); https://arxiv.org/abs/quant-ph/0609184v2.Google Scholar
von Neumann, J., Mathematische Grundlagen der Quantenmechanik, Springer, Berlin (1932); Mathematical Foundations of Quantum Mechanics, Princeton University Press (1955).Google Scholar
Bell, J.S., “On the problem of hidden variables in quantum mechanics”, Rev. Mod. Phys. 38, 447452 (1966); reprinted in Quantum Theory and Measurement, J.A. Wheeler and W.H. Zurek editors, Princeton University Press (1983), 396–402 and in chapter 1 of [6].Google Scholar
Bell, J.S., Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press (1987); second augmented edition (2004), which contains the complete set of J. Bell’s articles on quantum mechanics.Google Scholar
Bohm, D. and Bub, J., “A proposed solution of the measurement problem in quantum mechanics by a hidden variable theory”, Rev. Mod. Phys. 38, 453469 (1966).Google Scholar
Bohm, D. and Bub, J., “A refutation of the proof by Jauch and Piron that hidden variables can be excluded in quantum mechanics”, Rev. Mod. Phys. 38, 470475 (1966).CrossRefGoogle Scholar
Mermin, N.D., “Hidden variables and the two theorems of John Bell”, Rev. Mod. Phys. 65, 803815 (1993); in particular, see §III.Google Scholar
Shimony, A., “Role of the observer in quantum theory”, Am. J. Phys. 31, 755773 (1963).CrossRefGoogle Scholar
Bohm, D., “A suggested interpretation of the quantum theory in terms of ‘hidden’ variables”, Phys. Rev. 85, 166179 and 180–193 (1952); by the same author, see also Quantum Theory, Constable (1954), although this book does not discuss theories with additional variables.Google Scholar
Wiener, N. and Siegel, A., “A new form for the statistical postulate of quantum mechanics”, Phys. Rev. 91, 15511560 (1953); A. Siegel and N. Wiener, “Theory of measurement in differential space quantum theory”, Phys. Rev. 101, 429–432 (1956).Google Scholar
Pearle, P., “Reduction of the state vector by a nonlinear Schrödinger equation”, Phys. Rev. D 13, 857868 (1976).Google Scholar
Pearle, P., “Toward explaining why events occur”, Int. J. Theor. Phys. 18, 489518 (1979).Google Scholar
Ghirardi, G.C., Rimini, A., and Weber, T., “Unified dynamics for microscopic and macroscopic systems”, Phys. Rev. D 34, 470491 (1986); “Disentanglement of quantum wave functions”, Phys. Rev. D 36, 3287–3289 (1987).Google Scholar
DeWitt, B.S., “Quantum mechanics and reality”, Phys. Today 23, 3035 (September 1970).Google Scholar
Griffiths, R.B., “Consistent histories and the interpretation of quantum mechanics”, J. Stat. Phys. 36, 219272 (1984); Consistent Quantum Theory, Cambridge University Press (2002).CrossRefGoogle Scholar
Goldstein, S., “Quantum theory without observers”, Phys. Today 51, 4246 (March 1998) and 38–41 (April 1998).Google Scholar
Goldstein, S., “Quantum mechanics debate”, Phys. Today 24, 3644 (April 1971); “Still more quantum mechanics”, Phys. Today 24, 11–15 (Oct. 1971).Google Scholar
DeWitt, B.S. and Graham, R.N., “Resource letter IQM-1 on the interpretation of quantum mechanics”, Am. J. Phys. 39, 724738 (1971).Google Scholar
Jammer, M., The Conceptual Development of Quantum Mechanics, McGraw-Hill (1966), second edition (1989).Google Scholar
Mehra, J. and Rechenberg, H., The Historical Development of Quantum Theory, Springer (1982).Google Scholar
Darrigol, O., From c-Numbers to q-Numbers: The Classical Analogy in the History of Quantum Theory, University of California Press (1992).Google Scholar
d’Espagnat, B., Conceptual Foundations of Quantum Mechanics, Benjamin (1971).Google Scholar
d’Espagnat, B., Veiled Reality: An Analysis of Present Day Quantum Mechanics Concepts, Addison Wesley (1995); Le réel voilé, analyse des concepts quantiques, Fayard (1994); Une incertaine réalité, la connaissance et la durée, Gauthier-Villars, (1985); A la recherche du réel, Gauthier-Villars Bordas (1979).Google Scholar
Planck, M., “Über eine Verbesserung der Wienerschen Spektralgleichung”, Verhand-lungen der Deutschen Physikalischen Gesellschaft 2, 202204 (1900). Physikalische Abhandlungen und Vorträge, vol. 1, 493–600, Friedrich Vieweg und Sohn (1958).Google Scholar
Lewis, G.N., “The conservation of photons”, Nature 118, 874875 (1926).Google Scholar
Pais, A., “Einstein and the quantum theory”, Rev. Mod. Phys. 51, 863914 (1979).Google Scholar
Lieb, E.H. and Seiringer, R., The Stability of Matter in Quantum Mechanics, Cambridge University Press (2010).Google Scholar
de Broglie, L., “Recherches sur la théorie des quanta”, thesis Paris (1924).CrossRefGoogle Scholar
Davisson, C.J. and Germer, L.H., “Reflection of electrons by a crystal of nickel”, Nature 119, 558560 (1927).Google Scholar
Darrigol, O., “Strangeness and soundness in Louis de Broglie’s early works”, Physis 30, 303372 (1993).Google Scholar
Schrödinger, E., “Quantisierung als Eigenwert Problem”, Annalen der Physik, 1st communication: 79, 361376 (1926); 2nd communication: 79, 489–527 (1926); 3rd communication: 80, 437–490 (1926); 4th communication: 81, 109–139 (1926).Google Scholar
Born, M., “Quantenmechanik der Stossvorgänge”, Zeitschrift für Physik 38, 803827 (1926); “Zur Wellenmechanik der Stossvorgänge”,Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 146–160 (1926).Google Scholar
Cornell, E.A. and Wieman, C.E., “The Bose–Einstein condensate”, Scientific American 278, 2631 (March 1998).Google Scholar
Heisenberg, W., The Physical Principles of the Quantum Theory, University of Chicago Press (1930).Google Scholar
Jordan, P., “Bemerkungen zur Theorie der Atomstruktur”, Zeitschrift für Physik 33, 563570 (1925); “Über eine neue Begründung der Quantenmechanik I und II”, Zeitschrift für Physik 40, 809–838 (1926) and 44, 1–25 (1927); “Austauschprob-leme und zweite Quantelung”, Zeitschrift für Physik 91, 284–288 (1934).Google Scholar
Schroer, B., “Pascual Jordan, his contibutions to quantum mechanics, and his legacy in contemporary local quantum physics”, arXiv:hep-th/0303241v2 (2003).Google Scholar
Dirac, P.A.M., The Principles of Quantum Mechanics, Oxford University Press (1930, 1958).Google Scholar
Howard, D., “Who invented the Copenhagen interpretation? A study in mythology”, Philos. Sci. 71, 669682 (2004).Google Scholar
Bohr, N., “Can quantum-mechanical description of physical reality be considered complete?”, Phys. Rev. 48, 696702 (1935).Google Scholar
Stapp, H.P., “S-matrix interpretation of quantum theory”, Phys. Rev. D 3, 13031320 (1971).Google Scholar
Stapp, H.P., “The Copenhagen interpretation”, Am. J. Phys. 40, 10981116 (1972).Google Scholar
Peres, A., “What is a state vector?”, Am. J. Phys. 52, 644650 (1984).Google Scholar
Hartle, J.B., “Quantum mechanics of individual systems”, Am. J. Phys. 36, 704712 (1968).Google Scholar
Bohr, N., “On the notions of causality and complementarity”, Dialectica 2, 312319 (1948).Google Scholar
Pauli, W., “Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren”, Zeit. Phys. 31, 765783 (1925).Google Scholar
Dirac, P.A.M., “The quantum theory of the emission and absorption of radiation”, Proc. Roy. Soc A 114, 243265 (1927).Google Scholar
Fock, V., “Konfigurationraum und zweite Quantelung”, Zeit. Phys. 75, 622647 (1932).Google Scholar
Jordan, P. and Klein, O., “Zum Mehrkörperproblem in der Quantentheorie”, Zeit. Phys. 45, 751765 (1927); P. Jordan, “Über Wellen und Korpuskeln in der Quan-tenmechanik”, Zeit. Phys. 45, 766–775 (1927); P. Jordan and E. Wigner, “Über das Paulische Äquivalenzverbot”, Zeit. Phys. 47, 631–651 (1928).Google Scholar
Feynman, R.P., “Space-time approach to non-relativistic quantum mechanics”, Rev. Mod. Physics 20, 367387 (1948).Google Scholar
Feynman, R.P. and Hibbs, A.R., Quantum Mechanics and Path Integrals, McGraw-Hill (1965).Google Scholar
Bell, J.S., “Six possible worlds for quantum mechanics”, Found. Phys. 22, 12011215 (1992).Google Scholar
Mermin, N.D., “Quantum mechanics: fixing the shifty split”, Physics Today, 8–10 (July 2012).Google Scholar
Bell, J.S., “Quantum mechanics for cosmologists”, in Quantum Gravity, Isham, C., Penrose, R., and Sciama, D. editors, 2, 611–637, Clarendon Press (1981); pp. 117138 of [6].Google Scholar
Mermin, N.D., “Is the moon there when nobody looks? Reality and the quantum theory”, Phys. Today 38, 3847 (April 1985).Google Scholar
London, F. and Bauer, E., “La théorie de l’observation en mécanique quantique”, no 775 of Actualités scientifiques et industrielles, exposés de physique générale; Hermann (1939); translated into English as “The theory of observation in quantum mechanics” in Quantum Theory of Measurement, J.A. Wheeler and W.H. Zurek editors, Princeton University Press (1983), pp. 217–259; see in particular §11, but also 13 and 14.Google Scholar
Jammer, M., The Philosophy of Quantum Mechanics, Wiley (1974).Google Scholar
Wigner, E.P., “Remarks on the mind-body question” in The Scientist Speculates, Good, I.J. editor, Heinemann (1961), pp. 284302; reprinted in E.P. Wigner, Symmetries and Reflections, Indiana University Press (1967), pp. 171–184.Google Scholar
Schrödinger, E., “Die gegenwärtige Situation in der Quantenmechanik”, Naturwis-senschaften 23, 807812, 823–828, 844–849 (1935).Google Scholar
Trimmer, J.D., “The present situation in quantum mechanics: a translation of Schrödinger’s cat paradox paper”, Proc. Amer. Phil. Soc. 124, 323338 (1980). Also available in Quantum Theory of Measurement, J.A. Wheeler and W.H. Zurek editors, Princeton University Press (1983), pp. 152–167.Google Scholar
Einstein, A., letter to Schrödinger dated 8 August 1935; available for instance (translated into French) p. 238 of [99].Google Scholar
Schrödinger, E., The Interpretation of Quantum Mechanics, edited and with an introduction by Bitbol, M., Ox Bow Press (1995).Google Scholar
Hornberger, K., Gerlich, S., Haslinger, P., Nimmrichter, S., and Arndt, M., “Colloquium: quantum interference of clusters and molecules”, Rev. Mod. Phys. 84, 157173 (2012).Google Scholar
Wigner, E.P., “The problem of measurement”, Am. J. Phys. 31, 615 (1963); reprinted in Symmetries and Reflections, Indiana University Press, pp. 153–170 (1967); or again in Quantum Theory of Measurement, J.A. Wheeler and W.H. Zurek editors, Princeton University Press (1983), pp. 324–341.Google Scholar
Renninger, M., “Zum Wellen-Korpuskel Dualismus”, Zeit. Phys. 136, 251261 (1953).Google Scholar
Renninger, M., “Messungen ohne Störung des Messobjekts”, Zeit. Phys. 158, 417421 (1960).Google Scholar
Dicke, R.H., “Interaction-free quantum measurement: a paradox?”, Am. J. Phys. 49, 925930 (1981).Google Scholar
Elitzur, A.C. and Vaidman, L., “Quantum mechanical interaction-free measurements”, Found. Phys. 23, 987997 (1993).Google Scholar
Kwiat, P., Weinfurter, H., Herzog, T., Zeilinger, A., and Kasevich, M.A., “Interaction-free measurement”, Phys. Rev. Lett. 74, 47634766 (1995).Google Scholar
Hardy, L., “On the existence of empty waves in quantum theory”, Phys. Lett. A 167, 1116 (1992).Google Scholar
Hardy, L., “Quantum mechanics, local realistic theories, and Lorentz invariant realistic theories”, Phys. Rev. Lett. 68, 29812984 (1992).Google Scholar
DeWeerd, A.J., “Interaction-free measurement”, Am. J. Phys. 70, 272275 (2001).Google Scholar
White, A.G., Mitchell, J.R., Nairz, O., and Kwiat, P., “Interaction-free imaging”, Phys. Rev. A 58, 605613 (1998).Google Scholar
Putnam, W. and Yanik, M., “Noninvasive electron microscopy with interaction-free quantum measurements”, Phys. Rev. A 80, 040902 (2009).Google Scholar
Thomas, S., Kohstall, C., Kruit, P., and Hommelhoff, P., “Semitransparency in interaction-free measurements”, Phys. Rev. A 90, 053840 (2014); arXiv:1409.0044 [quant-ph] (2014).Google Scholar
Kruit, P., Hobbs, R.G., Kim, C-S., Yang, Y., Manfrinato, V.R., Hammer, J., Thomas, S., Weber, P., Klopfer, B., Kohstall, C., Juffmann, T., Kasevich, M.A., Hommelhoff, P., and Berggren, K.K., “Designs for a quantum electron microscope”, Ultramicroscopy 164, 3145 (2015); arXiv:1510.05946.Google Scholar
Ghirardi, G., Sneaking a Look at God’s Cards, Unraveling the Mysteries of Quantum Mechanics, revised edition, Princeton University Press (2007).Google Scholar
Robens, C., Alt, A., Emary, C., Meschede, D., and Alberti, A., “Atomic ‘bomb testing’: the Elitzur-Vaidman experiment violates the Leggett-Garg inequality”, Appl. Phys. B 123:12 (2017).Google Scholar
Zou, X.Y., Wang, L.J., and Mandel, L., “Induced coherence and indistinguishability in optical coherence”, Phys. Rev. Lett. 67, 318321 (1991).Google Scholar
Wang, L.J., Zou, X.Y., and Mandel, L., “Induced coherence without induced emission”, Phys. Rev. A 44, 46144622 (1991).Google Scholar
Baretta Lemos, G., Borish, V., Cole, G.D., Ramelow, S., Lapkiewicz, R., and Zeilinger, A., “Quantum imaging with undetected photons”, Nature 512, 409412 (2014).Google Scholar
Noh, Tae-Gon, “Counterfactual quantum cryptography”, Phys. Rev. Lett. 103, 230501 (2009).Google Scholar
Petersen, A., “The philosophy of Niels Bohr”, in Bulletin of the Atomic Scientists XIX, 8–14 (September 1963).Google Scholar
Chevalley, C., “Niels Bohr’s words and the Atlantis of Kantianism”, in Niels Bohr and Contemporary Philosophy, Faye, J. and Folse, H. editors, Dordrecht Kluwer (1994), pp. 3357.Google Scholar
Bohr, N., “The unity of human knowledge” (October 1960) in Atomic Physics and Human Knowledge, Wiley (1958 and 1963).Google Scholar
Norris, C., “Quantum Theory and the Flight from Realism: Philosophical Responses to Quantum Mechanics, Routledge (2000), p. 233.Google Scholar
Bohr, N., “Quantum physics and philosophy: causality and complementarity”, in Philosophy in the Mid-Century: A Survey; Klibansky, R. editor, La Nuova Italia Editrice, Firenze (1958). See also “The quantum of action and the description of nature”, in Atomic Theory and the Description of Nature, Cambridge University Press (1934), pp. 92–101.Google Scholar
Bokulich, P. and Bokulich, A., “Niels Bohr’s generalization of classical mechanics”, Found. Phys. 35, 347371 (2005).Google Scholar
Bohr, N., “Atomic theory and mechanics”, Nature 116, 845852 (1925).Google Scholar
Bohr, N., Collected Works, edited by Aaserud, F., Elsevier (2008); see also Collected Works, Complementarity beyond Physics (1928–1962).Google Scholar
Bohr, N., “The quantum postulate and the recent development of atomic theory”, Nature, 580–590 (Supplement April 14, 1928).Google Scholar
Born, M., “Physical aspects of quantum mechanics”, Nature 119, 354357 (1927).Google Scholar
Heisenberg, W., Physics and Philosophy, Harper & Brothers (1958); Harper Perennial Modern Classics (2007).Google Scholar
Bell, J.S., “Bertlmann’s socks and the nature of reality”, J. Physique colloques C 2, 4162 (1981). This article is reprinted in pp. 139–158 of [6].Google Scholar
Landau, L.D. and Lifshitz, E.M., Quantum Mechanics, Non-Relativistic Theory, Pergamon Press (1958), Butterworth-Heinemann Ltd (1996).Google Scholar
Schrödinger, E., What is Life? Mind and Matter, Cambridge University Press (1944 and 1967), p. 137.Google Scholar
Einstein, A., letter to Schrödinger dated May 31, 1928; available for instance (translated into French) p. 213 of [99].Google Scholar
Balibar, F., Darrigol, O., and Jech, B., Albert Einstein, œuvres choisies I, quanta, Editions du Seuil et Editions du CNRS (1989).Google Scholar
Einstein, A., “Physik und Realität”, Journal of the Franklin Institute 221, 313347 (1936).Google Scholar
de Broglie, L., “La physique quantique restera-t-elle indéterministe?”, Revue des sciences et de leurs applications, 5, 289311 (1952). French Academy of Sciences, session of April 25, 1953; http://www.sofrphilo.fr/telecharger.php?id=74Google Scholar
Bell, J.S., “Against measurement”, pp. 1731 of Sixty Two Years of Uncertainty: Historical, Philosophical and Physical Enquiries into the Foundations of Quantum Mechanics, Erice meeting in August 1989, Miller, A.I. editor (Plenum Press); reprinted in pp. 213–231 of the 2004 edition of [6].Google Scholar
Rosenfeld, L., “The measuring process in quantum mechanics”, Suppl. Prog. Theor. Phys., extra number 222 “Commemoration of the thirtieth anniversary of the meson theory by Dr. H. Yukawa” (1965).Google Scholar
Gottfried, K., Quantum Mechanics, Benjamin (1966); second edition, K. Gottfried and Yan Tun-Mow, Springer (2003).Google Scholar
Leggett, A.J., “Testing the limits of quantum mechanics: motivation, state of play, prospects”, J. Phys. Condens. Matter 14, R415R451 (2002).Google Scholar
Leggett, A.J., “Macroscopic quantum systems and the quantum theory of measurement”, Supplement of the Progr. Theor. Phys. nr 69, 80100 (1980).Google Scholar
Leggett, A.J., The Problems of Physics, Oxford University Press (1987).Google Scholar
van Kampen, N.G., “Ten theorems about quantum mechanical measurements”, Physica A 153, 97113 (1988).Google Scholar
Englert, B.G., Scully, M.O., and Walther, H., “Quantum erasure in double-slit interferometers with which-way detectors”, Am. J. Phys. 67, 325329 (1999); see the first few lines of §IV.Google Scholar
Fuchs, C.A. and Peres, A., “Quantum theory needs no ‘interpretation’”, Phys. Today 53, March 2000, 7071; see also various reactions to this text in the letters of the September 2000 issue.Google Scholar
von Weizsäcker, C.F., Voraussetzungen des naturwissenschaftlichen Denkens, Hanser Verlag (1971) and Herder (1972).Google Scholar
Einstein, A., Podolsky, B., and Rosen, N., “Can quantum-mechanical description of physical reality be considered complete?”, Phys. Rev. 47, 777780 (1935); or in Quantum Theory of Measurement, J.A. Wheeler and W.H. Zurek editors, Princeton University Press (1983), pp. 138–141.Google Scholar
Born, M., editor, The Einstein–Born letters (1916–1955), MacMillan, London (1971).Google Scholar
Einstein, A., letter to Schrödinger dated June 19, 1935; available for instance (translated into French) p. 234 of [99].Google Scholar
Einstein, A., “Quantenmechanik und Wirklichkeit”, Dialectica 2, 320324 (1948).Google Scholar
Einstein, A., “Autobiographical notes”, pp. 594 (especially p. 85) and “Reply to criticism” pp. 663–688 (especially pp. 681–683) in Albert Einstein: Philosopher-Scientist, edited by Schilpp, P.A., Open Court and Cambridge University Press (1949).Google Scholar
Sauer, T., “An Einstein manuscript on the EPR paradox for spin observables”, Studies in History and Philosophy of Modern Physics, 38, 879887 (2007).Google Scholar
Peres, A., “Einstein, Podolsky, Rosen, and Shannon”, Found. Phys. 35, 511514 (2005).Google Scholar
Home, D. and Selleri, F., “Bell’s theorem and the EPR paradox”, Rivista del Nuov. Cim. 14, 195 (1991).Google Scholar
Bohm, D., Quantum Theory, Prentice Hall (1951).Google Scholar
Bohr, N., “Quantum mechanics and physical reality”, Nature 136, 65 (1935).Google Scholar
Pearle, P., “Alternative to the orthodox interpretation of quantum theory”, Am. J. Phys. 35, 742753 (1967).Google Scholar
Clauser, J.F. and Shimony, A., “Bell’s theorem: experimental tests and implications”, Rep. Progr. Phys. 41, 18811927 (1978).Google Scholar
Clauser, J.F. and Shimony, A., The Born–Einstein Letters, with Commentaries by Max Born, translated by Irene Born, Macmillan Press (1971).Google Scholar
Kocher, C.A. and Commins, E.D., “Polarization correlation of photons emitted in an atomic cascade”, Phys. Rev. Lett. 18, 575577 (1967).Google Scholar
Fadel, M., Zibold, T., Décamps, B., and Treutlein, P., “Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates”, Science 360, 409413 (2018).Google Scholar
Kunkel, P., Prüfer, M., Strobel, H., Linnemann, D., Frölian, A., Gasenzer, T., Gärttner, M., and Oberthaler, M.K., “Spatially distributed multipartite entanglement enables EPR steering of atomic clouds”, Science 360, 413416 (2018).Google Scholar
Lange, K., Peise, J., Lücke, B., Kruse, I., Vitagliano, G., Apellaniz, I., Kleinmann, M., Tóth, G., and Klepmt, Carsten, “Entanglement between two spatially separated atomic modes”, Science 360, 416418 (2018).Google Scholar
Hemmick, D.J. and Shakur, A.M., Bell’s Theorem and Quantum Realism; Reassessment in Light of the Schrödinger Paradox, Springer (2012).Google Scholar
Conway, J. and Kochen, S., “The free will theorem”, Found. of Phys. 36, 14411473 (2006); “The strong free will theorem”, Notices of the AMS 56, 1441–1473 (2009).Google Scholar
Bassi, A. and Ghirardi, G., “The Conway–Kochen argument and relativistic GRW models”, Found. of Phys. 37, 169185 (2007).Google Scholar
Laloë, F., “The hidden phase of Fock states; quantum non-local effects”, Europ. Phys. J. 33, 8797 (2005); “Bose–Einstein condensates and quantum non-locality”, in Beyond the Quantum, T.M. Nieuwenhiuzen et al. editors, World Scientific (2007).Google Scholar
Anderson, P.W., in The Lesson of Quantum Theory, editors de Boer, J., Dahl, E., and Ulfbeck, O., Elsevier, New York (1986).Google Scholar
Mullin, W.J. and Laloë, F., “Quantum non-local effects with Bose–Einstein condensates”, Phys. Rev. Lett. 99, 150401 (2007); “EPR argument and Bell inequalities for Bose–Einstein spin condensates”, Phys. Rev. A 77, 022108 (2008).Google Scholar
Bell, J.S., “On the Einstein–Podolsky–Rosen paradox”, Physics, I, 195200 (1964); reprinted in chapter 2 of [6].Google Scholar
Laloë, F., “Les surprenantes prédictions de la mécanique quantique”, La Recherche no. 182, 1358–1367 (November 1986).Google Scholar
Laloë, F., “Cadre général de la mécanique quantique; les objections de Einstein, Podolsky et Rosen”, J. Physique Colloques C- 2, 140 (1981). See also the other articles following in this issue, especially that by J. Bell on Bertlmann socks, which is a classic!Google Scholar
Eberhard, P., “Bell’s theorem without hidden variables”, Nuov. Cim. 38 B, 7579 (1977); “Bell’s theorem and the different concepts of locality”, Nuov. Cim. 46 B, 392–419 (1978).Google Scholar
Clauser, J.F., Horne, M.A., Shimony, A., and Holt, R.A., “Proposed experiment to test local hidden-variables theories”, Phys. Rev. Lett. 23, 880884 (1969).Google Scholar
Peres, A., “Unperformed experiments have no results”, Am. J. Phys. 46, 745747 (1978).Google Scholar
Wheeler, J.A., “Niels Bohr in today’s words” in Quantum Theory and Measurement, Wheeler, J.A. and Zurek, W.H. editors, Princeton University Press (1983), pp. 182213.Google Scholar
Wigner, E.P., “On hidden variables and quantum mechanical probabilities”, Am. J. Phys. 38, 10051009 (1970).Google Scholar
Hess, K. and Philipp, W., “The Bell theorem as a special case of a theorem of Bass”, Found. Phys. 35, 17491767 (2005).Google Scholar
Bass, J., “Sur la compatibilité des fonctions de répartition”, C.R. Académie des Sciences 240, 839841 (1955).Google Scholar
d’Espagnat, B., “The quantum theory and reality”, Scientific American 241, 128140 (November 1979).Google Scholar
Freedman, S.J. and Clauser, J.F., “Experimental test of local hidden variable theories”, Phys. Rev. Lett. 28, 938941 (1972); S.J. Freedman, thesis, University of California, Berkeley.Google Scholar
Clauser, J.F., “Experimental investigations of a polarization correlation anomaly”, Phys. Rev. Lett. 36, 1223 (1976).Google Scholar
Fry, E.S. and Thompson, R.C., “Experimental test of local hidden variable theories”, Phys. Rev. Lett. 37, 465468 (1976).Google Scholar
Lamehi-Rachti, M. and Mittig, W., “Quantum mechanics and hidden variables: a test of Bell’s inequality by the measurement of the spin correlation in low energy proton–proton scattering”, Phys. Rev. D 14, 25432555 (1976).Google Scholar
Freire, O., The Quantum Dissidents; Rebuilding the Foundations of Quantum Mechanics, Springer (2015).Google Scholar
Aspect, A., Grangier, P., and Roger, G., “Experimental tests of realistic local theories via Bell’s theorem”, Phys. Rev. Lett. 47, 460463 (1981).Google Scholar
Aspect, A., Grangier, P., and Roger, G., “Experimental realization of Einstein–Podolsky–Bohm Gedankenexperiment: a new violation of Bell’s inequalities”, Phys. Rev. Lett. 49, 9194 (1982).Google Scholar
Aspect, A., Dalibard, J., and Roger, G., “Experimental tests of Bell’s inequalities using time varying analyzers”, Phys. Rev. Lett. 49, 18041807 (1982).Google Scholar
Perrie, W., Duncan, A.J., Beyer, H.J., and Kleinpoppen, H., “Polarization correlations of the two photons emitted by metastable atomic deuterium: a test of Bell’s inequality”, Phys. Rev. Lett. 54, 17901793 (1985).Google Scholar
Kiess, T.E., Shih, Y.E., Sergienko, A.V., and Alley, C.O., “Einstein–Podolsky–Rosen– Bohm experiments using pairs of light quanta produced by type-II parametric down conversion”, Phys. Rev. Lett. 71, 38933897 (1993).Google Scholar
Tittel, W., Brendel, J., Zbinden, H., and Gisin, N., “Violations of Bell inequalities by photons more than 10 km apart”, Phys. Rev. Lett. 81, 35633566 (1998).Google Scholar
Scheidl, T., Ursin, R., Kofler, J., Ramelow, S., Ma, X.S., Herbst, T., Ratschbacher, L., Fedrizzi, A., Langford, N.K., Jennewein, T., and Zeilinger, A., “Violations of local realism with freedom of choice”, Proc. Nat. Acad. Sciences 107, 1970819713 (November 16, 2010).Google Scholar
Yin, J., Cao, Y., Li, Y-H., Liao, S-K., Zhang, L., Ren, J-G., Cai, W-Q., Liu, W-Y., Li, B., Dai, H., Li, G-B., Lu, Q-M., Gong, Y-H., Xu, Y., Li, S-L., Li, F-Z., Yin, Y-Y., Jiang, Z-Q., Li, M., Jia, J-J., Ren, G., He, D., Zhou, Y-L., Zhang, X-X., Wang, N., Chang, X., Zhu, Z-C., Liu, N-L., Chen, Y-A., Lu, C-Y., Shu, R., Peng, C-Z., Wang, J-Y., and Pan, J-W., “Satellite-based entanglement distribution over 1200 kilometers”, Science 356, 11401144 (2017).Google Scholar
Lamine, B., Hervé, R., Jaekel, M.T., Lambrecht, A., and Reynaud, S., “Large scale EPR correlation and gravitational waves backgrounds”, Eur. Phys. Lett. 95, 20004 (2011).Google Scholar
Howell, J.C., Lamas-Linares, A., and Bouwmeester, D., “Experimental violation of a spin-1 Bell inequality using maximally entangled four photon states”, Phys. Rev. Lett. 88, 030401 (2002).Google Scholar
Hensen, B., Bernien, H., Dréau, A.E., Reiserer, A., Kalb, N., Blok, M.S., Ruitenberg, J., Vermeulen, R.F.L., Schouten, R.N., Abellan, C., Amaya, W., Pruneri, V., Mitchell, M.W., Markham, M., Twitchen, D.J., Elkouss, D., Wehner, S., Taminiau, T.H., and Hanson, R., “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres”, Nature 526, 682686 (2015) or arXiv:1508.05949; B. Hensen, N. Kalb, M.S. Blok, A.E. Dréau, A. Reiserer, R.F.L. Vermeulen, R.B. Schouten, M. Markham, D.J. Twitchen, K Goodenough, D. Elkouss, S. Wehner, T.H. Taminiau, and R. Hanson; “Lopphole-free Bell test using electron spins in diamond: second experiment and additional analysis, Scient. Rep. 6, 30289 (2016).Google Scholar
Giustina, M., Versteegh, M.A.M, Wengerowsky, S., Handsteiner, J., Hochrainer, A., Phelan, K., Steinlechner, F., Kofler, J., Larsson, J.A., Abellán, C., Amaya, W., Pruneri, V., Mitchell, M.W., Beyer, J., Gerrits, T., Lita, A.E., Shalm, L.K., Nam, S.W., Scheidl, T., Ursin, R., Wittmann, B., and Zeilinger, A., “Significant-loophole-free test of Bell’s theorem with entangled photons”, Phys. Rev. Lett. 115, 250401 (2015).Google Scholar
Shalm, L.K., Meyer-Scott, E., Christensen, B.G., Bierhorst, P., Wayne, M.A., Stevens, M.J., Gerrits, T., Glancy, S., Hamel, D.R., Allman, M.S., Coakley, K.J., Dyer, S., Hodge, C., Lita, A.E., Verma, V.B., Lambrocco, C., Tortorici, E., Migdall, A.L., Zhang, Y., Kumor, D.R., Farr, W.H., Marsili, F., Shaw, M.D., Stern, J.A., Abellán, C., Amaya, W., Pruneri, V., Jennewein, T., Mitchell, M.W., Kwiat, P.G., Bienfang, J.C., Mirin, R.P., Knill, E., and Nam, S.W., “Strong Loophole-Free Test of Local Realism”, Phys. Rev. Lett. 115, 250402 (2015).Google Scholar
Aspect, A., “Closing the door on Einstein and Bohr’s quantum debate”, Physics 8, 123 (2015).Google Scholar
Fine, A., “Hidden variables, joint probability, and the Bell inequalities”, Phys. Rev. Lett. 48, 291295 (1982).Google Scholar
Bell, J.S., “Introduction to the hidden variable question”, contribution to Foundations of Quantum Mechanics, Proceedings of the International School of Physics Enrico Fermi, course II, Academic (1971), p.171; reprinted in pp. 29–39 of [6].Google Scholar
Clauser, J.F. and Horne, M.A., “Experimental consequences of objective local theories”, Phys. Rev. D 10, 526535 (1974).Google Scholar
Norsen, T., “John S. Bell concept of local causality”, Am. J. Phys. 79, 12611274 (2011); see also”Bell locality and the nonlocal character of Nature”, Found. Physics Lett. 19, 633–655 (2006).Google Scholar
Bell, J.S., “La nouvelle cuisine”, §24 of the second edition of [6].Google Scholar
Bell, J.S., “The theory of local beables”, Epistemological Letters, March 1976; reprinted in pp. 52–62 of [6].Google Scholar
Oreshkov, O., Costa, F., and Brukner, C., “Quantum correlactions with no causal order”, Nature Comm., Article number: 1092 (2012).Google Scholar
Araújo, M., Costa, F., and Brukner, C., “Computational advantage from quantum-controlled ordering of gates”, Phys. Rev. Lett. 113, 250402 (2014).Google Scholar
Gisin, N., L’impensable hasard, Odile Jacob (2012).Google Scholar
Jarrett, J.P., “On the physical significance of the locality conditions in the Bell arguments”, Nőus 18, 569589 (1984).Google Scholar
Ballentine, L.E. and Jarrett, J.P., “Bell’s theorem: does quantum mechanics contradict relativity?”, Am. J. Phys. 55, 696701 (1987).Google Scholar
Shimony, A., “Bell’s theorem”, in Stanford Encyclopedia of Philosophy (2004 and 2009), http://plato.stanford.edu/entries/qm-modal/.Google Scholar
Dickson, W.M., Chances and Non-Locality, Cambridge University Press (1998); see in particular §6.2; by the same author, see also the review “Tim Maudlin: Quantum Non-Locality and Relativity, Metaphysical Intimations of Modern Physics review”, Philosophy of Science64, 516–517 (1997).Google Scholar
Maudlin, T., Quantum Non-locality and Relativity, Wiley-Blackwell (2011).Google Scholar
Leggett, A.J. and Garg, A., “Quantum mechanics versus macroscopic realism: is the flux there when nobody looks?”, Phys. Rev. Lett. 54, 857860 (1985).Google Scholar
Leggett, A.J., “The current status of quantum mechanics at the macroscopic level”, Proceedings 2nd Int. Symp. Foundations of Quantum Mechanics, Tokyo, 287297 (1986).Google Scholar
Emary, C., Lambert, N., and Nori, F., “Leggett-Garg inequalities”, Rep. Progr. Phys. 77, 016001 (2014).Google Scholar
Knee, G.C., Simmons, S., Gauger, E.M., Morton, J.J.L., Riemann, H., Abrosimov, N.V., Becker, P., Pohl, H-J., Itoh, K.M., Thewalt, M.W., Briggs, G.A.D., and Benjamin, S.C., “Violation of a Leggett-Garg inequality with ideal noninvasive measurements”, Nature Comm. 3, 606 (2012).Google Scholar
Robens, C., Alt, W., Meschede, D., Emary, C., and Alberti, A., “Ideal negative measurements in quantum walks disprove theories based on classical trajectories”, Phys. Rev. X 5, 011003 (2015).Google Scholar
Grangier, P., Potasek, M.J., and Yurke, B., “Probing the phase coherence of parametrically generated photon pairs: a new test of Bell’s inequalities”, Phys. Rev. A 38, 31323135 (1988).Google Scholar
Franson, J.D., “Bell inequality for position and time”, Phys. Rev. Lett. 62, 22052208 (1989).Google Scholar
Rarity, J.G. and Tapster, P.R., “Experimental violation of Bell’s inequality based on phase and momentum”, Phys. Rev. Lett. 64, 24952498 (1990).Google Scholar
Brendel, J., Mohler, E., and Martienssen, W., “Experimental test of Bell’s inequality for energy and time”, Eur. Phys. Lett. 20, 575580 (1992).Google Scholar
Capasso, V., Fortunato, D., and Selleri, F., “Sensitive observables of quantum mechanics”, Int. J. Theor. Phys. 7, 319326 (1973).Google Scholar
Gisin, N., “Bell’s inequality holds for all non-product states”, Phys. Lett. A 154, 201202 (1991).Google Scholar
Gisin, N. and Peres, A., “Maximal violation of Bell’s inequality for arbitrarily large spin”, Phys. Lett. A 162, 1517 (1992).Google Scholar
Popescu, S. and Rohrlich, D., “Generic quantum non locality”, Phys. Lett. A 166, 293297 (1992).Google Scholar
Braunstein, S.L., Mann, A., and Revzen, M., “Maximal violation of Bell inequalities for mixed states”, Phys. Rev. Lett. 68, 32593261 (1992).Google Scholar
Werner, R.F., “Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden variable model”, Phys. Rev. A 40, 42774281 (1989).Google Scholar
Popescu, S., “Bell’s inequalities and density matrices: revealing ‘hidden’ nonlocality”, Phys. Rev. Lett. 74, 26192622 (1995).Google Scholar
Peres, A., “Collective tests for quantum nonlocality”, Phys. Rev. A 54, 26852689 (1996).Google Scholar
Yurke, B. and Stoler, D., “Bell’s-inequality experiments using independent-particle sources”, Phys. Rev. A 46, 22292234 (1992).Google Scholar
Laloë, F. and Mullin, W.J., “Interferometry with independent Bose–Einstein condensates: parity as an EPR/Bell quantum variable”, Eur. Phys. J. B 70, 377396 (2009).Google Scholar
Tan, S.M., Walls, D.F., and Collett, M.J., “Nonlocality of a single photon”, Phys. Rev. Lett. 66, 252255 (1991).Google Scholar
Hardy, L., “Nonlocality of a single photon revisited”, Phys. Rev. Lett. 73, 22792283 (1994).Google Scholar
Heaney, L., Cabello, A., Santos, M.F., and Vedral, V., “Extreme nonlocality with one photon”, arXiv:0911.0770v3 [quant-ph] (2009); New J. Phys. 13, 053054 (2011).Google Scholar
Toner, B.F. and Bacon, D., “Communication cost of simulating Bell correlations”, Phys. Rev. Lett. 91, 187904 (2003).Google Scholar
Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., and Wehner, S., “Bell nonlocality”, Rev. Mod. Phys. 86, 419478 (2014).Google Scholar
Larsson, J.A., “Loopholes in Bell inequality tests of local realism”, J. Phys. A 47, 424003, 1–33 (2014).Google Scholar
Kofler, J., Giustina, M., Larsson, J-A., and Mitchell, M.W., “Requirements for a loophole-free photonic Bell test using imperfect setting generators”, Phys. Rev. A 93, 032115 (2016).Google Scholar
Pearle, P., “Hidden-variable example based upon data rejection”, Phys. Rev. D 2, 14181425 (1970).Google Scholar
Bell, J.S., Oral presentation to the EGAS conference in Paris, July 1979 (published in an abridged version in the next reference).Google Scholar
Bell, J.S., “Atomic cascade photons and quantum mechanical nonlocality”, Comments on Atomic and Molecular Physics 9, 121 (1980); CERN preprint TH.2053 and TH 2252; Chapter 13 of [6].Google Scholar
Barut, A.O. and Meystre, P., “A classical model of EPR experiment with quantum mechanical correlations and Bell inequalities”, Phys. Lett. 105 A, 458462 (1984).Google Scholar
Gisin, N., “Hidden quantum nonlocality revealed by local filters”, Phys. Lett. A 210, 151156 (1996); see in particular §3.Google Scholar
Tasca, D.S., Walborn, S.P., Toscano, F., and Souto Ribeiro, P.H., “Observation of tunable Popescu–Rohrlich correlations through postselection of a Gaussian state”, Phys. Rev. A 80, 030101 (2009).Google Scholar
Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Scarani, V., Makarov, V., and Kurtsiefer, C., “Experimentally faking the violation of Bell’s inequalities”, Phys. Rev. Lett. 107, 170404 (2011).CrossRefGoogle ScholarPubMed
Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., and Zeilinger, A., “Violation of Bell’s inequality under strict Einstein locality conditions”, Phys. Rev. Lett. 81, 50395043 (1998).Google Scholar
’t Hooft, G., The Cellular Automaton Interpretation of Quantum Mechanics, Springer (2016).Google Scholar
Brans, C.H., “Bell’s theorem does not eliminate fully causal hidden variables”, Int. J. Theor. Phys. 27, 219226 (1988).Google Scholar
Bell, J.S., “Free variables and local causality”, Epistemological Lett., Feb. 1977; Chapter 12 of [6].Google Scholar
Abellán, C., Amaya, W., Mitrani, D., Pruneri, V., and Mitchell, M.W., “Generation of fresh and pure random numbers for loophole-free Bell tests”, Phys. Rev. Lett. 115, 250403 (2015).Google Scholar
Hall, M.J.W., “Local deterministic model of singlet state correlations based on relaxing measurement independence”, Phys. Rev. Lett. 105, 250404 (2010).Google Scholar
Eberhard, P.H., “Background level and counter efficiencies required for a loophole-free Einstein–Podolsky–Rosen experiment”, Phys. Rev.A 47, R747-R750 (1993).Google Scholar
Kwiat, P.G., Eberhard, P.H., Steinberg, A.M., and Chiao, R.Y., “Proposal for a loophole-free Bell inequality experiment”, Phys. Rev. A 49, 32093220 (1994).Google Scholar
Fry, E.S., Walther, T., and Li, S., “Proposal for a loophole-free test of the Bell inequalities”, Phys. Rev. A 52, 43814395 (1995).Google Scholar
Garcia-Patron, R., Fiurasek, J., Cerf, N.J., Wenger, J., Tualle-Brouri, R., and Grangier, P., “Proposal for a loophole-free Bell test using homodyne detection”, Phys. Rev. Lett 93, 130409 (2004).Google Scholar
Wenger, J., Hafezi, M., Grosshans, F., Tualle-Brouri, R., and Grangier, P., “Maximal violation of Bell inequalities using continuous-variable measurements”, Phys. Rev. A 67, 012105 (2003).Google Scholar
Rowe, M.A., Kielpinski, D., Meyer, V., Sackett, C.A., Itano, W.M., Monroe, C., and Wineland, D.J., “Experimental violation of a Bell’s inequality with efficient detection”, Nature 409, 791794 (2001).Google Scholar
Simon, C. and Irvine, W.T.M., “Robust long-distance entanglement and a loophole-free Bell test with ions and photons”, Phys. Rev. Lett. 91, 110405 (2003).Google Scholar
Matsukevich, D.N., Chanelière, T., Jenkins, S.D., Lan, S.Y., Kennedy, T.A.B., and Kuzmich, A., “Entanglement of remote atomic qubits”, Phys. Rev. Lett. 96, 030405 (2006).Google Scholar
Matsukevich, D.N., Maunz, P., Moehring, D.L., Olmschenk, S., and Monroe, C., “Bell inequality violation with two remote atomic qubits”, Phys. Rev. Lett. 100, 150404 (2008).Google Scholar
Ansmann, M., Wang, H., Bialczak, R.C., Hofheinz, M., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Weides, M., Wenner, J., Cleland, A.N., and Martinis, J.M., “Violation of Bell’s inequality in Josephson phase qubits”, Nature 461, 504506 (2009).Google Scholar
Bernien, H., Hensen, B., Pfaff, W., Koolstra, G., Blok, M.S., Robledo, L., Taminiau, T.H., Markham, M., Twitchen, D.J., Childress, L., and Hanson, R., “Heralded entanglement between solid-state qubits separated by three metres”, Nature 497, 8690 (2013); arXiv:1212.6136 [quant-ph].Google Scholar
Barrett, S.D. and Kok, P., “Efficient high-fidelity quantum computation using matter qubits and linear optics”, Phys. Rev. A 71, 060310 (2005).Google Scholar
Rosenfeld, W., Burchardt, D., Garthoff, R., Redeker, K., Ortegel, N., Rau, M., and Weinfurter, H., “Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes”, arXiv:1611.04604v1 [quant-ph] (2016).Google Scholar
Popescu, S. and Rohrlich, D., “Quantum nonlocality as an axiom”, Found. Phys. 24, 379385 (1994).Google Scholar
Stapp, H.P., “Whiteheadian approach to quantum theory and the generalized Bell’s theorem”, Found. Phys. 9, 125 (1979); “Bell’s theorem and the foundations of quantum physics”, Am. J. Phys. 53, 306–317 (1985).Google Scholar
Stapp, H.P., “Nonlocal character of quantum theory”, Am. J. Phys. 65, 300304 (1997).Google Scholar
Mermin, N.D., “Nonlocal character of quantum theory?”, Am. J. Phys. 66, 920924 (1998).Google Scholar
Redhead, M., Incompleteness, Nonlocality and Realism: A Prolegomenon to the Philosophy of Quantum Mechanics, Chapter 4, Clarendon Press (1988).Google Scholar
Leggett, A.J., “Realism and the physical world”, Rep. Progr. Phys. 71, 022001 (2008).Google Scholar
Gisin, N., “Non-realism: deep thought or a soft option?”, Found. Phys. 42, 8085 (2012).Google Scholar
Stapp, H.P., “Meaning of counterfactual statements in quantum physics”, Am. J. Phys. 66, 924926 (1998).Google Scholar
d’Espagnat, B., “Nonseparability and the tentative descriptions of reality”, Phys. Rep. 110, 201264 (1984).Google Scholar
d’Espagnat, B., Reality and the Physicist, Cambridge University Press (1989).Google Scholar
Griffiths, R.B., “Consistent quantum counterfactuals”, Phys. Rev. A 60, R5R8 (1999).Google Scholar
Mermin, N.D., “Bringing home the atomic world: quantum mysteries for anybody”, Am. J. Phys. 49, 940943 (1981).Google Scholar
Christensen, B., McCusker, K., Altepeter, J., Calkins, B., Gerrits, T., Lita, A., Miller, A., Shalm, L., Zhang, Y., Nam, S., Brunner, N., Lim, C., Gisin, N., and Kwiat, P., “Detection-loophole-free test of quantum nonlocality, and applications”, Phys. Rev. Lett. 111, 130406 (2013).Google Scholar
Giustina, M., Mech, A., Ramelow, S., Wittmann, B., Kofler, J., Beyer, J., Lita, A., Calkins, B., Gerrits, T., Woo Nam, S., Ursin, R., and Zeilinger, A., “Bell violation using entangled photons without the fair-sampling assumption”, Nature 497, 227230 (2013).Google Scholar
Cirelson, B.S., “Quantum generalizations of Bell’s inequalityLett. Math. Phys. 4, 93100 (1980).Google Scholar
Landau, L.J., “On the violations of Bell’s inequality in quantum theory”, Phys. Lett. A 120, 5456 (1987).Google Scholar
Shimony, A., Search for a naturalistic world view, vol. II, p. 131, Cambridge Universtity Press (1993).Google Scholar
Shimony, A., “Events and processes in the quantum world”, in Quantum Concepts in Space and Time, Penrose, R. and Isham, C.J. editors, Oxford University Press (1986), pp. 182203.Google Scholar
Barrett, J., Linden, N., Massar, S., Pironio, S., Popescu, S., and Roberts, D., “Nonlocal correlations as an information-theoretic resource”, Phys. Rev. A 71, 022101 (2005).Google Scholar
Masanes, L., Acin, A., and Gisin, N., “General properties of nonsignaling theories”, Phys. Rev. A 73, 012112 (2006).Google Scholar
Brassard, G., Buhrman, H., Linden, N., Méthot, A.A., Tapp, A., and Unger, F., “Limit on nonlocality in any world in which communication complexity is not trivial”, Phys. Rev. Lett. 96, 250401 (2006).Google Scholar
Pawlowski, M., Paterek, T., Kaszlikowski, D., Scarani, V., Winter, A., and Rohrlich, D., “Information causality as a physical principle”, Nature 461, 11011104 (2009).Google Scholar
Barnum, H., Beigi, S., Boixo, S., Elliott, M.B, and Wehner, S., “Local quantum measurements and no-signaling imply quantum correlations”, Phys. Rev. Lett. 104, 140401 (2010).Google Scholar
Almeida, M.L., Bancal, J.-D., Brunner, N., Acin, A., Gisin, N., and Pironio, S., “Guess your neighbor’s input: a multipartite nonlocal game with no quantum advantage”, Phys. Rev. Lett. 104, 230404 (2010).Google Scholar
Greenberger, D.M., Horne, M.A., and Zeilinger, A., “Going beyond Bell’s theorem”, in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, Kafatos, M. editor, Kluwer (1989), pp. 6972; this reference is not always easy to find, but one can also read the following article, published one year later.Google Scholar
Greenberger, D.M., Horne, M.A., Shimony, A., and Zeilinger, A., “Bell’s theorem without inequalities”, Am. J. Phys. 58, 11311143 (1990).Google Scholar
Mermin, N.D., “Quantum mysteries revisited”, Am. J. Phys. 58, 731733 (1990); see also “What’s wrong with these elements of reality?”, Physics Today, 9–11 (June 1990).Google Scholar
Bouwmeester, D., Pan, J.W., Daniell, M., Weinfurter, H., and Zeilinger, A., “Observation of three-photon Greenberger–Horne–Zeilinger entanglement”, Phys. Rev. Lett. 82, 13451349 (1999).Google Scholar
Pan, J.W., Bouwmeester, D., Daniell, M., Weinfurter, H., and Zeilinger, A., “Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement”, Nature 403, 515519 (2000).Google Scholar
Zhao, Z., Yang, T., Chen, Y.-A, Zhang, A.-N., Zukowski, M., and Pan, J.W., “Experimental violation of local realism by four-photon Greenberger–Horne–Zeilinger entanglement”, Phys. Rev. Lett. 91, 180401 (2003).Google Scholar
Laflamme, R., Knill, E., Zurek, W.H., Catasi, P., and Mariappan, S.V.S, “NMR GHZ”, arXiv:quant-phys/9709025 (1997) and Phil. Trans. Roy. Soc. Lond. A 356, 19411948 (1998).Google Scholar
Lloyd, S., “Microscopic analogs of the Greenberger–Horne–Zeilinger experiment”, Phys. Rev. A 57, R1473–1476 (1998).Google Scholar
Sakaguchi, U., Ozawa, H., Amano, C., and Fokumi, T., “Microscopic analogs of the Greenberger–Horne–Zeilinger experiment on an NMR quantum computer”, Phys. Rev. 60, 19061911 (1999).Google Scholar
Mermin, N.D., “Extreme quantum entanglement in a superposition of macroscopically distinct states”, Phys. Rev. Lett. 65, 18381841 (1990).Google Scholar
Svetlichny, G., “Distinguishing three-body from two-body nonseparability by a Bell-type inequality”, Phys. Rev. D 35, 30663069 (1987).Google Scholar
Acacio de Barros, J. and Suppes, P., “Inequalities for dealing with detector efficiencies in Greenberger–Horne–Zeilinger experiments”, Phys. Rev. Lett. 84, 793797 (2000).Google Scholar
Lavoie, J., Kaltenbaek, R., and Resch, K.J., “Experimental violations of Svetlichny’s inequality”, New. J. Physics 11, 073051 (2009).Google Scholar
Erven, C., Meyer-Scott, E., Fisher, K., Lavoie, J., Higgins, B.L., Yan, Z., Pugh, C.J., Bourgoin, J-P., Prevedel, R., Shalm, L.K., Richards, L., Gigov, N., Laflamme, R., Weihs, G., Jennenwein, T., and Resch, K.J., “Experimental three-photon quantum nonlocality under strict locality conditions”, Nature Photonics, 8 292296 (2013).Google Scholar
Yurke, B. and Stoler, D., “Einstein–Podolsky–Rosen effects from independent particle sources”, Phys. Rev. Lett. 68, 12511254 (1992).Google Scholar
Massar, S. and Pironio, S., “Greenberger–Horne–Zeilinger paradox for continuous variables”, Phys. Rev. A 64, 062108 (2001).Google Scholar
Bernstein, H. J., Greenberger, D.M., Horne, M.A., and Zeilinger, A., “Bell theorem without inequalities for two spinless particles”, Phys. Rev. A 47, 7884 (1993).Google Scholar
Laloë, F., “Correlating more than two particles in quantum mechanics”, Current Science 68, 10261035 (1995); http://hal.archives-ouvertes.fr/hal-00001443.Google Scholar
Wineland, D.J., Bollinger, J.J., Itano, W.M., Moore, F.L., and Heinzen, D.J., “Spin squeezing and reduced quantum noise in spectroscopy”, Phys. Rev. A 46, R6797–6800 (1992).Google Scholar
Bollinger, J.J., Itano, W.M., Wineland, D.J., and Heinzen, D.J., “Optimal frequency measurements with maximally correlated states”, Phys. Rev. A 54, R4649–4652 (1996).Google Scholar
Dunningham, J.A., Burnett, K., and Barnett, S.M., “Interferometry below the standard limit with Bose-Einstein condensates lithography”, Phys. Rev. Lett. 89, 150401 (2002).Google Scholar
Boto, A.N., Kok, P., Abrams, D.S., Braunstein, S.L., Williams, C.P., and Dowling, J.P., “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit”, Phys. Rev. Lett. 85, 27332736 (2000).Google Scholar
Björk, G., Sanchez-Soto, L.L., and Söderholm, J., “Entangled state lithography: tailoring any pattern with a single state”, Phys. Rev. Lett. 86, 45164519 (2001).Google Scholar
d’Angelo, M., Chekhova, M.V., and Shih, Y., “Two-photon diffraction and quantum lithography”, Phys. Rev. Lett. 87, 013602 (2001).Google Scholar
Zeilinger, A., Horne, M.A., Weinfurter, H., and Zukowski, M., “Three-particle entanglements from two entangled pairs”, Phys. Rev. Lett. 78, 30313034 (1997).Google Scholar
Mølmer, K. and Sorensen, A., “Multiparticle entanglement of hot trapped ions”, Phys. Rev. Lett. 82, 18351838 (1999).Google Scholar
Sackett, C.A., Klepinski, D., King, B.E., Langer, C., Meyer, V., Myatt, C.J., Rowe, M., Turchette, O.A., Itano, W.M., D.J Wineland, , and Monroe, C., “Experimental entanglement of four particles”, Nature 404, 256259 (2000).Google Scholar
Cabello, A., “Violating Bell’s inequalities beyond Cirelson’s bound”, Phys. Rev. Lett. 88, 060403 (2002).Google Scholar
Marcovitch, S., Reznik, B., and Vaidman, L., “Quantum mechanical realization of a Popescu–Rohrlich box”, Phys. Rev. A 75, 022102 (2007).Google Scholar
Mermin, N.D., “What’s wrong with this temptation?”, Phys. Today 47, June 1994, pp. 911; “Quantum mysteries refined”, Am. J. Phys.62, 880–887 (1994).Google Scholar
Boschi, D., Branca, S., De Martini, F., and Hardy, L., “Ladder proof of nonlocality without inequalities: theoretical and experimental results”, Phys. Rev. Lett. 79, 27552758 (1997).Google Scholar
Goldstein, S., “Nonlocality without inequalities for almost all entangled states for two particles”, Phys. Rev. Lett. 72, 19511954 (1994).Google Scholar
Ghirardi, G. and Marinatto, L., “Proofs of nonlocality without inequalities revisited”, Phys. Lett. A 372, 19821985 (2008).Google Scholar
Kochen, S. and Specker, E.P., “The problem of hidden variables in quantum mechanics”, J. Math. Mech. 17, 5987 (1967).Google Scholar
Belifante, F., Survey of Hidden Variables Theories, Pergamon Press (1973).Google Scholar
Cabello, A., Estebaranz, J.M., and Garcia-Alcaine, G., “Bell–Kochen–Specker theorem: a proof with 18 vectors”, Phys. Lett. A 212, 183187 (1996).Google Scholar
Klyachko, A.A., Can, M.A., Binicioglu, S., and Shumovsky, A.S., “Simple tests for hiddden variables in spin-1 systems”, Phys. Rev. Lett. 101, 020403 (2008).Google Scholar
Peres, A., “Incompatible results of quantum measurements”, Phys. Lett. A 151, 107– 108 (1990).Google Scholar
Mermin, N.D., “Simple unified form for the major no-hidden-variables theorems”, Phys. Rev. Lett. 65, 3373 (1990).Google Scholar
Tastevin, G. and Laloë, F., “Surrealistic Bohmian trajectories do not occur with macroscopic pointers”, arXiv:1802.03783 [quant-ph].Google Scholar
Cabello, A., “Experimentally testable state-independent quantum contextuality”, Phys. Rev. Lett. 101, 210401 (2008).Google Scholar
Cabello, A. and Garcia-Alcaine, G., “Proposed experimental tests of the Bell– Kochen–Specker theorem”, Phys. Rev. Lett. 80, 17971799 (1998).Google Scholar
Simon, C., Zukowski, M., Weinfurter, H., and Zeilinger, A., “Feasible Kochen– Specker experiment with single particles”, Phys. Rev. Lett. 85, 17831786 (2000).Google Scholar
Huang, Y.-F., Li, C.-F., Zhang, Y.-S., Pan, J.-W., and Guo, G.-C., “Experimental test of the Kochen–Specker theorem with single photons”, Phys. Rev. Lett. 90, 250401 (2003).Google Scholar
Lapkiewicz, R., Li, P., Schaeff, C., Langford, N.K., Ramelow, S., Wieskiak, M., and Zeilinger, A., “Experimental non-classicality of an indivisible quantum system”, Nature 474, 490493 (2011).Google Scholar
Hasegawa, Y., Loidl, R., Badurek, G., Baron, M., and Rauch, H., “Quantum contextuality in a single-neutron optical experiment”, Phys. Rev. Lett. 97, 230401 (2006).Google Scholar
Kirchmair, G., Zähringer, F., Gerritsma, R., Kleinmann, M., Gühne, O., Cabello, A., Blatt, R., and Roos, C.F., “State-independent experimental test of quantum contextuality”, Nature 460, 494497 (2009).Google Scholar
Moussa, O., Ryan, C.A., Gory, D.G., and Laflamme, R., “Testing contextuality on quantum ensembles with one clean qubit”, Phys. Rev. Lett. 104, 160501 (2010).Google Scholar
Grangier, P., “Contextual objectivity: a realistic interpretation of quantum mechanics”, Eur. J. Phys. 23, 331337 (2002); arXiv:quant-ph/0012122 (2000), quant-ph/0111154 (2001), quant-ph/0301001 (2003) and quant-ph/0407025 (2004).Google Scholar
Harrigan, N. and Spekkens, R.W., “Einstein, incompleteness, and the epistemic view of quantum states”, Found. Phys. 40, 125157 (2010).Google Scholar
Leifer, M.S., “Is the quantum state real? An extended review of ψ-ontology theorems”, Quanta 3, 67155 (2014); arXiv:1409.1570 [quant-ph]; see also: http://mattleifer.info/2011/11/20/can-the-quantum-state-be-interpreted-statistically/.Google Scholar
Aharonov, Y., Anandan, J., and Vaidman, L., “Meaning of the wave function”, Phys. Rev. A 47, 46164626 (1993).Google Scholar
Unruh, W.G., “Reality and measurement of the wave function”, Phys. Rev. A 50, 882887 (1993).Google Scholar
Pusey, M.F., Barrett, J. and Rudolph, T., “On the reality of the quantum state”, Nature Physics 8, 475478 (2012); “The quantum state cannot be interpreted statistically”, arXiv:1111.3328 [quant-phys] (2011).Google Scholar
Colbeck, R. and Renner, R., “Is a system’s wave function in one-to-one correspondence with its elements of reality?”, Phys. Rev. Lett. 108, 150402 (2012); arXiv:1111.6597 [quant-ph].Google Scholar
Schlosshauer, M. and Fine, A., “Implications of the Pusey-Barrett-Rudolph non-go theorem”, Phys. Rev. Lett. 108, 260404 (2012).Google Scholar
Lewis, P.G., Jennings, D., Barrett, J., and Rudolph, T., “Distinct quantum states can be compatible with a single state of reality”, Phys. Rev. Lett. 109, 150404 (2012).Google Scholar
Hardy, L., “Are quantum states real?”, Int. J. Mod. Phys. 27, 1345012 (2013); arXiv:1205.1439 [quant-ph].Google Scholar
Barrett, J., Cavalcanti, E.G., Lal, R., and Maroney, O.J.E., “No ψ-epistemic model can fully explain the indistinguishability of quantum states”, Phys. Rev. Lett. 112, 250403 (2014).Google Scholar
Branciard, C., “How ψ-epistemic models fail at explaining the indistinguishability of quantum states”, Phys. Rev. Lett. 113, 020409 (2014).Google Scholar
Colbeck, R. and Renner, R., “A system’s wave function is uniquely determined by its underlying physical state”, New J. Phys. 19, 013016 (2017).Google Scholar
Nigg, D., Monz, T., Schindler, P., Martinez, E.A., Hennrich, M., Blatt, R., Pusey, M.F., Rudolph, T., and Barrett, J., “Can different quantum state vectors correspond to the same physical state? An experimental test”, New J. Phys. 18, 013007 (2016).Google Scholar
Ringbauer, M., Duffus, B., Branciard, C., Calvacanti, E.G., White, A.G., and Fedrizzi, A., “Measurement of the reality of the wave function”, Nature Physics 11, 249254 (2015).Google Scholar
Liao, K.Y., Zhang, X.D., Guo, G.Z., Ai, B.Q., Yan, H., and Zhu, S.L., “Experimental test of the non-go theorem for continuous ψ-epistemic models”, Nature, scientific reports 6, 26519 (2016).Google Scholar
Schrödinger, E., “Discussion of probability relations between separated systems”, Proc. Cambridge Phil. Soc. 31, 555 (1935); “Probability relations between separated systems”, Proc. Cambridge Phil. Soc. 32, 446 (1936).Google Scholar
Horodecki, M., Horodecki, P., and Horodecki, R., “Limits for entanglement measures”, Phys. Rev. Lett. 84, 20142017 (2000).Google Scholar
Plenio, M. B. and Virmani, S., “An introduction to entanglement measures”, quant-ph/0504163 (2006); Quant. Info. Comput. 7, 151 (2007).Google Scholar
Méthot, A. and Scarani, V., “An anomaly of nonlocality”, quant-ph/0601210 (2006); Quant. Info. Comput. 7, 157170 (2007).Google Scholar
Coffman, V., Kundu, J., and Wootters, W.K., “Distributed entanglement”, Phys. Rev. A 61, 052306 (2000).Google Scholar
Osborne, T.J. and Verstraete, F., “General monogamy inequality for bipartite qubit entanglement”, Phys. Rev. Lett. 96, 220503 (2006).Google Scholar
Toner, B., “Monogamy of nonlocal quantum correlations”, Proc. Roy. Soc. A 465, 5968 (2009).Google Scholar
Toner, B. and Verstraete, F., “Monogamy of Bell correlations and Tsirelson’s bound”, arXiv:quant-ph/0611001 (2006).Google Scholar
Peres, A., “Separability criterion for density matrices”, Phys. Rev. Lett. 77, 1413– 1415 (1996).Google Scholar
Horodecki, M., Horodecki, P., and Horodecki, R., “Separability of mixed states: necessary and sufficient conditions”, Phys. Lett. A 223, 18 (1996).Google Scholar
Hagley, E., Maître, X., Nogues, G., Wunderlich, C., Brune, M., Raimond, J.M., and Haroche, S., “Generation of Einstein–Podolsky–Rosen pairs of atoms”, Phys. Rev. Lett. 79, 15 (1997).Google Scholar
Turchette, Q.A., Wood, C.S., King, B.E., Myatt, C.J., Leibfried, D., Itano, W.M., Monroe, C., and Wineland, D.J., “Deterministic entanglement of two trapped ions”, Phys. Rev. Lett. 81, 3631–4 (1998).Google Scholar
Cirac, J.I. and Zoller, P., “Quantum computations with cold trapped ions”, Phys. Rev. Lett. 74, 40914094 (1995).Google Scholar
Blatt, R. and Wineland, D., “Entangled states of trapped atomic ions”, Nature 453, 10081015 (2008).Google Scholar
Steffen, M., Ansmann, M.A., Bialczak, R.C., Katz, N., Lucero, E., McDermott, R., Neeley, M., Weig, E.M., Cleland, A.N., and Martinis, J.M., “Measurement of the entanglement of two superconducting qubits via state tomography”, Science 313, 14231425 (2006).Google Scholar
Zukowski, M., Zeilinger, A., Horne, M.A., and Ekert, A.K., “Event-ready-detectors Bell experiment via entanglement swapping”, Phys. Rev. Lett. 71, 42874290 (1993).Google Scholar
Pan, J.W., Bouwmeester, D., Weinfurter, H., and Zeilinger, A., “Experimental entanglement swapping: entangling photons that never interacted”, Phys. Rev. Lett. 80, 38913894 (1998).Google Scholar
Leibfried, D., Knill, E., Seidelin, S., Britton, J., Blakestad, R.B., Chiaverini, J., Hume, D.B., Itano, W.M., Jost, J.D., Langer, C., Ozeri, R., Reichle, R., and Wineland, D.J., “Creation of a six-atom ‘Schrödinger cat’ state”, Nature 438, 639642 (2005).Google Scholar
Häffner, H., Hänsel, W., Roos, C.F., Benhelm, J., Chek-al-kar, D., Chwalla, M., Körber, T., Rapol, U.D., Riebe, M., Schmidt, P.O., Becher, C., Gühne, O., Dür, W., and Blatt, R., “Scalable multiparticle entanglement of trapped ions”, Nature 438, 643– 646 (2005).Google Scholar
Radmark, M., Zukowski, M., and Bourennane, M., “Experimental tests of fidelity limits in six-photon interferometry and of rotational invariance properties of the photonic six-qubit entanglement singlet state”, Phys. Rev. Lett. 103, 150501 (2009).Google Scholar
Radmark, M., Wiesniak, M., Zukowski, M., and Bourennane, M., “Experimental filtering of two-, four-, and six-photon singlets from a single parametric down-conversion source”, Phys. Rev. A 80, 040302(R) (2009).Google Scholar
Wilk, T., Gaëtan, A., Evellin, C., Wolters, J. Miroshnychenko, Y., Grangier, P., and Browaeys, A., “Entanglement of two individual neutral atoms using Rydberg block-ade”, Phys. Rev. Lett. 104, 010502 (2010).Google Scholar
Isenhower, L., Urban, E., Zhang, X.L., Gill, A.T., Henage, T., Hohnson, T.A., Walker, T.G., and Saffman, M., “Demonstration of a neutral atom controlled-NOT quantum gate”, Phys. Rev. Lett. 104, 010503 (2010).Google Scholar
Chen, W., Hu, J., Duan, Y., Braveman, B., Zhang, H., and Vuletić, V., “Carving complex many-atom entangled states by single photon detection”, Phys. Rev. Lett. 115, 250502 (2015).Google Scholar
Welte, S., Hacker, B., Daiss, S., Ritter, S., and Rempe, G., “Cavity carving of atomic Bell states”, Phys. Rev. Lett. 118, 210503 (2017).Google Scholar
The use of these words was suggested by Roger Balian in a private conversation.Google Scholar
Schlosshauer, M., “Decoherence, the measurement problem, and interpretations of quantum mechanics”, Rev. Mod. Phys. 76, 12671305 (2005).Google Scholar
Poyatos, J.F., Cirac, J.I., and Zoller, P., “Quantum reservoir engineering with laser cooled trapped ions”, Phys. Rev. Lett. 77, 47284731 (1996).Google Scholar
Diehl, S., Micheli, A., Kantian, A., Kraus, B., Büchler, H.P., and Zoller, P., “Quantum states and phases in driven open quantum systems with cold atoms”, Nature Physics 4, 878883 (2008).Google Scholar
Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., and Zoller, P., “Preparation of entangled states by quantum Markov processes”, Phys. Rev. A 78, 042307 (2008).Google Scholar
Cohen-Tannoudji, C. and Kastler, A., “Optical pumping”, Progress in Optics 5, 381 (1966).Google Scholar
Happer, W., “Optical pumping”, Rev. Mod. Phys. 44, 169250 (1966).Google Scholar
Carvalho, A., Milman, P., de Matos Filho, R, and Davidovich, L., “Decoherence, pointer engineering, and quantum state protection”, Phys. Rev. Lett. 86, 49884991 (2001).Google Scholar
Verstraete, F., Wolf, M., and Cirac, I., “Quantum computation and quantum state engineering driven by dissipation”, Nature Physics 5, 633636 (2009).Google Scholar
Pielawa, S., Davidovich, L., Vitali, D., and Morigi, G., “Engineering atomic quantum reservoirs for photons”, Phys. Rev. A 81, 043802 (2010).Google Scholar
Müller, M., Diehl, S., Pupillo, G., and Zoller, P., “Engineered open systems and quantum simulations with atoms and ions”, Advances in atomic, molecular and optical physics 61, 180 (2012).Google Scholar
Barreiro, J. T., Mller, M., Schindler, P., Nigg, D., Monz, T., Chwalla, M., Hennrich, M., Roos, C.F., Zoller, P., and Blatt, R., “An open-system quantum simulator with trapped ions”, Nature 470, 486-491 (2011).Google Scholar
Feynman, R.P. and Vernon, F.L., “The theory of a general quantum system interacting with a linear dissipative system”, Ann. Phys. 24, 181173 (1963).Google Scholar
Caldeira, A.0. and Leggett, A.J., “Influence of dissipation on quantum tunneling in macroscopic systems”, Phys. Rev. Lett. 46, 211214 (1981); “Quantum tunneling in a dissipative system”, Annals of Physics 149, 374–456 (1983).Google Scholar
Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., and Zwerger, W., “Dynamics of the dissipative two state system”, Rev. Mod. Phys. 59, 186 (1987).Google Scholar
Prokof’ev, N.V. and Stamp, P.C.E., “Theory of the spin bath”, Rep. Prog. Phys. 63, 669726 (2000).Google Scholar
Stamp, P.C.E., “The decoherence puzzle”, Studies Hist. Phil. Mod. Phys. 37, 467– 497 (2006).Google Scholar
Hagar, A., “Decoherence: the view from the history and philosophy of science”, Philo. Trans. Royal Soc. A 270, 45944609 (2012).Google Scholar
Brune, M., Hagley, E., Dreyer, J., Maître, X., Maali, A., Wunderlich, C., Raimond, J.M., and Haroche, S., “Observing the progressive decoherence of the ‘meter’ in a quantum measurement”, Phys. Rev. Lett. 77, 48874890 (1996).Google Scholar
van der Wal, C.H., ter Haar, A.C.J., Wilhelm, F.K., Schouten, R.N., Harmans, C.J.P.M., Orlando, T.P, Lloyd, S., and Mooij, J.E., “Quantum superposition of macroscopic persistent-current states”, Science 290, 773777 (2000).Google Scholar
Chiorescu, I., Nakamura, Y., Harmans, C.J.P. M., and Mooij, J.E., “Coherent quantum dynamics of a superconducting flux qubit”, Science 299, 18691871 (2003).Google Scholar
Takahashi, S., Tupitsyn, I.S., van Tol, J., Beedle, C.C., Hendrickson, D.N., and Stamp, P.C.E., “Decoherence in crystals of quantum molecular magnets”, Nature 476, 7679 (2011).Google Scholar
Feynman, R.P., Morinigo, F.B., and Wagner, W.G., Feynman lectures on gravitation, Westview Press (2003) and CRC Press (2018).Google Scholar
Lamine, B., Hervé, R., Lambrecht, A., and Reynaud, S.Ultimate decoherence border for matter-wave interferometry”, Phys. Rev. Lett. 96, 050405 (2006).Google Scholar
Reynaud, S., Maia Neto, P.A., Lambrecht, A., and Jaekel, M.T., “Gravitational decoherence in planetary motion”, Europhys. Lett. 54, 135140 (2001).Google Scholar
Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A. and Wootters, W.K., “Purification of noisy entanglement and faithful teleportation via noisy channels”, Phys. Rev. Lett. 76, 722725 (1996).Google Scholar
Bennett, C.H., Bernstein, H., Popescu, S., and Schumacher, B., “Concentrating partial entanglement by local operations”, Phys. Rev. A 53, 20462052 (1996).Google Scholar
Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., and Wootters, W.K., “Mixed-state entanglement and quantum error correction”, Phys. Rev. A 54, 38243851 (1996).Google Scholar
Pan, J.W., Simon, C., Brukner, C., and Zeilinger, A., “Entanglement purification for quantum communication”, Nature 410, 10671070 (2001).Google Scholar
Haroche, S. and Raimond, J.-M., Exploring the Quantum; Atoms, Cavities and Photons, Oxford University Press (2008).Google Scholar
Cohen-Tannoudji, C., Dupont-Roc, J., and Gryndberg, G., Atom–Photon Interactions, Wiley (1992).Google Scholar
Wootters, W.K. and Zurek, W.H., “A single quantum cannot be cloned”, Nature 299, 802803 (1982).Google Scholar
Dieks, D., “Communication by EPR devices”, Phys. Lett. A 92, 271272 (1982).Google Scholar
Smithey, D.T., Beck, M., Raymer, M.G., and Faridani, A., “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum”, Phys. Rev. Lett. 70, 12441247 (1993).Google Scholar
Smithey, D.T., Beck, M., Cooper, J., and Raymer, M.G., “Measurement of number-phase uncertainty relations of optical fields”, Phys. Rev.A 48, 31593167 (1993).Google Scholar
Leonhardt, U., Measuring the Quantum State of Light, Cambridge University Press (1997).Google Scholar
Aharonov, Y. and Rohrlich, D., Quantum Paradoxes; Quantum Theory for the Perplexed, Wiley-VCH (2005).Google Scholar
Aharonov, Y., Albert, D.Z., and Vaidman, L., “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100”, Phys. Rev. Lett. 60, 13511354 (1988).Google Scholar
Aharonov, Y. and Vaidman, L., “Properties of a quantum system during the time interval between two measurements”, Phys. Rev. A 41, 1120 (1990).Google Scholar
Aharonov, Y., Popescu, S., and Tollaksen, J., “A time-symmetric formulation of quantum mechanics”, Physics Today (November 2010), 27–32.Google Scholar
Lundeen, J.S., Sutherland, B., Patel, A., Stewart, C., and Bamber, C., “Direct measurement of the quantum wavefunction”, Nature 474, 188191 (2011).Google Scholar
Allahverdyan, A.E., Balian, R. and Nieuwenhuizen, Th. M., “Determining a quantum state by means of a single apparatus”, Phys. Rev. Lett. 92, 120402 (2004).Google Scholar
Peres, A., “How the no-cloning theorem got its name”, Fortschritte der Phys. 51, 458461 (2003).Google Scholar
Gisin, N. and Massar, S., “Optimal quantum cloning machines”, Phys. Rev. Lett. 79, 21532156 (1997).Google Scholar
Bennett, C.H. and Brassard, G., “Quantum cryptography: public key distribution and coin tossing”, in Proceedings of the IEEE International Conference on Computers Systems and Signal Processing, Bangalore India (1984), pp. 175–179.Google Scholar
Ekert, A.K., “Quantum cryptography based on Bell’s theorem”, Phys. Rev. Lett. 67, 661663 (1991).Google Scholar
Bennett, C.H., Brassard, G., and Mermin, N.D., “Quantum cryptography without Bell’s theorem”, Phys. Rev. Lett. 68, 557559 (1992).Google Scholar
Bennett, C.H., Brassard, G., and Ekert, A.K., “Quantum cryptography”, Scientific American 267, 5057 (October 1992).Google Scholar
Gisin, N., Ribordy, G., Tittel, W., and Zbinden, H., “Quantum cryptography”, Rev. Mod. Phys. 74, 145195 (2002).Google Scholar
Bennett, C.H., “Quantum cryptography using any two nonorthogonal states”, Phys. Rev. Lett. 68, 31213124 (1992).Google Scholar
Townsend, P., Rarity, J.G., and Tapster, P.R., “Single photon interference in a 10 km-long optical fiber interferometer”, Electron. Lett. 29, 634635 (1993).Google Scholar
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., and Wootters, W.L., “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky– Rosen channels”, Phys. Rev. Lett. 70, 18951898 (1993).Google Scholar
Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., and Zeilinger, A., “Experimental quantum teleportation”, Nature 390, 575579 (1997).Google Scholar
Peres, A., Quantum Theory: Concepts and Methods, Kluwer (1993); see also [118].Google Scholar
Le Bellac, M., Physique Quantique, 2nd edition, CNRS Editions and EDP Sciences (2007).Google Scholar
Massar, S. and Popescu, S., “Optimal extraction of information from finite quantum ensembles”, Phys. Rev. Lett. 74, 12591263 (1995).Google Scholar
Popescu, S., “Bell’s inequalities versus teleportation: what is nonlocality?”, Phys. Rev. Lett. 72, 797800 (1994); arXiv:quant-ph/9501020 (1995).Google Scholar
Sudbery, T., “The fastest way from A to B”, Nature 390, 551552 (1997).Google Scholar
Collins, G.P., “Quantum teleportation channels opened in Rome and Innsbruck”, Phys. Today 51, 1821 (February 1998).Google Scholar
Xia, Y., Song, J., Lu, P.-M., and Song, H-S., “Teleportation of an N-photon Greenberger–Horne-Zeilinger (GHZ) polarization-entangled state using linear elements”, J. Opt. Soc. Am. B 27, A1A6 (2010).Google Scholar
Jin, X.M., Ren, J.G., Yang, B., Yi, Z.H., Zhou, F., Xu, X.F., Wang, S.K., Yang, D., Hu, Y.F., Jiang, S., Yang, T., Yin, H., Chen, K., Peng, C.Z., and Pan, J.W., “Experimental free-space quantum teleportation”, Nature Photonics 4, 376381 (2010).Google Scholar
Bennett, C.H., “Quantum information and computation”, Phys. Today 48, 2430 (October 1995).Google Scholar
DiVincenzo, D.P., “Quantum computation”, Science 270, 255261 (October 1995).Google Scholar
Bennett, C.H. and DiVincenzo, D.P., “Quantum information and computation”, Science 404, 247255 (2000).Google Scholar
Bouwmeester, D., Ekert, A.K., and Zeilinger, A. editors, The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation, Springer (2000).Google Scholar
Mermin, N.D., Quantum Computer Science: An Introduction, Cambridge University Press (2007).Google Scholar
Barnett, S.M., Quantum Information, Oxford University Press (2009).Google Scholar
Nielsen, M.A. and Chuang, I.L, Quantum Computation and Quantum Information, Cambridge University Press (2011).Google Scholar
Deutsch, D., “Quantum theory, the Church–Turing principle and the universal quantum computer”, Proc. Roy. Soc. A 400, 97117 (1985).Google Scholar
Le Bellac, M., Le monde quantique, EDP Sciences (2010).Google Scholar
Shor, P., Proceedings of the 55th Annual Symposium on the Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, California (1994), pp. 124– 133.Google Scholar
Mermin, N.D., “What has quantum mechanics to do with factoring?”, Phys. Today 60, 89 (April 2007); “Some curious facts about quantum factoring”, Phys. Today 60, 10–11 (October 2007).Google Scholar
Grover, L.K., “A fast quantum mechanical algorithm for database search”, Proceedings, 28th Annual ACM Symposium on the Theory of Computing (May 1996), p. 212; “From Schrödinger’s equation to quantum search algorithm”, Am. J. Phys. 69, 769777 (2001).Google Scholar
Deutsch, D. and Jozsa, R., “Rapid solution of problems by quantum computation”, Proceedings of the Royal Society of London A 439, 553558 (1992).Google Scholar
Abrams, D.S. and Lloyd, S., “Simulation of many-body Fermi systems on a universal quantum computer”, Phys. Rev. Lett. 79, 25862589 (1997).Google Scholar
Harrow, A.W., Hassidim, A., and Lloyd, S., “Quantum algorithm for linear systems of equations”, Phys. Rev. Lett. 103, 150502 (2009).Google Scholar
Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., and Chuang, I.L., “Experimental realization of quantum Shor’s factoring algorithm using nuclear magnetic resonance”, Nature 414, 883887 (2001).Google Scholar
Martin-Lopez, E., Laing, A., Lawson, T., Alvarez, R., Zhou, X., and O’Brien, J.L., “Experimental realisation of Shor’s quantum factoring algorithm using qubit recycling”, Nature Photonics 6, 773776 (2012).Google Scholar
Xu, N., Zhu, J., Lu, D., Zhou, X., Peng, X., and Du, J., “Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system”, Phys. Rev. Lett. 108, 130501 (2012); see also Phys. Rev. Lett. 109, 269902 (2012).Google Scholar
Haroche, S. and Raimond, J.M., “Quantum computing: dream or nightmare?”, Phys. Today 49, 5152 (August 1996).Google Scholar
Shor, P.W., “Scheme for reducing decoherence in quantum computer memory”, Phys. Rev. A 52, R2493R2496 (1995).Google Scholar
Steane, A.M., “Error correcting codes in quantum theory”, Phys. Rev. Lett. 77, 793796 (1996).Google Scholar
Preskill, J., “Battling decoherence: the fault-tolerant quantum computer”, Phys. Today 52, 2430 (June 1999); “Reliable quantum computers”, Proc. Roy. Soc. Lond. A 454, 385–410 (1998) or arXiv:quant-ph/9705031v3.Google Scholar
Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., and Wootters, W.K., “Purification of noisy entanglement and faithful teleportation via noisy channels”, Phys. Rev. Lett. 76, 722725 (1996).Google Scholar
Devitt, S.J., Munro, W.J., and Nemoto, K., “Quantum error correction for beginners”, Rep. Progr. Phys. 76, 07001 (35 pages) (2013).Google Scholar
Terhal, B.M., “Quantum error correction for quantum memories”, Rev. Mod. Phys. 87, 307343 (2015).Google Scholar
Gottesman, D., “An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation”, in “Quantum Information Science and Its Contributions to Mathematics”, Proceedings of Symposia in Applied Mathematics 68, 1358 (Amer. Math. Soc., Providence, Rhode Island, 2010); or arXiv:0904.2557 [quant-ph].Google Scholar
Kempe, J., “Approaches to quantum error correction”, in “Quantum Decoherence”, Poincaré seminar 2005, Progress in Mathematical Physics series, 85–123 (2006); arXiv:quant-ph/0612185. J. Kempe, O. Regev, F. Unger, and R. de Wolf, “Upper bounds on the noise threshold for fault-tolerant quantum computing”, arXiv:0802.1464 [quant-ph] (2008).Google Scholar
Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., and Wootters, W.A., “Mixed-state entanglement and quantum error correction”, Phys. Rev. A 54, 38243851 (1996).Google Scholar
Briegel, H.J., Dür, W., Cirac, J.I., and Zoller, P., “Quantum repeaters: the role of imperfect local operations in quantum communication”, Phys. Rev. Lett. 81, 59325935 (1998).Google Scholar
Griffiths, R.B. and Chi-Sheng, Niu, “Semiclassical Fourier transform for quantum computation”, Phys. Rev. Lett. 76, 32283231 (1996).Google Scholar
Verstraete, F., Wolf, M.M., and Cirac, J.I, “Quantum computation and quantum-state engineering driven by dissipation”, Nature Physics 5, 633636 (2009).Google Scholar
Cirac, I. and Zoller, P., “Goals and opportunities in quantum simulation”, Nature Physics 8, 264266 (2012).Google Scholar
Buluta, I. and Nori, F., “Quantum simulators”, Science 326, 108111 (2009).Google Scholar
Biamonte, J.D., Bergholm, V., Whitfield, J.D., Fitzsimons, J., and Aspuru-Guzik, A., “Adiabatic quantum simulators”, AIP Advances 1, 022126 (2011).Google Scholar
Georgescu, I.M., Ashab, S., and Nori, F., “Quantum simulation”, Rev. Mod. Phys. 86, 153185 (2014).Google Scholar
Hauke, P., Cucchiette, F.M., Tagliacozzo, L., Deutsch, I., and Lewenstein, M., “Can one trust quantum simulators?”, Rep. Progr. Phys. 75, 082401 (2012).Google Scholar
Greiner, M., Mandel, O., Esslinger, T., Hänsch, T.W., and Bloch, I., “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms”, Nature 415, 3944 (2002).Google Scholar
Peng, X., Zhang, J., Du, J., and Suter, D., “Quantum simulation of a system with competing two- and three-body interactions”, Phys. Rev. Lett. 103, 140501 (2009).Google Scholar
You, J.Q. and Nori, F., “Quantum information”, Physics Today 58, 4247 (2005); “Atomic physics and quantum optics using superconducting circuits”, Nature 474, 589-597 (2011).Google Scholar
Lanyon, B.P., Whitfield, J.D., Gillett, G.G., Goggin, M.E., Almeida, M.P., Kassal, I., Biamonte, J.D., Mohseni, M., Powell, B.J., Barbieri, M., Aspuru-Guzik, A. and White, A.G., “Towards quantum chemistry on a quantum computer”, Nature Chemistry 2, 106111 (2010).Google Scholar
Dalibard, J., Gerbier, F., Juzeliunas, G., and Öhberg, P., “Artificial gauge potentials for neutral atoms”, Rev. Mod. Phys. 83, 15231543 (2011).Google Scholar
Grangier, P., Levenson, J.A., and Poizat, J.P., “Quantum nondemolition measurements in optics”, Nature 396, 537542 (1998).Google Scholar
Zeh, H.D., “On the interpretation of measurement in quantum theory”, Found. Phys. I, 6976 (1970).Google Scholar
Zurek, W.H., “Pointer basis of quantum apparatus: into what mixture does the wave packet collapse?”, Phys. Rev. D 24, 15161525 (1981); “Environment-induced superselection rules”, Phys. Rev. D 26, 1862–1880 (1982).Google Scholar
Zurek, W.H., “Decoherence, einselection and the quantum origin of the classical”, Rev. Mod. Phys. 75, 715775 (2003).Google Scholar
Hepp, K., “Quantum theory of measurement and macroscopic observables”, Helv. Phys. Acta 45, 237248 (1972).Google Scholar
Bell, J.S., “On wave packet reduction in the Coleman-Hepp model”, Helv. Phys. Acta 48, 9398 (1975); reprinted in [6].Google Scholar
Zurek, W.H., “Preferred states, predictability, classicality and the environment-induced decoherence”, Progr. Theor. Phys. 89, 281312 (1993); a shorter version is available in “Decoherence and the transition from quantum to classical”, Phys. Today 44, 36–44 (October 1991).Google Scholar
Simonius, M., “Spontaneous symmetry breaking and blocking of metastable states”, Phys. Rev. Lett. 40, 980983 (1978).Google Scholar
Zurek, W.H., “Environment-assisted invariance, entanglement and probabilities in quantum physics”, Phys. Rev. Lett. 90, 120404 (2003).Google Scholar
Hund, F., “Zur Deutung der Molekelspektren III”, Zeit. Phys. 43, 805826 (1927).Google Scholar
Trost, J. and Hornberger, K., “Hund’s paradox and the collisional stabilization of chiral molecules”, Phys. Rev. Lett. 103, 023202 (2009).Google Scholar
Wigner, E.P., “Die Messung quantenmechanischer Operatoren”, Z. Phys. 131, 101108 (1952).Google Scholar
Busch, P., “Translation of ‘Die Messung quantenmechanischer Operatoren’ by E.P. Wigner”, arXiv:1012.4372v1 [quant-ph] (2010).Google Scholar
Araki, H. and Yanase, M., “Measurement of quantum mechanical operators”, Phys. Rev. 120, 622626 (1960).Google Scholar
Yanase, M., “Optimal measuring apparatus”, Phys. Rev. 123, 666668 (1961).Google Scholar
Ohira, T. and Pearle, P., “Perfect disturbing measurements”, Am. J. Phys. 56, 692695 (1988).Google Scholar
Ghirardi, G.C., Miglietta, F., Rimini, A., and Weber, T., “Determination of the minimal amount of non-ideality and identification of the optimal measuring apparatuses”, Phys. Rev. D 24, 347352 (1981); “Analysis of a model example”, Phys. Rev. D 24, 353–358 (1981).Google Scholar
Burgos, M., “Contradiction between conservation laws and orthodox quantum mechanics”, J. Modern Phys. 1, 137142 (2010).Google Scholar
Loveridge, L. and Busch, P., “Measurement of quantum mechanical operators revisited”, Europ. Phys. J. 62, 297307 (2011).Google Scholar
Aharonov, Y., Anandan, J., Popescu, S., and Vaidman, L., “Superpositions of time evolutions of a quantum system and a quantum time-translation machine”, Phys. Rev. Lett. 64, 29652968 (1990).Google Scholar
Ferries, C. and Combes, J., “How the result of a single coin toss can turn out to be 100 heads”, Phys. Rev. Lett. 113, 120404 (2014).Google Scholar
Vaidman, L., “Comment on ‘How the result of a single coin toss can turn out to be 100 heads”, arXiv:1409.5386v1 (2014).Google Scholar
Vaidman, L., “Weak value controversy”, Phil. Trans. Roy. Soc. A 375 (2017).Google Scholar
Tanaka, S. and Yamamoto, N., “Information amplification via postselection: a parameter-estimation perspective”, Phys. Rev. A 88, 042116 (2013).Google Scholar
Ferries, C. and Combes, J., “Weak value amplification is suboptimal for estimation and detection”, Phys. Rev. Lett. 112, 040406 (2014).Google Scholar
Knee, G.C. and Gauger, E.M., “When amplification with weak values fails to suppress technical noise”, Phys. Rev. X 4, 011032 (2014).Google Scholar
Jordan, A.N., Martinez-Rincón, J., and Howell, J.C., “Technical advantages for weakvalue amplification: when less is more”, Phys. Rev. X 4, 011031 (2014).Google Scholar
Viza, G.I., Martinez-Rincón, J., Alves, G.B., Jordan, A.N., and Howell, J.C., “Experimentally quantifying the advantages of weak-value-based metrology”, Phys. Rev. A 92, 0312127 (2015).Google Scholar
Sinclair, J., Hallaji, M., Steinberg, A., Tollaksen, J., and Jordan, A., “Weak-value amplification and optimal parameter estimation in the presence of correlated noise”, Physical Review A 96, 052128 (2017).Google Scholar
Richtie, N.W.M., Story, J.G., and Hulet, R. G., “Realization of a measurement of a weak value”, Phys. Rev. Lett. 66, 11071110 (1991).Google Scholar
Solli, D.R., McCormick, C.F., Chiao, R.Y., Popescu, S., and Hickmann, J.M., “Fast light, slow light, and phase singularities: a connection to generalized weak values”, Phys. Rev. Lett. 92, 043601 (2004).Google Scholar
Brunner, N., Scarani, V., Wegmüller, M., Legré, M., and Gisin, N., “Direct measurement of superluminal group velocity and signal velocity in an optical fiber”, Phys. Rev. Lett. 93, 203902 (2004).Google Scholar
Pryde, G.J., O’Brien, J.L., White, A.G., Ralph, T.C., and Wiseman, H.M., “Measurement of quantum weak values of photon polarization”, Phys. Rev. Lett. 94, 220405 (2005).Google Scholar
Mir, R., Lundeen, J.S., Mitchell, M.W., Steinberg, A.M., Garretson, J.L., and Wiseman, H.M., “A double slit ‘which way’ experiment on the complementarityuncertainty debate”, New. J. Phys. 9, 287297 (2007).Google Scholar
Hosten, O. and Kwiat, P., “Observation of the spin Hall effect of light via weak measurements”, Science 319, 787790 (2008).Google Scholar
Lundeen, J.S. and Steinberg, A.M., “Experimental joint weak measurement on a photon pair as a probe of Hardy’s paradox”, Phys. Rev. Lett. 102, 020404 (2009).Google Scholar
Yokota, K., Yamamoto, T., Koashi, M., and Imoto, N., “Direct observation of Hardy’s paradox by joint weak measurement with an entangled photon pair”, New. J. Phys. 11, 033011 (2009).Google Scholar
Ben Dixon, P., Starling, D.J., Jordan, A.N., and Howell, J.C., “Ultrasensitive beam deflection measurement via interferometric weak value amplification”, Phys. Rev. Lett. 102, 173601 (2009). D.J. Starling, P. Ben Dixon, A.N. Jordan, and J.C. Howell, “Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak values”, Phys. Rev. A80, 041803 (2009).Google Scholar
Brunner, N. and Simon, C., “Measuring small longitudinal phase shifts: weak measurements or standard interferometry”, Phys. Rev. Lett. 105, 010405 (2010).Google Scholar
Feizpour, A., Hallaji, M., Dmochowski, G., and Steinberg, A., “Observation of the nonlinear phase shift due to single postselected photons”, Nature Phys. 11 DOI:10.1038/NPHYS3433.Google Scholar
Williams, N.S. and Jordan, A.N., “Weak values and the Leggett-Garg inequality in solid-state qubits”, Phys. Rev. Lett. 100, 026804 (2008).Google Scholar
Gillepsie, D.T., “The mathematics of Brownian motion and Johnson noise”, Am. J. Phys. 64, 225240 (1995).Google Scholar
McKean, H.P., Stochastic Integrals, AMS Chelsea Publishing, Providence (1969).Google Scholar
Gisin, N., “A simple nonlinear dissipative quantum evolution equation”, J. Phys. A 14, 22592267 (1981).Google Scholar
Gisin, N., “Irreversible quantum dynamics and the Hilbert space structure of quantum dynamics”, J. Math. Phys. 24, 17791782 (1983).Google Scholar
Gisin, N., “Quantum measurements and stochastic processes”, Phys. Rev. Lett. 52, 16571660 (1984).Google Scholar
Brun, T.A., “A simple model of quantum trajectories”, Am. J. Phys. 70, 719737 (2002).Google Scholar
Jacobs, K. and Steck, D.A., “A straightforward introduction to continuous quantum measurement”, Contemp. Phys. 47, 279303 (2007), arXiv:quant-ph/0611067 (2006).Google Scholar
Belavkin, V.P., “Nondemolition measurement and control in quantum dynamical systems”, Proc. of CISM Seminars on Information Complexity and Control in Quantum Systems, Blaquière, A., Diner, S., and Lochak, G. editors, Springer Verlag (1987), pp. 311329.Google Scholar
Mott, N.F., “The wave mechanics of α-ray tracks”, Proc. Royal Soc. A 126, 79– 84 (1929); reprinted in “Quantum theory of measurement”, J.A. Wheeler and W.H. Zurek editors, Princeton University Press (1983), pp. 129–134.Google Scholar
Nagourney, W., Sandberg, J. and Dehmelt, H., “Shelved optical electron amplifier: observation of quantum jumps”, Phys. Rev. Lett. 56, 27972799 (1986); H. Dehmelt, “Experiments with an isolated subatomic particle at rest”, Rev. Mod. Phys. 62, 525– 530 (1990).Google Scholar
Sauter, T., Neuhauser, W., Blatt, R., and Toschek, P.E., “Observation of quantum jumps”, Phys. Rev. Lett. 57, 16961698 (1986).Google Scholar
Bergquist, J.C., Hulet, R.G., Itano, W.M., and Wineland, D.J., “Observation of quantum jumps in a single atom”, Phys. Rev. Lett. 57, 16991702 (1986).Google Scholar
Itano, W.M., Bergquist, J.C., Hulet, R.G., and Wineland, D.J., “Radiative decay rates in Hg+ from observation of quantum jumps in a single ion”, Phys. Rev. Lett. 59, 27322735 (1987).Google Scholar
Schrödinger, E., “Are there quantum jumps?”, British J. Phil. Sci. 3, 109123 and 233–242 (1952).Google Scholar
Greenstein, G. and Zajonc, A.G., “Do quantum jumps occcur at well-defined moments of time?”, Am. J. Phys. 63, 743745 (1995).Google Scholar
Cohen-Tannoudji, C. and Dalibard, J., “Single-atom laser spectroscopy looking for dark periods in fluorescence light”, Europhys. Lett. 1, 441448 (1986).Google Scholar
Porrati, M. and Puttermann, S., “Wave-function collapse due to null measurements: the origin of intermittent atomic fluorescence”, Phys. Rev. A 36, 929932 (1987).Google Scholar
Peil, S. and Gabrielse, G., “Observing the quantum limit of an electron cyclotron: QND measurements of quantum jumps between Fock states”, Phys. Rev. Lett. 83, 12871290 (1999).Google Scholar
Hanneke, D., Fogwell, S., and Gabrielse, G., “New measurement of the electron magnetic moment and the fine structure constant”, Phys. Rev. Lett. 100, 120801 (2008).Google Scholar
Brune, M., Haroche, S., Lefevre, V., Raimond, J.M., and Zagury, N., “Quantum nondemolition measurement of small photon numbers by Rydberg-atom phase-sensitive detection”, Phys. Rev. Lett. 65, 976979 (1990).Google Scholar
Gleyzes, S., Kuhr, S., Guerlin, C., Bernu, J., Deleglise, S., Hoff, U.B., Brune, M., Raimond, J.-M., and Haroche, S., “Quantum jumps of light recording the birth and death of a photon in a cavity”, Nature 446, 297300 (2007); C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.M. Raimond, and S. Haroche, “Progressive state collapse and quantum nondemolition photon counting”, Nature 448, 889–893 (2007).Google Scholar
Javanainen, J. and Yoo, S.M, “Quantum phase of a Bose–Einstein condensate with arbitrary number of atoms”, Phys. Rev. Lett. 76, 161164 (1996).Google Scholar
Andrews, M.R., Townsend, C.G., Miesner, H.J., Durfee, D.S., Kurn, D.M., and Ketterle, W., “Observation of interference between two Bose condensates”, Science 275, 637641 (1997).Google Scholar
Leggett, A.J. and Sols, F., “On the concept of spontaneously broken gauge symmetry in condensed matter physics”, Found. Phys. 21, 353364 (1991).Google Scholar
Wigner, E.P., “Interpretation of quantum mechanics”, lectures given in 1976 at Princeton University, later published in Quantum Theory of Measurement, Wheeler, J.A. and Zurek, W.H. editors, Princeton University Press (1983), pp. 260314; see also Wigner’s contribution in “Foundations of quantum mechanics”, Proc. Enrico Fermi Int. Summer School, B. d’Espagnat editor, Academic Press (1971).Google Scholar
Mermin, N.D., “What is quantum mechanics trying to tell us?”, Am. J. Phys. 66, 753767 (1998).Google Scholar
Misra, B. and Sudarshan, E.C.G., “The Zeno’s paradox in quantum theory”, J. Math. Phys. (NY) 18, 756763 (1977).Google Scholar
Zeilinger, A., “A foundational principle for quantum mechanics”, Found. Phys. 29, 631643 (1999).Google Scholar
Brukner, C. and Zeilinger, A., “Operationally invariant information in quantum measurements”, Phys. Rev. Lett. 83, 33543357 (1999).Google Scholar
Fuchs, C.A., “Quantum foundations in the light of quantum information”, arXiv:quant-ph/0106166 (2001).Google Scholar
Fuchs, C.A., “Quantum mechanics as quantum information (and only a little more)”, arXiv:quant-ph/0205039 (2002).Google Scholar
Pitowsky, I., “Betting on the outcomes of measurements: a Bayesian theory of quantum probability”, Studies in History and Philosophy of Modern Physics 34, 395414 (2003).Google Scholar
Auletta, G., Foundations and interpretations of quantum mechanics, World Scientific (2001); “Quantum information as a general paradigm”, Found. Phys. 35, 787815 (2005).Google Scholar
Auletta, G., Fortunato, M., Parisi, G., Quantum mechanics, Cambridge Univerity Press (2014).Google Scholar
Bub, J., “Quantum probabilities: an information-theoretic interpretation”, in Probabilities in Physics, Beisbart, C. and Hartmann, S. editors, Oxford University Press (2011).Google Scholar
Deutsch, D. and Hayden, P., “Information flow in entangled quantum systems”, Proc. Royal Soc. A 456, 17591774 (2000).Google Scholar
Ballentine, L.E., “The statistical interpretation of quantum mechanics”, Rev. Mod. Phys. 42, 358381 (1970).Google Scholar
Leggett, A.J., “Probing quantum mechanics towards the everyday world: where do we stand?”, Physica Scripta T 102, 6973 (2002).Google Scholar
Allahverdyan, A.E., Balian, R., and Nieuwenhuizen, T.M., “A subensemble theory of ideal quantum measurement processes”, Annals of Physics 376, 324352 (2017); arXiv:1303.7257v4 [quant-ph].Google Scholar
Rovelli, C., “Relational quantum mechanics”, Int. J. Theor. Phys. 35, 16371678 (1996); ArXiv:quant-ph/9609002v2 (2008).Google Scholar
Laudisa, F. and Rovelli, C., “Relational quantum mechanics”, Stanford Encyclopedia of Philosophy (2008), http://plato.stanford.edu/entries/qm-relational/Google Scholar
Smerlak, M. and Rovelli, C., “Relational EPR”, Found. Phys. 37, 427445 (2007).Google Scholar
Caves, C.M., Fuchs, C.A., and Schack, R., “Subjective probability and quantum certainty”, Stud. Hist. Phil. Mod. Phys. 38, 255274 (2007).Google Scholar
Fuchs, C.A., “QBism, the perimeter of quantum Bayesianism”, arXiv:1003.5290v1 [quant-ph](2010).Google Scholar
Healey, R., “Quantum-Bayesian and pragmatist views of quantum theory”, Stanford Encyclopedia of Physics (2017) https://plato.stanford.edu/entries/quantum-bayesian/Google Scholar
Fuchs, C.A., Mermin, N.D., and Schack, R., “An introduction to QBism with an application to the locality in quantum mechanics”, arXiv:1311.5253v1 [quant-ph](2013).Google Scholar
Zwicky, F., “On a new type of reasoning and some of its possible consequences”, Phys. Rev. 43, 10311033 (1933).Google Scholar
Birkhoff, G. and von Neumann, J., “The logic of quantum mechanics”, Ann. Math. 37, 823843 (1936).Google Scholar
Strauss, M., “Grundlagen der modernen Physik”, in Mikrokosmos-Makrokosmos: Philosophish-theoretische Probleme der Naturwissenchaften, Technik und Medizin, Akademie Verlag, Berlin (1967).Google Scholar
Popper, K.R., “Birkhoff and von Neumann’s interpretation of quantum mechanics”, Nature 219, 682685 (1968).Google Scholar
Jordan, P., “Zur Quanten-Logik”, Archiv der Mathematik 2, 166171 (1949).Google Scholar
David, F., The formalisms of quantum mechanics: an introduction, Spinger (2015).Google Scholar
Hughes, R., “La logique quantique”, Pour la Science December 1981, 36–49.Google Scholar
Mittelstaedt, P., Quantum Logic, Kluwer Academic Publishers (1978).Google Scholar
Beltrametti, E.G. and Cassinelli, G., The Logic of Quantum Mechanics, Cambridge University Press (1984).Google Scholar
Grinbaum, A., “The significance of information in quantum theory”, Ph.D. thesis, Ecole polytechnique (2004), arXiv:quant-ph/0410071 (2004). “Reconstruction of quantum theory”, Brit. J. Phil. Sci 58, 387408 (2007).Google Scholar
de Ronde, C., Domenech, G., and Freytes, H., “Quantum logic in historical and philosophical perspective”, Internet Encyclopedia of Philosophy, http://www.iep.utm.edu/qu-logic/Google Scholar
Bell, J.S., “A new approach to quantum logic”, Brit. J. Phil. Sci. 37 8399 (1986).Google Scholar
Reichenbach, H., Philosophic Foundations of Quantum Mechanics, University of California Press (1965).Google Scholar
von Weizsäcker, C.F., Göttingische Gelehrte Anzeigen, 208, 117136 (1954).Google Scholar
Haag, R., Local quantum physics: Fields, particles, algebras, Springer (1996).Google Scholar
Jordan, P., von Neumann, J., and Wigner, E., “An algebraic generalization of the quantum mechanical formalism”, Ann. Math. 35, 2964 (1934).Google Scholar
Gelfand, I.M. and Naimark, M.A., “On the embedding of normed rings into the ring of operators in Hilbert space”, Mat. Sbornik 12, 197213 (1943).Google Scholar
Segal, I.E., “Irreductible representations of operator algebras”, Bull. Amer. Math. Soc. 61, 69105 (1947); “Postulates for general quantum mechanics”, Ann. Math. 48, 930–948 (1947).Google Scholar
Haag, R. and Kastler, D., “An algebraic approach to quantum field theory”, J. Math. Phys. 7, 848861 (1964).Google Scholar
Murray, F.J. and von Neumann, J., “On rings of operators”, Ann. Math. 37, 116229 (1936).Google Scholar
Connes, A., “Une classification des facteurs du type III”, Ann. Sci. Ecole Norm. Sup. 6, 133252 (1973).Google Scholar
Connes, A., Noncommutative Geometry, Academic Press (1994).Google Scholar
Mackey, G., Mathematical Foundations of Quantum Mechanics, Benjamin, New York (1963).Google Scholar
Piron, C., “Axiomatique quantique”, Helv. Phys. Acta 37, 439468 (1964).Google Scholar
Jauch, J.M. and Piron, C., “On the structure of quantal proposition systems”, Helv. Phys. Acta 42, 842848 (1969).Google Scholar
Solèr, M.P., “Characterization of Hilbert spaces by orthomodular spaces”, Comm. Algebra 23, 219243 (1995).Google Scholar
Coecke, B. and Paquette, E.O., “Categories for the practicing physicist”, arXiv:0905.3010v2 [quant-ph]; in New Structures for Physics, Springer (2011), pp. 173286.Google Scholar
Coecke, B., “Quantum picturalism”, Contemp. Phys. 51, 5983 (2010).Google Scholar
Barnum, H. and Wilce, A., “Information processing in convex operational theories”, Electronic Notes in Theor. Computer Sci. 12, 315 (2011).Google Scholar
Wilce, A., “Quantum logic and probability theory”, Stanford encyclopedia of philosophy (2008), http://plato.stanford.edu/entries/qt-quantlog/.Google Scholar
Gleason, A.M., “Measures on the closed subspaces of a Hilbert space”, J. Math. and Mech. 6, 885893 (1957).Google Scholar
Bush, P., “Quantum states and generalized observables: a simple proof of Gleason’s theorem”, Phys. Rev. Lett. 91, 120403 (2016);Google Scholar
Auffèves, A. and Grangier, P., “Contexts, systems and modalities: a new ontology for quantum mechanics”, Found. Phys. 46, 121137 (2015); “Recovering the quantum formalism from physically realist axioms”, arXiv:1610.06164v2.Google Scholar
Omnès, R., “Logical reformulation of quantum mechanics”, J. Stat. Phys. 53, “I: Foundations”, 893932; “II: Interferences and the EPR experiments”, 933–955; “III: Classical limit and irreversibility”, 957–975 (1988).Google Scholar
Gell-Mann, M. and Hartle, J.B., “Classical equations for quantum systems”, Phys. Rev. D 47, 33453382 (1993).Google Scholar
Omnès, R. The Interpretation of Quantum Mechanics, Princeton University Press (1994); Understanding Quantum Mechanics, Princeton University Press (1999).Google Scholar
Griffiths, R.B. and Omnès, R., “Consistent histories and quantum measurements”, Phys. Today 52, 2631 (August 1999).Google Scholar
Hohenberg, P.C., “Colloquium: An introduction to consistent quantum theory”, Rev. Mod. Phys. 82, 28352844 (2010).Google Scholar
Aharonov, Y., Bergmann, P.G., and Lebowitz, J.L., “Time symmetry in the quantum process of measurement”, Phys. Rev. B 134, 14101416 (1964).Google Scholar
Griffiths, R.B., “Consistent histories and quantum reasoning”, Phys. Rev. A 54, 27592774 (1996).Google Scholar
Griffiths, R.B., “Choice of consistent family and quantum incompatibility”, Phys. Rev. A 57, 16041618 (1998).Google Scholar
Griffiths, R.B., “Observant readers take the measure of novel approaches to quantum theory: some get Bohmed”, Phys. Today 52, 1115 and 89–92 (February 1999).Google Scholar
Griffiths, R.B., “Correlations in separated quantum systems: a consistent history analysis of the EPR problem”, Am. J. Phys. 55, 1117 (1987).Google Scholar
Dowker, F. and Kent, A., “Properties of consistent histories”, Phys. Rev. Lett. 75, 30383041 (1995); “On the consistent histories approach to quantum mechanics”, J. Stat. Phys. 82, 1575–1646 (1996).Google Scholar
Kent, A., “Quasiclassical dynamics in a closed quantum system”, Phys. Rev. A 54, 46704675 (1996).Google Scholar
Brun, T.A., “Continuous measurements, quantum trajectories and decoherent histories”, Phys. Rev. A 61, 042107 (2000).Google Scholar
Bell, J.S., “Are there quantum jumps?”, in Schrödinger–Centenary Celebration of a Polymath, Kilmister, C.W. editor, Cambridge University Press (1987), p. 41; see also Chapter 22 of [6].Google Scholar
Bell, J.S., “Beables for quantum field theory”, CERN-TH.4035/84 (August 2 1984); Phys. Rep. 137, 4954 (1986); Chapter 19 of [6].Google Scholar
de Broglie, L., “La mécanique ondulatoire et la structure atomique de la matière et du rayonnement”, J. Physique et le Radium, série VI, tome VIII, 225–241 (1927); “Interpretation of quantum mechanics by the double solution theory”, Ann. Fond. Louis de Broglie 12, Nr 4 (1987).Google Scholar
de Broglie, L., Tentative d’Interprétation Causale et Non-linéaire de la Mécanique Ondulatoire, Gauthier-Villars, Paris (1956).Google Scholar
de Broglie, L., Les Incertitudes d’Heisenberg et l’Interprétation Probabiliste de la Mécanique Ondulatoire, Gauthier-Villars and Bordas, Paris (1982).Google Scholar
Cushing, J.T., Quantum Mechanics, The University of Chicago Press (1994).Google Scholar
Bohm, D., “Proof that probability density approaches |Ψ|2 in causal interpretation of quantum theory”, Phys. Rev. 89, 458466 (1953).Google Scholar
Holland, P.R., The Quantum Theory of Motion, Cambridge University Press (1993).Google Scholar
Goldstein, S., “Bohmian mechanics”, Stanford Encyclopedia of Philosophy, https://plato.stanford.edu/entries/qm-bohm/ (2001 and 2013).Google Scholar
Dürr, D. and Teufel, S., Bohmian mechanics, Springer (2009).Google Scholar
Oriols, X. and Mompart, J., Applied Bohmian mechanics: from nanoscale systems to cosmology, Editorial Pan Stanford Publishing Pte. Ltd (2012); see chapter 1 “Overview of Bohmian mechanics”, or ArXiv:1206.1084v2 [quant-ph].Google Scholar
Bricmont, J., Making Sense of Quantum Mechanics, Springer (2016).Google Scholar
Madelung, E., “Quantentheorie in hydrodynamische Form”, Z. Phys. 40, 322326 (1927).Google Scholar
Dürr, D., Goldstein, S., and Zanghì, N., “Quantum equilibrium and the origin of absolute uncertainty”, J. Stat. Phys. 67, 843907 (1992).Google Scholar
Valentini, A., “Signal-locality in hidden-variables theories”, Phys. Lett. A 297, 273278 (2002); “Beyond the quantum”, Physics World32–37 (November 2009).Google Scholar
J.S. Bell, chapter 18 of [55] (p. 128 of [6]).Google Scholar
Dürr, D., Goldstein, S., and Zanghi, N., Quantum Physics Without Quantum Philosophy, Springer (2012), chapter 12; see also S. Goldstein and N. Zanghi, “Reality and the role of the wavefunction in quantum theory”, arxiv:1101.4575v1.Google Scholar
Holland, P., “Hamiltonian theory of wave and particle in quantum mechanics II: Hamilton–Jacobi theory and particle back-reaction”, Nuov. Cim. B 116, 11431172 (2001).Google Scholar
Philippidis, C., Dewdney, C., and Hiley, B.J., “Quantum interference and the quantum potential”, Nuov. Cim. 52 B, 1523 (1979).Google Scholar
Bell, J.S., “De Broglie–Bohm, delayed choice double slit experiment, and density matrix”, International Journal of Quantum Chemistry 18, supplement symposium 14, 155–159 (1980); chapter 14 of [6].Google Scholar
Hiley, B.J., “Welcher Weg experiments from the Bohm perspective”, contribution to the Växjö conference (2005), http://www.bbk.ac.uk/tpru/BasilHiley/WelcherWegBohmBJH2.pdf.Google Scholar
Greenberger, D., Horne, M., and Zeilinger, A., “Multiparticle interferometry and the superposition principle”, Phys. Today 46, 2229 (1993).Google Scholar
Gottfried, K., “Two particle interference”, Am. J. Phys. 68, 143147 (2000).Google Scholar
Guay, E. and Marchildon, L., “Two-particle interference in standard and Bohmian quantum mechanics”, J. Phys. A 36, 56175624 (2003).Google Scholar
Vaidman, L., “The reality of Bohmian quantum mechanics or Can you kill with an empty wave bullet?”, Found. Phys. 35, 299312 (2005).Google Scholar
Deotto, E. and Ghirardi, G.C., “Bohmian mechanics revisited”,Found. Phys. 28, 130 (1998).Google Scholar
Holland, P., “Uniqueness of paths in quantum mechanics”, Phys. Rev. A 60, 43264330 (1999); “Uniqueness of conserved currents in quantum mechanics”, Ann. Phys. (Leipzig) 12, 446–462 (2003).Google Scholar
Holland, P. and Philippidis, C., “Implications of Lorentz covariance for the guidance equation in two-slit quantum interference”, A 67, 062105 (2003).Google Scholar
Wiseman, H.M., “Grounding Bohmian mechanics in weak values and bayesianism”, New J. Phys. 9, 165 (2007].Google Scholar
Nikuni, T. and Williams, J.E., “Kinetic theory of a spin 1/2 Bose-condensed gas”, J. Low Temperature Phys. 133, 323374 (2003).Google Scholar
Englert, B.G., Scully, M.O., Süssmann, G., and Walther, H., “Surrealistic Bohm trajectories”, Z. Naturforschung 47 a, 11751186 (1992).Google Scholar
Dewdney, C., Holland, P.R., and Kyprianidis, A., “What happens in a spin measurement?”, Phys. Lett. A 119, 259267 (1986).Google Scholar
Wigner, E.P., “Rejoinder”, Am. J. Phys. 39, 1097 (1971).Google Scholar
Clauser, J., “von Neumann’s informal hidden-variable argument”, Am. J. Phys. 39, 1095 (1971); “Reply to Dr Wigner’s objections”, Am. J. Phys. 39, 1098 (1971).Google Scholar
Dewdney, C., Holland, P.R., and Kyprianidis, A., “A causal account of nonlocal Einstein-Podolsky-Rosen spin correlations”, J. Phys. Math. Gen. 20, 47174732 (1987).Google Scholar
Dewdney, C., “Nonlocally correlated trajectories in two-particle quantum mechanics”, Found. of Phys. 18, 867886 (1988).Google Scholar
Bell, J.S., “De Broglie-Bohm, delayed-choice double-slit experiment, and density matrix”, Int. J. Quant. Chem., Quantum Chemistry Symposium 14, 155159 (1980); reprinted in [6].Google Scholar
des Cloizeaux, J., “A reformulation of Schrödinger and Dirac equations in terms of observable local densities and electromagnetic fields: a step towards a new interpretation of quantum mechanics?”, J. Physique 44, 885908 (1983).Google Scholar
Colin, S. and Struyve, W., “A Dirac sea pilot-wave model for quantum field theory”, J. Phys. A Math. Theor. 40, 73097341 (2007).Google Scholar
Dürr, D., Goldstein, S., Tumulka, R., and Zanghì, N., “Trajectories and particle creation and annihilation in quantum field theory”, J. Phys. A Math. Gen. 36, 41434149 (2003).Google Scholar
Dürr, D., Goldstein, S., Tumulka, R. and Zanghì, N., “Bohmian mechanics and quantum field theory”, Phys. Rev. Lett. 93, 090402 (2004).Google Scholar
Struyve, W., “Field beables for quantum field theory”, Rept. Prog. Phys. 73, 106001 (2010); arXiv:0707.3685v2 [quant-ph] (2007).Google Scholar
Berndl, K., Dürr, D., Goldstein, S., and Zhanghi, N., “Nonlocality, Lorentz invariance, and Bohmian quantum theory”, Phys. Rev. A 53, 20622073 (1996).Google Scholar
Horton, G. and Dewdney, C., “A nonlocal, Lorentz-invadiant, hidden-variable interpretation of relativistic quantum mechanics based on particle trajectories”, J. Phys. A Math. Gen. 34, 98719878 (2001); “A relativistically covariant version of Bohm’s quantum field theory for the scalar field”, J. Phys. A Math. Gen. 37, 11935–11943 (2004).Google Scholar
Nikolić, H., “Relativistic quantum mechanics and the Bohmian interpretation”, Found. Phys. Lett. 18, 549561 (2005); “QFT as pilot-wave theory of particle creation and destruction”, J. Mod. Phys. A 25, 1477–1505 (2010); “Bohmian mechanics in relativistic quantum mechanics, quantum field theory and string theory”, J. Phys. Conference Series 67, 012035 (2007).Google Scholar
Lopreone, C.L. and Wyatt, R.E., “Quantum wave packet dynamics with trajectories”, Phys. Rev. Lett. 82, 51905193 (1999).Google Scholar
Christov, I.P., “Time-dependent quantum Monte Carlo: preparation of the ground state”, New Journal Phys. 9, 70 (2007); “Polynomial-time-scaling quantum dynamics with time-dependent quantum Monte Carlo”, J. Chem. Phys. A 113, 6016–6021 (2009).Google Scholar
Shifren, L., Akis, R., and Ferry, D.K., “Correspondence between quantum and classical motion: comparing Bohmian mechanics with a smoothed effective potential approach”, Phys. Lett. A 274, 7583 (2000).Google Scholar
Allaberda, G., Marian, D., Benali, A., Yaro, S., Zanghi, N., and Oriols, X., “Time-resolved transport with quantum trajectories”, J. Comput. Electron. 12:405419 (2013).Google Scholar
Benseny, A., Albareda, G., Sanz, A., Mompart, J., and Oriols, W., “Applied Bohmian mechanics”, Eur. Phys. J. 68:286 (2014).Google Scholar
Peter, P., Pinho, E., and Pinto-Neto, N., “Tensor perturbations in quantum cosmological backgrounds”, JCAP 07, 014 (2005), “Gravitational wave background in perfect fluid quantum cosmologies”, Phys. Rev. D73, 104017 (2006).Google Scholar
Pinho, E. and Pinto-Neto, N., “Scalar and vector perturbations in quantum cosmological backgrounds”, Phys. Rev. D 76, 023506 (2007).Google Scholar
Acacio de Barros, J., Pinto-Neto, N., and Sagioro-Leal, M.A., “The causal interpretation of dust and radiation fluid nonsingular quantum cosmologies”, Phys. Lett. A 241, 229239 (1998).Google Scholar
Bohm, D. and Vigier, J.P., “Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations”, Phys. Rev. 96, 208216 (1954).Google Scholar
Valentini, A., “Signal-locality, uncertainty, and the subquantum H-theorem” I, Phys. Lett. A 156, 511 (1991); II, Phys. Lett. A 158, 1–8 (1991) .Google Scholar
Valentini, A. and Westman, H., “Dynamical origin of quantum probabilities”, Proc. Roy. Soc. A 461, 253272 (2004).Google Scholar
Towler, M.D., Russell, N.J., and Valentini, A., “Time scales for dynamical relaxation to the Born rule”, Proc. Royal Soc. A 468, 9901013 (2015).Google Scholar
Garcia de Polavieja, G., “A causal quantum theory in phase space”, Phys. Lett. A 220, 303314 (1996).Google Scholar
Scully, M.O., “Do Bohm trajectories always provide a trustworthy physical picture of particle motion?”, Phys. Scripta T 76, 4146 (1998).Google Scholar
Dewdney, C., Hardy, L., and Squires, E.J., “How late measurements of quantum trajectories can fool a detector”, Phys. Lett. A 184, 611 (1993).Google Scholar
Gisin, N., “Why Bohmian mechanics? One and two-time measurements, Bell inequalities, philosophy and physics”, arXiv:1509.00767 [quant-ph].Google Scholar
Griffiths, R.B., “Bohmian mechanics and consistent histories”, Phys. Lett. A 261, 227234 (1999).Google Scholar
Aharonov, Y. and Vaidman, L., “About position measurements which do not show the Bohmian particle position”, in Cushing, J.T. et al. eds Bohmian theory, an appraisal, Kluwer (1996); arXiv:quant-ph/9511005 (1995).Google Scholar
Aharonov, Y., Englert, B-G., and Scully, M.O., “Protective measurements and Bohm trajectories”, Phys. Lett. A 263, 137146 (1999).Google Scholar
Cohen-Tannoudji, C., Diu, B., and Laloë, F., Mécanique quantique, Hermann (1973 and 1977); Quantum Mechanics, Wiley (1977).Google Scholar
Bohr, N., “Discussions with Einstein on epistemological problems in atomic physics”, in [2], 200–241; reprinted in Quantum Theory and Measurement, Wheeler, J.A. and Zurek, W.H. editors, Princeton University Press (1983), pp. 949.Google Scholar
Correggi, M. and Morchio, G., “Quantum mechanics and stochastic mechanics for compatible observables at different times”, Ann. Physics 296, 371389 (2002).Google Scholar
Neumaier, A., “Bohmian mechanics contradicts quantum mechanics”, arXiv:quant-ph/0001011 (2000).Google Scholar
Brida, G., Cagliero, E., Falzetta, G., Genovese, M., Gramegna, M., and Novero, C., “Experimental realization of a first test of de Broglie–Bohm theory”, J. Phys. B 35, 47514756 (2002); “A first experimental test of the de Broglie–Bohm theory against standard quantum mechanics”, arXiv:quant-ph/0206196 (2002).Google Scholar
Brida, G., Cagliero, E., Falzetta, G., Genovese, M., Gramegna, M., and Prerdazzi, E., “Biphoton double slit experiment”, Phys. Rev. A 68, 033803 (2003).Google Scholar
Ghose, P., “An experiment to distinguish between de Broglie–Bohm and standard quantum mechanics”, arXiv:quant-ph/0003037 (2003).Google Scholar
Dürr, D., Goldstein, S., Tumulka, R., and Zanghi, N., “Bell-type quantum field theories”, J. Phys. A Math. Gen. 38, R1 (2005); arXiv:quant-ph/0407116v1 (2004).Google Scholar
Sudbery, A., “Objective interpretations of quantum mechanics and the possibility of a deterministic limit”, J. Phys. A 20, 17431750 (1987); “Single-world theory of the extended Wigner’s friend experiment”, Found. Phys. 47, 658–669 (2017); arXiv:1608.05373v3 (2017).Google Scholar
Oldofredi, A., “Stochasticity and Bell-type quantum field theory”, Synthese, 1–20 (2018); arXiv:1802.01898v1 (2018).Google Scholar
Fényes, I., “Eine wahrscheinlichkeitstheoretische Begründung und Interpretation der Quantenmechanik”, Zeit. Physik 132, 81106 (1952).Google Scholar
Nelson, E., “Derivation of the Schrödinger equation from Newtonian mechanics”, Phys. Rev. 150, 10791085 (1966).Google Scholar
Werner, R., “A generalization of stochastic mechanics and its relation to quantum mechanics”, Phys. Rev. D 34, 463469 (1986).Google Scholar
Wallstrom, T.C., “Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations”, Phys. Rev. A 49, 16131617 (1994).Google Scholar
Damgaard, P. and Hüffel, H. editors, Stochastic Quantization, World Scientific (1988).Google Scholar
Masujima, M., Path Integral Quantization and Stochastic Quantization, Springer Verlag (2000 and 2009).Google Scholar
Parisi, G. and Wu, Y-S., “Perturbation theory without gauge fixing”, Sci. Sin. 24, 483496 (1981).Google Scholar
Gozzi, E., “Functional-integral approach to Parisi-Wu stochastic quantization: scalar theory”, Phys. Rev. D 28, 19221930 (1983).Google Scholar
Dickson, M. and Dieks, D., “Modal interpretation of quantum mechanics”, Stanford Encyclopedia of Philosophy (2007): http://plato.stanford.edu/entries/qm-modal/ (now replaced by the next reference, but still accessible on the site of the Encyclopedia).Google Scholar
Lombardi, O. and Dieks, D., “Modal interpretations of quantum mechanics”, Stanford Encyclopedia of Philosophy (2012): https://plato.stanford.edu/entries/qm-modal/Google Scholar
van Fraassen, B.C., “A formal approach to the philosophy of science”, in Paradigms and Paradoxes: The Philosophical Challenge of the Quantum Domain, Colodny, R. editor, University of Pittsburg Press (1972), pp. 303–366; “The Einstein–Podolsky– Rosen paradox”, Synthese, 29, 291–309 (1974); Quantum Mechanics: An Empiricist View, Oxford, Clarendon Press (1991).Google Scholar
Kochen, S., “A new interpretation of quantum mechanics”, in Symposium on the Foundations of Modern Physics, Mittelstaedt, P. and Lahti, P. editors, World Scientific (1985), pp. 151169.Google Scholar
Dieks, D., “The formalism of quantum theory: an objective description of reality?”, Annalen der Physik 500, 174190 (1988); “Quantum mechanics without the projection postulate and its realistic interpretation”, Found. Phys. 19, 1397–1423 (1989); “Resolution of the measurement problem through decoherence of the quantum state”, Phys. Lett. A 142, 439–446 (1989); “Modal interpretation of quantum mechanics, measurements, and macroscopic behaviour”, Phys. Rev. A 49, 2290– 2300 (1994).Google Scholar
Healey, R., The Philosophy of Quantum Mechanics: An Interactive Interpretation, Cambridge University Press (1989); “Measurement and quantum indeterminateness”, Found. Phys. Lett. 6, 307–316 (1993).Google Scholar
Bacciagaluppi, G., “Topics in the modal interpretation of quantum mechanics”, dissertation, Cambridge University (1996); “Delocalized properties in the modal interpretation of a continuous model of decoherence”, Found. Phys. 30, 14311444 (2000).Google Scholar
Dickson, M., “Wavefunction tails in the modal interpretation”, Proceedings of the Philosophy of Science Association 1994, D. Hull, M. Forbes, and R. Burian editors, 1, 366–376 (1994).Google Scholar
Berkovitz, J. and Hemmo, M., “Modal interpretations of quantum mechanics and relativity: a reconsideration”, Found. Phys. 35, 373397 (2005).Google Scholar
Healey, R., “Modal interpretation, decoherence, and the quantum measurement problem”, in Quantum Measurement: Beyond Paradox, R. Healey and G. Hellmann editors, Minnesota Studies in the Philosophy of Science 17(1998), pp. 52–86.Google Scholar
Myrvold, W., “Modal interpretation and relativity”, Found. Phys. 32, 11731784 (2002).Google Scholar
Clifton, R., “The modal interpretation of algebraic quantum field theory”, Phys. Lett. A 271, 167177 (2000).Google Scholar
Diosi, L., “Quantum stochastic processes as models for state vector reduction”, J. Phys. A 21, 28852898 (1988).Google Scholar
Haag, R., “Fundamental irreversibility and the concept of events”, Comm. Math. Phys. 132, 245251 (1990); “An evolutionary picture for quantum physics”, Comm. Math. Phys. 180, 733–743 (1996).Google Scholar
Jadczyk, A., “On quantum jumps, events, and spontaneous localization models”, Found. Phys. 25, 743762 (1995).Google Scholar
Pearle, P., “How stands collapse I”, J. Phys. A: Math. Theor. 40, 31893204 (2007).Google Scholar
Pearle, P., “On the time it takes a state vector to reduce”, J. Stat. Phys. 41, 719727 (1985).Google Scholar
Barchielli, A., Lanz, L., and Prosperi, G.M., “A model for the macroscopic description and continual observations in quantum mechanics”, Nuov. Cim. 42 B, 79121 (1982).Google Scholar
Barchielli, A., “Continual measurements for quantum open systems”, Nuov. Cim. 74 B, 113138 (1983); “Measurement theory and stochastic differential equations in quantum mechanics”, Phys. Rev. A 34, 1642–1648 (1986).Google Scholar
Benatti, F., Ghirardi, G.C., Rimini, A., and Weber, T., “Quantum mechanics with spontaneous localization and the quantum theory of measurement”, Nuov. Cim. 100 B, 2741 (1987).Google Scholar
Benatti, F., Ghirardi, G.C., Rimini, A., and Weber, T., “Operations involving momentum variables in non-Hamiltonian evolution equations”, Nuov. Cim. 101 B, 333355 (1988).Google Scholar
Blanchard, P., Jadczyk, A., and Ruschhaupt, A., “How events come into being: EEQT, particle tracks, quantum chaos and tunneling time”, in Mysteries, Puzzles and Paradoxes in Quantum Mechanics, Bonifacio, R. editor, American Institute of Physics, AIP Conference Proceedings, n r 461 (1999); J. Mod. Optics 47, 2247–2263 (2000).Google Scholar
Pearle, P., “Combining stochastic dynamical state-vector reduction with spontaneous localization”, Phys. Rev. A 39, 22772289 (1989).Google Scholar
Ghirardi, G.C., Pearle, P., and Rimini, A., “Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles”, Phys. Rev. A 42, 7889 (1990).Google Scholar
Pearle, P., “Cosmogenesis and collapse”, arXiv:1003.5582v2 [gr-qc] (2010); Found. Phys. 42, 418 (2012).Google Scholar
Experimental Metaphysics: Quantum Mechanical Studies for Abner Shimony, Festschrift volumes 1 and 2, Cohen, R.S., Horne, M.A., and Stachel, J.J. editors, Boston Studies in the Philosophy of Science, volumes 193 and 194, Kluwer Academic Publishers (1997); P. Pearle, volume 1, p. 143; G. Ghirardi and T. Weber, volume 2, p. 89.Google Scholar
Shimony, A., “Desiderata for a modified quantum dynamics”, pp. 49–59 in “PSA 1990 vol. 2, Proceedings of the 1990 Biennial Meeting of the Philosophy of Science Association, A. Fine, M. Forbes, and L. Wessel editors, Philosophy of Science Association.Google Scholar
Pearle, P., “How stands collapse II”, in Quantum Reality, Relativistic Causality and Closing the Epistemic Circle: Essays in Honour of Abner Shimony, Mryvold, W. and Christian, J. editors, Springer (2009), pp. 257292.Google Scholar
Santos, L.F. and Escobar, C.O., “A proposed solution to the tail problem of dynamical reduction models”, Phys. Lett. A 278, 315318 (2001).Google Scholar
Diosi, L., “Continuous quantum measurement and Itô formalism”, Phys. Lett. 129 A, 419423 (1988).Google Scholar
Diosi, L., “Models for universal reduction of macroscopic quantum fluctuations”, Phys. Rev. A 40, 11651174 (1989).Google Scholar
Ghirardi, G.C., Grassi, R., and Rimini, A., “Continuous-spontaneous-reduction model involving gravity”, Phys. Rev. A 42, 10571064 (1990).Google Scholar
Penrose, R., The Emperor’s New Mind, Oxford University Press (1989); Shadows of the Mind, Oxford University Press (1994).Google Scholar
Penrose, R., “On gravity’s role in quantum state reduction”, General Relativity and Gravitation 28, 581600 (1996).Google Scholar
Gisin, N., “Stochastic quantum dynamics and relativity”, Helv. Phys. Acta 62, 363371 (1989).Google Scholar
Ghirardi, G.C., Grassi, R., and Pearle, P., “Relativistic dynamical reduction models: general framework and examples”, Found. Phys. 20, 12711316 (1990).Google Scholar
Pearle, P., “Completely quantized collapse and consequences”, Phys. Rev. A 72, 022112 (2005).Google Scholar
Bedingham, D.J., “Relativistic state reduction dynamics”, Found. Phys. 41, 686704 (2011); arXiv:1003.2774v2 [quant-ph] (2010). “Relativistic state reduction model”, J. Phys. Conf. Series 306, 012034 (2011).Google Scholar
Bedingham, D.J., Dürr, D., Ghirardi, G., Goldstein, S., Tumulka, R., and Zanghì, N., “Matter density and relativistic models of wave function collapse”, J. Stat. Phys. 154, 623631 (2014); arXiv:1111.1425v2 [quant-ph] (2011).Google Scholar
Gisin, N., “Weinberg’s nonlinear quantum mechanics and supraluminal communications”, Phys. Lett. A 143, 12 (1990).Google Scholar
Polchinski, J., “Weinberg’s nonlinear quantum mechanics and the Einstein–Podolsky-Rosen paradox”, Phys. Rev. Lett. 66, 397400 (1991).Google Scholar
Tumulka, R., “On spontaneous wave function collapse and quantum field theory”, Proc. Roy. Soc. A 462, 18971908 (2006); “A relativistic version of the Ghirardi–Rimini–Weber model”, J. Stat. Phys 125, 821–840 (2006); “Collapse and relativity”, arXiv:quant-ph/0602208 (2006).Google Scholar
Bassi, A. and Ghirardi, G., “Dynamical reduction models”, Phys. Rep. 379, 257426 (2003).Google Scholar
Weinberg, S., “Precision tests of quantum mechanics”, Phys. Rev. Lett. 62, 485488 (1989); “Testing quantum mechanics”, Ann. of Phys.194, 336–386 (1989).Google Scholar
Wódkiewicz, K. and Scully, M.O., “Weinberg’s nonlinear wave mechanics”, Phys. Rev. A 42, 51115116 (1990).Google Scholar
Pearle, P., Ring, J., Collar, J.I, and Avignone, F.T., “The CSL collapse model and spontaneous radiation: an update”, Found. Phys. 29, 465–80 (1998).Google Scholar
Miley, H.S., Avignone, F.T., Brodzinski, R.L., Collar, J.I., and Reeves, J.H., “Suggestive evidence for the two-neutrino double-β decay of 76Ge”, Phys. Rev. Lett. 65, 30923095 (1990).Google Scholar
Laloë, F., Mullin, W., and Pearle, P., “Heating of trapped ultracold atoms by collapse dynamics”, Phys. Rev. A 90, 052119 (2014).Google Scholar
Hornberger, K., Gerlich, S., Haslinger, P., Nimmrichter, S., and Arndt, M., “Quantum interference of clusters and molecules”, Rev. Mod. Phys. 84, 157173 (2012).Google Scholar
Bassi, A., Lochan, K., Satin, S., Singh, T.P., and Ulbricht, H., “Models of wave-function collapse, underlying theories and experimental tests”, Rev. Mod. Phys. 85, 471527 (2013).Google Scholar
Ghirardi, G.C., “Quantum superpositions and definite perceptions: envisaging new feasible tests”, Phys. Lett. A 262, 114 (1999).Google Scholar
Dalibard, J., Castin, Y., and Mølmer, K., “Wave function approach to dissipative processes in quantum optics”, Phys. Rev. Lett. 68, 580583 (1992).Google Scholar
Mølmer, K., Castin, Y., and Dalibard, J., “Monte Carlo wave-function method in quantum optics”, Journ. Optical. Soc. Am. B 10, 524538 (1993).Google Scholar
Carmichael, H.J., An Open System Approach to Quantum Optics, Lectures notes in Physics, monograph 18, Springer-Verlag (1993).Google Scholar
Plenio, M.B. and Knight, P.L., “The quantum-jump approach to dissipative dynamics in quantum optics”, Rev. Mod. Phys. 70, 101141 (1998).Google Scholar
Gisin, N. and Percival, I.C., “The quantum-state diffusion model applied to open systems”, J. Phys. A 25, 56775691 (1992); “Quantum state diffusion, localization and quantum dispersion entropy”, 26, 2233–2243 (1993); “The quantum state diffusion picture of physical processes”, 26, 2245–2260 (1993).Google Scholar
Percival, I.C., Quantum State Diffusion, Cambridge University Press (1998).Google Scholar
Laloë, F., “Modified Schrödinger dynamics with attractive densities”, Eur. Phys. J. D 69, 162 (2015).Google Scholar
Cramer, J.G., “The transactional interpretation of quantum mechanics”, Rev. Mod. Phys. 58, 647687 (1986); in an appendix, this article contains a review of the various interpretations of quantum mechanics.Google Scholar
Cramer, J.G., “Generalized absorber theory and the Einstein–Podolsky–Rosen paradox”, Phys. Rev. D 22, 362376 (1980).Google Scholar
Price, H. and Wharton, K., “Does time-symmetry imply retrocausality? How the quantum world says’maybe’”, ArXiv:1002:0906v3 (2011).Google Scholar
Price, H. and Wharton, K., “Disentangling the quantum world”, Entropy 17, 77527767 (2015).Google Scholar
Leifer, M.S. and Pusey, M.F., “Is a time symmetric interpretation of quantum theory possible without retrocausality?”, ArXiv:1607:0787v2 (2017).Google Scholar
Everett, H. III, “Relative state formulation of quantum mechanics”, Rev. Mod. Phys. 29, 454462 (1957); reprinted in Quantum Theory and Measurement, J.A. Wheeler and W.H. Zurek editors, Princeton University Press (1983), pp. 315–323.Google Scholar
DeWitt, B.S. and Graham, N. The Many-Worlds Interpretation of Quantum Mechanics, Princeton Series in Physics, Princeton University Press (1973).Google Scholar
Everett, H. III, Letter to L.D. Raub dated April 7 (1983), http://dspace.nacs.uci.edu/xmlui/handle/10575/1205.Google Scholar
Deutsch, D., “The structure of the multiverse”, Proc. Roy. Soc. London A 458, 29112923 (2002).Google Scholar
Kent, A., “Against many world interpretations”, Int. Journ. Mod. Phys A 5, 17451762 (1990).Google Scholar
Van Esch, P., “On the Born rule and the Everett programme”, Ann. Fond. Louis de Broglie 32, 5159 (2007).Google Scholar
Deutsch, D., “Quantum theory of probability and decisions”, Proc. Roy. Soc. London A 455, 31293137 (1999).Google Scholar
Rubin, M.A., “Relative frequency and probability in the Everett interpretation of Heisenberg–picture quantum mechanics”, Found. Phys. 33, 379405 (2002).Google Scholar
Wallace, D., “Everettian rationality: defending Deutsch’s approach to probability in the Everett interpretation”, Stud. Hist. Phil. Mod. Phys. 34, 415438 (2003).Google Scholar
Saunders, S., “Derivation of the Born rule from operational assumptions”, Proc. Roy. Soc. London A 460, 17711788 (2004).Google Scholar
Zurek, W.H., “Probabilities from entanglement, Born’s rule pk = |Ψk|2 from envariance”, Phys. Rev. A 71, 052105 (2005).Google Scholar
Wallace, D., “Quantum probability from subjective likelihood: improving on Deutsch’s proof of the probability rule”, Studies in History and Philosophy of Modern Physics 38, 311332 (2007).Google Scholar
Price, H., “Probability in the Everett world: comments on Wallace and Greaves”, arXiv:quant-ph/0604191 (2006); “Decisions, decisions, decisions: can Savage salvage the Everettian probability?”, arXiv:quant-ph/0802.1390 (2008).Google Scholar
Zeh, H.D., “Roots and fruits of decoherence”, Séminaire Poincaré 1, 115129 (2005); available at http://www.bourbaphy.fr/.Google Scholar
Deutsch, D. and Hayden, P., “Information flow in entangled quantum systems”, Proc. Roy. Soc. London A 456, 17591774 (2000).Google Scholar
DeWitt, B., The Global Approach to Quantum Field Theory, vol. 1, Clarendon Press (2003), p. 144.Google Scholar
Tegmark, M., “Parallel universes”, in Science and Ultimate reality: From Quantum to Cosmos, Barrow, J.D., Davies, P.C.W., and Harper, C.L. editors, Cambridge University Press (2003); “Many worlds in context”, arXiv:0905.2182v2 [quant-ph] (2010); also in Many Worlds? Everett, Quantum Theory and Reality, S. Saunders, J. Barrett, A. Kent and D. Wallace editors, Oxford University Press (2010).Google Scholar
Damour, T., “Einstein 1905–1955: son approche de la physique”, Séminaire Poincaré 1, 125 (2005); available at http://www.bourbaphy.fr/.Google Scholar
Bell, J.S., “The measurement theory of Everett and de Broglie’s pilot wave”, in Quantum Mechanics, Determinism, Causality, and Particles, Flato, M. et al. editors, Dordrecht-Holland, D. Reidel (1976), pp. 1117; Chapter 11 of 2004 edition of [6].Google Scholar
Einstein, A., “Quantentheorie des einatomigen idealen Gases”, Sitzungsberichte der Preussischen Akademie der Wissenschaften 1, 314 (1925).Google Scholar
Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., and Cornell, E.A., “Observation of Bose–Einstein condensation in a dilute atomic vapor”, Science 269, 198201 (1995).Google Scholar
Davis, K.B., Mewes, M.-O., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn, D.M., and Ketterle, W., “Bose–Einstein condensation in a gas of sodium atoms”, Phys. Rev. Lett. 75, 39693973 (1995).Google Scholar
Hertz, H., Miscellaneous Papers, translated from first German edition (1895) by Jones, D.E. and Schott, G.A., MacMillan, volume 1, p. 318.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Franck Laloë, Ecole Normale Supérieure, Paris
  • Book: Do We Really Understand Quantum Mechanics?
  • Online publication: 01 February 2019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Franck Laloë, Ecole Normale Supérieure, Paris
  • Book: Do We Really Understand Quantum Mechanics?
  • Online publication: 01 February 2019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Franck Laloë, Ecole Normale Supérieure, Paris
  • Book: Do We Really Understand Quantum Mechanics?
  • Online publication: 01 February 2019
Available formats
×