Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T04:35:52.171Z Has data issue: false hasContentIssue false

Chapter 53 - Agathis

Araucariales: Agathaceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Tall to extremely tall and ultimately highly majestic mostly tropical lowland rainforest trees, to 30–60+ m when mature, usually eventually with an unbranched, typically straight and clear trunk for two-thirds of more of the height of the tree. They bear a large to sometimes massive evergreen crown, typically emergent high above surrounding broadleaf rainforest canopies. The presence of fallen large, leathery, stalked multi-veined leaves, elongate–cylindrical red–brown male cones and free, winged seeds fallen from dismembering female cones, all typically shed whole to the forest floor from high tree canopies, confirms the presence of Agathis, and distinguishes Agathis from other resinifera and from surrounding broadleaves.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 284 - 315
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, P. 1992. Australian Rainforests. Oxford: Clarendon Press.CrossRefGoogle Scholar
Ahmed, M. & Ogden, J. 1985. Modern New Zealand tree-ring chronologies. III. Agathis australis (Salisb.) kauri. Tree Ring Bulletin 45: 1124.Google Scholar
Ahmed, M. & Ogden, J. 1987. Population dynamics of the emergent conifer Agathis australis (D.Don) Lindl. (kauri) in New Zealand. 1. Population structures and tree growth rates in mature stands. New Zealand Journal of Botany 25: 217229.CrossRefGoogle Scholar
Ahmed, M. & Ogden, J. 1991. Descriptions of some mature kauri forests of New Zealand. Tane 33: 89112.Google Scholar
Ash, J. 1983. Growth rings in Agathis robusta and Araucaria cunninghamii from tropical Australia (Queensland). Australian Journal of Botany 31: 269275.CrossRefGoogle Scholar
Ash, J. 1985. Growth rings and longevity in Agathis vitiensis (Seeman) Benth. and Hook. F. ex Drake in Fiji. Australian Journal of Botany 33: 8288.CrossRefGoogle Scholar
Attiwill, P.M. & Leeper, G.W. 1987. Forest Soils and Nutrient Cycles. Melbourne: Melbourne University PressGoogle Scholar
Bande, M.B. & Prakash, U. 1986. The Tertiary flora of southeast Asia with remarks on its palaeoenvironment and phytogeography of the Indo-Malayan region. Review of Palaeobotany and Palynology 49: 203233.CrossRefGoogle Scholar
Barton, M. 1993. Factors controlling plant distributions: drought, competition and fire in montane pines in Arizona. Ecological Monographs 63: 367397.CrossRefGoogle Scholar
Baylis, G.T.S., McNabb, R.F.R. & Morrison, T.M. 1963. The mycorrhizal nodules of podocarps. Transactions of the British Mycological Society 46: 378384.CrossRefGoogle Scholar
Beadle, N.C.W. 1981. The Vegetation of Australia. Stuttgart: Gustav Fischer Verlag.Google Scholar
Beveridge, A.E. 1975. Kauri forests of the New Hebrides. Philosophical Transactions of the Royal Society of London B272: 369383.Google Scholar
Bigwood, A.J. & Hill, R.S. 1985. Tertiary araucarian macrofossils from Tasmania. Australian Journal of Botany 33: 645657.CrossRefGoogle Scholar
Bond, W.J. 1989. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society 36: 227249.CrossRefGoogle Scholar
Bowden, M.R. & Whitmore, T.C. 1980. A Second Look at Agathis. Oxford: Commonwealth Forestry Institute.Google Scholar
Bridge, M.C. & Ogden, J. 1986. A sub-fossil kauri (Agathis australis) tree-ring chronology. Journal of the Royal Society of New Zealand 16: 1723.CrossRefGoogle Scholar
Brünig, E.F. 1974. Ecological Studies in the Kerangas Forests of Sarawak and Brunei. Kuching: Borneo Literature Bureau for Sarawak Forest Department.Google Scholar
Buckley, B.M., Ogden, J. Palmer, J.G., Fowler, A. & Salinger, J. 2000. Dendroclimatic interpretation of tree-rings in Agathis australis (kauri). 1. Climate correlation functions and master chronology. Journal of the Royal Society of New Zealand 30: 263276.CrossRefGoogle Scholar
Burns, B.R. & Leathwick, J.R. 1996. Vegetation-environment relationships at Waipoua Forest, Northland, New Zealand. New Zealand Journal of Botany 34: 7992.CrossRefGoogle Scholar
Cantrill, D.J. 1991. Broad leaved coniferous foliage from the Lower Cretaceous of southern Victoria, Australia. Alcheringa 15: 177190.CrossRefGoogle Scholar
Cantrill, D.J. 1992. Araucarian foliage from the Lower Cretaceous of southern Victoria, Australia. International Journal of Plant Sciences 153: 622645.CrossRefGoogle Scholar
Cardemil, L., Salas, E. & Godoy, M. 1984. Comparative study of the karyotypes of South American species of Araucaria. Journal of Heredity 75: 121132.CrossRefGoogle Scholar
Carpenter, R.J., Hill, R.S., Greenwood, D.R. Partdidge, A.D. & Banks, M.A. 2004. No snow in the mountains: Early Eocene plant fossils from Hotham Heights, Victoria, Australia. Australian Journal of Botany 52: 685718.CrossRefGoogle Scholar
Chambers, T.C., Drinnan, A.W. & McLoughlin, S. 1998. Some morphological features of Wollemi Pine (Wollemia nobilis: Araucariaceae) and their comparison to Cretaceous plant fossils. International Journal of Plant Sciences 159: 160171.CrossRefGoogle Scholar
Chapin, F.S. 1980. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics 11: 233260.CrossRefGoogle Scholar
Chen, Y. 1988. Early Holocene population expansion of some rainforest trees at Lake Barrine basin, Queensland. Australian Journal of Botany 13: 225233.Google Scholar
Christophel, D.C. 1981. Tertiary megafossil floras of Australia as indicators of floristic associations and the palaeoclimate. Pp 379390 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W. Junk.Google Scholar
Christophel, D.C. & Blackburn, D.T. 1978. The Tertiary megafossil Flora of Masilin Bay, South Australia: a preliminary report. Alcheringa 2: 311319.CrossRefGoogle Scholar
Claessens, L., Verburg, P.H., Schoorl, J.M. & Veldkamp, A. 2006. Contribution of topographically based landslide hazard modelling to the analysis of the spatial distribution and ecology of kauri (Agathis australis). Landscape Ecology 21: 6376.CrossRefGoogle Scholar
Cockayne, L. 1928. The Vegetation of New Zealand. 2nd edn. Leipzig: Engleman.Google Scholar
Collins, L. & Burns, B. 2001. The dynamics of Agathis australisNothofagus truncata forest in the Hapuakohe Ecological District, Waikato region, New Zealand. New Zealand Journal of Botany 39: 423433.CrossRefGoogle Scholar
Cook, E.R., Buckley, B.M., Palmer, J.G., et al. 2006. Millennia-long tree ring records from Tasmania and New Zealand: a basis for modelling climate variability and forcing, past present and future. Journal of Quaternary Science 21: 689699.CrossRefGoogle Scholar
Cookson, I.C. & Duigan, S.L. 1951. Tertiary Araucariaceae from south-eastern Australia, with notes on living species. Australian Journal of Scientific Research B 3: 133164.Google Scholar
Cooper, A., Lalueza-Fox, C., Anderson, S., et al. 2001. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409: 704707.CrossRefGoogle Scholar
Corner, E.J.H. 1967. Ficus in the Solomon Islands and its bearing on the post-Jurassic history of Melanesia. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 253: 23159.Google Scholar
Couper, R.A. 1960. Southern Hemisphere Mesozoic and Tertiary Podocarpaceae and Fagaceae and their palaeogeographic significance. Proceedings of the Royal Society of London. Series B, Biological Sciences 152(949): 491500.Google Scholar
Cranwell, L.M. 1959. Fossil pollen from Seymour Island, Antarctica. Nature 184(4701): 17821785.CrossRefGoogle Scholar
Dainty, A.L. 1982. Chromosome numbers and karyotype variation in Araucaria. Kew Bulletin 37: 511514.CrossRefGoogle Scholar
Davies, B.J., O’Brien, I.E.W. & Murray, B.G. 1997. Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Systematics and Evolution 208: 169185.CrossRefGoogle Scholar
Dawson, J. & Lucas, R. 2013. New Zealand’s Native Trees. Nelson: Craig Potton Publishing.Google Scholar
Dawson, J.W. & Sneddon, B.V. 1969. The New Zealand rainforest: a comparison with tropical rainforest. Pacific Science 23: 131147.Google Scholar
De Laubenfels, D.J. 1969. A revision of the Malesian and Pacific rainforest conifers. I. Podocarpaceae, in part. Journal of the Arnold Arboretum 50: 274369.CrossRefGoogle Scholar
De Laubenfels, D.J. 1972. Gymnospermes. Pp 1167 in Aubréville, A. & Leroy, J.F. (eds.), Flore de la Nouvelle-Calédonie et Dépendances. Paris: Museum National D’Histoire Naturelle.Google Scholar
De Laubenfels, D.J. & Silba, J. 1987. The Agathis of Esperitu Santo (Araucariaceae, New Hebrides). Phytologia 61: 448452.Google Scholar
Delclòs, X., Arillo, A., Penalver, E., et al. 2007. Fossiliferous amber deposits from the Cretaceous (Albian) of Spain. Comptes Rendus Palevol 6(1–2): 135149.CrossRefGoogle Scholar
Dettmann, M.E. & Jarzen, D.M. 1990. The Antarctic/Australasian rift valley: late Cretaceous cradle of northeastern Australasian relicts? Review of Palaeobotany and Palynology 65: 131144.CrossRefGoogle Scholar
Dettmann, M.E. & Jarzen, D.M. 2000. Pollen of extant Wollemia (Wollemi pine) and comparisons with pollen of other extant and fossil Araucariaceae. Pp 167203 in Harley, M.M., Morton, C.M. & Blackmore, S. (eds.), Pollen and Spores: Morphology and Biology. Kew: Royal Botanic Gardens.Google Scholar
DiMichele, W.A., Mamay, S.H., Chaaney, D.S. Hook, R.W. & Nelson, W.J. 2001. An Early Permian flora with Late Permian and Mesozoic affinities from North-Central Texas. Journal of Paleontology 75: 449460.2.0.CO;2>CrossRefGoogle Scholar
Dodson, J.R., Enright, N.J. & McLean, R.F. 1988. A late Quaternary vegetation history for far northern New Zealand. Journal of Biogeography 15: 647656.CrossRefGoogle Scholar
Doyle, M.F. 1999. Regional Action Plan: conifers of the oceanic islands of the insular South Pacific (Fiji, Tonga, Solomon Islands and Vanuatu). Pp 7274 in Farjon, A. & Page, C.N. (eds.), Conifers: Status Survey and Conifer Action Plan. Gland: IUCN.Google Scholar
Ecroyd, C.E. 1982. Biological flora of New Zealand. 8. Agathis australis (D.Don) Lindl. (Araucariaceae) kauri. New Zealand Journal of Botany 20: 1736.CrossRefGoogle Scholar
Elliot, M. 1998. Late Quaternary pollen records of vegetation and climate change from Kaitaia Bog, far northern New Zealand. Review of Palaeobotany and Palynology 99: 189202.CrossRefGoogle Scholar
Elliot, M., Neall, V. & Wallace, C. 2005. A Late Quaternary pollen record from Lake Tangonge, far northern New Zealand. Review of Palaeobotany and Palynology 136: 143158.CrossRefGoogle Scholar
Enright, N.J. 1995. Conifers of tropical Australia. Pp 197222 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Melbourne: Melbourne University Press.Google Scholar
Enright, N.J. 1999. Litterfall in a mixed conifer–angiosperm forest in northern New Zealand. Journal of Biogeography 26: 149157.CrossRefGoogle Scholar
Enright, N.J. & Cameron, E.K. 1988. The soil seed bank of a kauri (Agathis australis) forest remnant near Auckland, New Zealand. New Zealand Journal of Botany 26(2): 223236.CrossRefGoogle Scholar
Enright, N.J. & Goldblum, D. 1998. Stand structure of the emergent conifer Agathis ovata in forest and maquis, Province Sud, New Caledonia. Journal of Biogeography 25: 641648.CrossRefGoogle Scholar
Enright, N.J., Rigg, J. & Jaffré, T. 2001. Environmental controls on species composition along a (maquis) shrubland to forest gradient on ultramafics at Mont Do, New Caledonia. South African Journal of Science 97: 573580.Google Scholar
Enright, N.J., Miller, B.P. & Perry, G.L.W. 2003. Demography of the long-lived conifer Agathis ovata in maquis and rainforest, New Caledonia. Journal of Vegetation Science 14: 625636.Google Scholar
Ericson, P.G., Christidis, L., Cooper, A., et al. 2002. A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens. Proceedings of the Royal Society of London. Series B, Biological Sciences 269(1488): 235241.CrossRefGoogle ScholarPubMed
Escapa, I.H. & Catalano, S.A. 2013. Phylogenetic analysis of Araucariaceae: integrating molecules, morphology, and fossils. International Journal of Plant Sciences 174(8): 11531170.CrossRefGoogle Scholar
Escapa, I., Iglesias, A., Wilf, P. & Cuneo, N. 2013. Oldest macrofossil record of Agathis (Araucariaceae), early Paleocene of Patagonia, Argentina, and its evolutionary significance. Abstracts, session 44. Botany 2013, New Orleans, USA.Google Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
Farjon, A. & Page, C.N. 1999a. Global assessment of conifer diversity and threats. Pp 126 in Farjon, A. & Page, C.N. (eds.), Conifers: Status Survey and Conifer Action Plan. Gland: IUCN.Google Scholar
Fleming, C.A. 1963. Age of the New Zealand biota. Proceedings of the New Zealand Ecological Society 10.Google Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Flory, W.S. 1936. Chromosome numbers and phylogeny in the gymnosperms. Journal of the Arnold Arboretum 17: 8389.CrossRefGoogle Scholar
Fowler, A. 2005. Sea-level pressure composite mapping in dendroclimatology: advocacy and an Agathis australis (kauri) case study. Climate Research 29: 7384.CrossRefGoogle Scholar
Fowler, A., Palmer, J., Salinger, J. & Ogden, J. 2000. Dendroclimatic interpretation of tree-rings in Agathis australis (kauri): evidence of a significant relationship with ENSO. Journal of the Royal Society of New Zealand 30: 277292.CrossRefGoogle Scholar
Fowler, A., Boswijk, G. & Ogden, J. 2004. Tree-ring studies on Agathis australis (kauri): a synthesis of development work on late Holocene chronologies. Tree-Ring Research 60: 1529.CrossRefGoogle Scholar
Gifford, E.M. & Foster, A.S. 1989. Morphology and Evolution of Vascular Plants, 3rd edn. New York: W.H. Freeman.Google Scholar
Gilmore, S. & Hill, K.D. 1997. Relationships of the Wollemi Pine (Wollemia nobilis) and a molecular phylogeny of the Araucariaceae. Telopea 7: 275291.CrossRefGoogle Scholar
Gressitt, J.L. 1958. New Guinea and insect distribution. Pp 767773 in Proceedings of the Tenth International Congress of Entomology. Montreal: Mortimer.Google Scholar
Grubb, P.J. 1989. The role of mineral nutrition in the tropics: a plant ecologist’s view. Pp 419439 in Proctor, J. (ed.), Mineral Nutrients in Tropical Forest and Savannah Ecosystems. Oxford: Blackwell Scientific.Google Scholar
Guillaumin, A. 1938. A florula of the island of Espiritu Santo, one of the New Hebrides. Journal of the Linnean Society (Botany) 51: 547566.Google Scholar
Hanebuth, T.J.J. & Stattegger, K. 2004. Depositional sequences on a late Pleistocene–Holocene tropical siliciclastic shelf (Sunda Shelf, southeast Asia). Journal of Asian Earth Sciences 23(1): 113126.CrossRefGoogle Scholar
Hanebuth, T., Stattegger, K. & Grootes, P.M. 2000. Rapid flooding of the Sunda Shelf: a late-glacial sea-level record. Science 288(5468): 10331035.CrossRefGoogle Scholar
Hanson, L. 2001. Chromosome number, karyotype and DNA C-value of the Wollemi pine (Wollemia nobilis, Araucariaceae). Botanical Journal of the Linnean Society 135(3): 271277.CrossRefGoogle Scholar
Havel, J.J. 1971. The Araucaria forests of New Guinea and their regenerative capacity. Journal of Ecology 59: 203214.CrossRefGoogle Scholar
Hill, R.S. & Bigwood, A.J. 1987. Tertiary gymnosperms from Tasmania: Araucariaceae. Alcheringa 11: 325335.CrossRefGoogle Scholar
Hill, R.S. & Brodribb, T.J. 1999. Southern conifers in time and space. Australian Journal of Botany 47: 639696.CrossRefGoogle Scholar
Hill, R.S. & Merrifield, H.E. 1993. An Early Tertiary macroflora from West Dale, south-western Australia. Alcheringa 17: 285326.CrossRefGoogle Scholar
Hill, R.S. & Scriven, L.J. 1995. The angiosperm-dominated woody vegetation of Antarctica: a review. Review of Palaeobotany and Palynology 86: 175198.CrossRefGoogle Scholar
Hill, R.S., Lewis, T., Carpenter, R.J. & Whang, S.S. 2008. Agathis (Araucariaceae) macrofossils from Cainozoic sediments in south-eastern Australia. Australian Systematic Botany 21: 162177.CrossRefGoogle Scholar
Hope, G.S. & Peterson, J.A. 1976. Palaeoenvironments. Pp 173206 in Hope, G.S., Peterson, J.A., Radok, U. & Allison, I. (eds.), The Equatorial Glaciers of New Guinea. Rotterdam: Balkema.Google Scholar
Horrocks, M. & Ogden, J. 2000. Evidence for Lateglacial and Holocene tree-line fluctuations from pollen diagrams from the subalpine zone on Mt. Tongariro National Park, New Zealand. Holocene 10: 6173.CrossRefGoogle Scholar
Horrocks, M., Augustinus, P., Deng, Y., Shane, P. & Andersson, S. 2005. Holocene vegetation, environment and tephra recorded from Lake Pupuke, Auckland, New Zealand. New Zealand Journal of Geology and Geophysics 48: 8594.CrossRefGoogle Scholar
Horrocks, M., Nichol, S.L., Mildenhall, D.C. & Lawlor, I. 2007. A discontinuous Late Cenozoic vegetation record from a maar crater in Auckland, New Zealand. New Zealand Geographer 63: 517.CrossRefGoogle Scholar
Jaffre, T. 1995. Distribution and ecology of the conifers of New Caledonia. Pp 171196 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Melbourne: Melbourne University Press.Google Scholar
Janzen, D.H. 1974. Tropical blackwater rivers, animals, and mass fruiting by the Dipterocarpaceae. Biotropica 6: 69103.CrossRefGoogle Scholar
Jones, W.G., Hill, K.D. & Allen, J.M. 1995. Wollemia nobilis, a new living Australian genus and species in the Araucariaceae. Telopea 6: 173176.CrossRefGoogle Scholar
Jordan, G.J., Carpenter, R.J., Bannister, J.M., et al. 2011. High conifer diversity in Oligo-Miocene New Zealand. Australian Systematic Botany 24(2): 121136.CrossRefGoogle Scholar
Kajewski, S.F. 1930. A plant collector’s notes on the New Hebrides and Santa Cruz Islands. Journal of the Arnold Arboretum 11: 172180.CrossRefGoogle Scholar
Kershaw, A.P. 1970. A pollen diagram from Lake Euramoo, north-east Queensland, Australia. New Phytologist 70: 669681.CrossRefGoogle Scholar
Kershaw, A.P. 1994. Pleistocene vegetation of the humid tropics of northeastern Queensland, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 109: 39412.CrossRefGoogle Scholar
Kershaw, A.P. & McGlone, M.S. 1995. The Quaternary history of the southern conifers. Pp 3063 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Carlton, VIC: Melbourne University Press.Google Scholar
Kershaw, A.P. & Nix, H.A. 1988. Quantitive paleoclimatic estimates from pollen spectra using bioclimatic estimates of extant taxa. Journal of Biogeography 15: 589602.CrossRefGoogle Scholar
Kershaw, P. & Wagstaff, B. 2001. The southern conifer family Araucariaceae: history, status and value for palaeoenvironmental reconstruction. Annual Review of Ecology and Systematics 32: 397414.CrossRefGoogle Scholar
Kershaw, A.P., McKenzie, G.M. & McMinn, A. 1993. A Quaternary vegetation history of northeastern Queensland from pollen analysis of ODP site 820. Proceedings of the Ocean Drilling Program, Scientific Results 133: 107114.Google Scholar
Khoshoo, T.N. 1961. Chromosome numbers in gymnosperms. Silvae Genetica 10: 132.Google Scholar
Kitamura, K. & Bin-Abdul-Rahman, M.Y. 1992. Genetic diversity amongst natural populations of Agathis borneensis (Araucariaceae), a tropical rainforest conifer from Brunei Darussalam, Borneo, southeast Asia. Canadian Journal of Botany 70: 19451949.CrossRefGoogle Scholar
Knapp, M., Mudaliar, R., Havell, D., Wagstaff, S.J. & Lockhart, P.J. 2007. The drowning of New Zealand and the problem of Agathis. Systematic Biology 56(5): 862870.CrossRefGoogle ScholarPubMed
Latter, H.B. 1932. An ecological study of kauri forest. New Zealand Journal of Forestry 3: 8892.Google Scholar
Lee, D.E., Bannister, J.M. & Lindqvist, J.K. 2007. Late Oligocene–Early Miocene leaf macrofossils confirm a long history of Agathis in New Zealand. New Zealand Journal of Botany 45: 565578.CrossRefGoogle Scholar
Lee, D.E., Conran, J.G., Lindqvist, J.K., Bannister, J.M. & Mildenhall, D.C. 2012. New Zealand Eocene, Oligocene and Miocene macrofossil and pollen records and modern plant distributions in the Southern Hemisphere. The Botanical Review 78: 235260.CrossRefGoogle Scholar
Leonhardt, S.D. & Blüthgen, N. 2009. A sticky affair: resin collection by Bornean stingless bees. Biotropica 41(6): 730736.CrossRefGoogle Scholar
Liu, N., Zhu, Y., Wei, Z.X., et al. 2009. Phylogenetic relationships and divergence times of the family Araucariaceae based on the DNA sequences of eight genes. Chinese Science Bulletin 54: 26482655.CrossRefGoogle Scholar
Lu, Y., Hautevelle, Y. & Michels, R. 2013. Determination of the molecular signature of fossil conifers by experimental palaeochemotaxonomy: part 1. The Araucariaceae family. Biogeosciences 10: 19431962.CrossRefGoogle Scholar
Lusk, C.H. & Contreras, O. 1999. Foliage area and crown nitrogen turnover in temperate rainforest juvenile trees of differing shade tolerance. Journal of Ecology 87: 973984.CrossRefGoogle Scholar
Macphail, M.K., Alley, N.F., Trusswell, E.M. & Sluiter, I.R.K. 1994. Early Tertiary vegetation: evidence from spores and pollen. Pp 189261 in Hill, R.S. (ed.), History of Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Macphail, M.K., Carpenter, R.J., Iglesias, A. & Wilf, P. 2013. First evidence for Wollemi pine-type pollen (Dilwynites: Araucariaceae) in South America. PLoS One 8(7): e69281.CrossRefGoogle Scholar
Martill, D.M., Loveridge, R.F., De Andrade, J.A.F.G. & Cardoso, A.H. 2005. An unusual occurrence of amber in laminated limestones: the Crato Formation Lagerstatte (Early Cretaceous) of Brazil. Palaeontology 18: 13991408.CrossRefGoogle Scholar
Martin, H.A. & McMinn, A. 1993. Palynology of sites 815 and 823: the Neogene vegetation history of coastal northeast Australia. Proceedings of the Ocean Drilling Program, Scientific Results 133: 115128.Google Scholar
McCoy, S., Jaffré, T., Rigault, F. & Ash, J.E. 1999. Fire and succession in the ultramafic maquis of New Caledonia. Journal of Biogeography 26: 579594.CrossRefGoogle Scholar
McGlone, M.S. 1988. New Zealand. Pp 557602 in Huntley, B. & Webb, T. III (eds.), Vegetation History of New Zealand. Dordrecht: Kluwer.CrossRefGoogle Scholar
McGlone, M.S., Kershaw, A.P. & Markgraf, V. 1992. El Nino/Southern Oscillation climatic variability in Australasian and South American paleoenvironmental records. Pp 435462 in Díaz, H.F. & Markgraf, V. (eds.), El Niño: Historical and Palaeoclimatic Aspects of the Southern Oscillation. Cambridge: Cambridge University Press.Google Scholar
McKenzie, E.H.C., Buchanan, P.K. & Johnston, P.R. 2002. Checklist of fungi on kauri (Agathis australis) in New Zealand. New Zealand Journal of Botany 40(2): 269296.CrossRefGoogle Scholar
McMichael, D.F. & Hiscock, I.D. 1958. A monograph of the freshwater mussels (Mollusca: Pelecypoda) of the Australian region. Marine and Freshwater Research 9(3): 372508.CrossRefGoogle Scholar
Medina, E. & Cuevas, E. 1989. Pattern of nutrient accumulation in Amazonian forests of the upper Rio Negro basin. Pp 217240 in Proctor, J. (ed.), Mineral Nutrients in Tropical Forest and Savannah Ecosystems. Oxford: Blackwell Scientific.Google Scholar
Medina, E., García, V. & Cuevas, E. 1990. Sclerophylly and oligotrophic environments: relationships between leaf structure, mineral nutrient content, and drought resistance in tropical rainforests of the Upper Rio Negro region. Biotropica 22: 5164.CrossRefGoogle Scholar
Mehra, P.N. 1988. Indian Conifers, Genotypes and Phylogeny. Chandigarh: Punjab University.Google Scholar
Mildenhall, D.C. 1980. New Zealand Late Cretaceous and Cenozoic plant biogeography: a contribution. Palaeogeography, Palaeoclimatology, Palaeoecology 31: 197233.CrossRefGoogle Scholar
Miller, C.N. 1977. Mesozoic conifers. Biological Review 43: 218280.Google Scholar
Miller, C.N. 1988. The origin of modern conifer families. Pp 448486 in Beck, C.B. (ed.), Origin and Evolution of Gymnosperms. New York: Columbia University Press.Google Scholar
Mirams, R.V. 1957. Aspects of natural regeneration of the kauri (Agathis australis Salisb.). Transactions of the Royal Society of New Zealand 48: 661680.Google Scholar
Miyamoto, K., Rahajoe, J.S. & Kohyama, T. 2007. Forest structure and primary productivity in a Bornean heath forest. Biotropica 39: 3542.CrossRefGoogle Scholar
Molino, J.F. & Sabatier, D. 2001. Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis. Science 294(5547): 17021704.CrossRefGoogle ScholarPubMed
Moore, P.R. & Wallace, R. 2000. Petrified wood from the Miocene volcanic sequence of Coromandel Peninsula, northern New Zealand. Journal of the Royal Society of New Zealand 30: 115130.CrossRefGoogle Scholar
Moran, J.A., Barker, M.G., Moran, A.J., Beckler, P. & Ross, S.M. 2000. A comparison of the soil water, nutrient status, and litterfall characteristics of tropical heath and mixed dipterocarp forest sites in Brunei. Biotropica 32: 213.Google Scholar
Morley, R.J. 1978. Palynology of Tertiary and Quaternary sediments in Southeast Asia. Pp 255–276 in Proceedings of the Indonesian Petroleum Association 6th Annual Convention.Google Scholar
Morrison, T.M. & English, D.A. 1967. The significance of mycorrhizal nodules of Agathis australis. New Phytologist 66: 245250.CrossRefGoogle Scholar
Nasi, R. 1982. Essai pour une meilleure connaissance et une meilleure compréhension des Araucariacées dans la végétation calédonienne. Noumea: Centre Technique forestier tropical.Google Scholar
Neil, P. 1991. Conservation and management possibilities for Agathis macrophylla in Vanuatu. Forest Ecology and Management 35: 239248.CrossRefGoogle Scholar
Newberry, D.M. 1991. Floristic variation within kerangas (heath) forest: re-evaluation of data from Sarawak and Brunei. Vegetatio 96: 4386.CrossRefGoogle Scholar
Newberry, D.M. & Proctor, J. 1984. Ecological studies in four contrasting lowland rain forests in Guniung Mulu National Park, Sarawak. Journal of Ecology 72: 475493.CrossRefGoogle Scholar
Newnham, R.M. 1992. A 30,000 year pollen, vegetation and climate record from Otakairangi (Hikurrangi), Northland, New Zealand. Journal of Biogeography 19: 541554.CrossRefGoogle Scholar
Newnham, R.M., Ogden, J. & Mildenhall, D.C. 1993. A vegetation history of the Far North of New Zealand during the last Late Otira (Last) Glaciation. Quaternary Research 39: 361372.CrossRefGoogle Scholar
Ogden, J. & Stewart, G.H. 1995. Community dynamics of the New Zealand conifers. Pp 81119 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Washington, DC: Smithsonian Institution Press.Google Scholar
Ogden, J., Wardle, G.M. & Ahmed, M. 1987. Population dynamics of the emergent conifer Agathis australis (D.Don) Lindl. (kauri) in New Zealand. 2. Seedling population sizes and gap-phase regeneration. New Zealand Journal of Botany 25: 231242.CrossRefGoogle Scholar
Ogden, J., Wilson, A, Hendy, C. & Newnham, R.M. 1992. The late Quaternary history of kauri (Agathis australis) in New Zealand and its climatic significance. Journal of Biogeography 19: 611622.CrossRefGoogle Scholar
Ogden, J., Newnham, R.M., Plamer, J.G., Serra, R.G., & Mitchell, N.D. 1993. Climatic implications of macro- and microfossil assemblages from Late Pleistocene deposits in northern New Zealand. Quaternary Research 39: 107119.CrossRefGoogle Scholar
Ohri, D. & Khoshoo, T. 1986. Genome size in gymnosperms. Plant Systematics and Evolution 153: 119132.CrossRefGoogle Scholar
Ohsawa, M. 1990. An interpretation of latitudinal patterns of forest limits in South and East Asian mountains. Journal of Ecology 78: 326339.CrossRefGoogle Scholar
Owens, J.N., Catalano, G.L., Morris, S.J. & Aitken-Christie, J. 1995. The reproductive biology of kauri (Agathis australis). I. Pollination and prefertilisation development. International Journal of Plant Sciences 156: 257269.CrossRefGoogle Scholar
Page, C.N. 1980. Leaf micromorphology in Agathis and its taxonomic implications. Plant Systematics and Evolution 135: 7179.CrossRefGoogle Scholar
Page, C.N. 2003. The conifer flora of New Caledonia: stasis, evolution and survival in an ancient group. Pp 149155 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Page, C.N. & Clifford, H.T. 1981. Ecological biogeography of Australian conifers and ferns. Pp 473498 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W. Junk.Google Scholar
Palmer, J., Lorrey, A., Turney, C.S.M., et al. 2006. Extension of New Zealand’s kauri (Agathis australis) tree-ring chronologies into oxygen isotope stage (OIS) 3. Journal of Quaternary Science 21: 779787.CrossRefGoogle Scholar
Parrish, J.T., Daniel, I.L., Kennedy, E.M. & Spicer, R.A. 1998. Paleoclimatic significance of mid-Cretaceous floras from the middle Clarence Valley, New Zealand. Palaios 13(2): 149159.CrossRefGoogle Scholar
Poinar, G. 2004. Evidence of parasitism by Strepsiptera in Dominican amber. Biocontrol 49: 239244CrossRefGoogle Scholar
Poinar, G. Jr, Archibald, B. & Brown, A. 1999. New amber deposit provides evidence of early Paleogene extinctions, paleoclimates, and past distributions. Canadian Entomologist 131: 171177.CrossRefGoogle Scholar
Pole, M.S. 1993. Miocene broad-leaved Podocarpus from Foulden Hills, New Zealand. Alcheringa 17: 173177.CrossRefGoogle Scholar
Pole, M.S. 1994. The New Zealand flora: entirely long-distance dispersal? Journal of Biogeography 21: 625635.CrossRefGoogle Scholar
Pole, M.S. 2007. Early Eocene dispersed cuticles and mangrove to rainforest vegetation at Strahan-Regatte Point, Tasmania. Palaeontologica Electronica 10(3).Google Scholar
Pole, M.S., Hill, R.S., Green, N. & Macphail, M.K. 1993. The Oligocene Berwick Quarry flora: rainforest in a drying environment. Australian Systematic Botany 6(5): 399427.CrossRefGoogle Scholar
Proctor, J., Anderson, J.M., Chai, P. & Vallack, H.W. 1983. Ecological studies in four contrasting lowland rain forests in Guniung Mulu National Park, Sarawak. I. Forest environment, structure and floristics. Journal of Ecology 71: 237260.CrossRefGoogle Scholar
Quinn, C.J. & Price, R.A. 2003. Phylogeny of the Southern Hemisphere conifers. Pp 129133 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Rahajoe, J.S. & Kohyama, T. 2003. The relationship between N, P, returned via litter production and nutrient use efficiency of heath and peat swamp forests in central Kalimantan. Tropics 13: 18.CrossRefGoogle Scholar
Richards, P.W. 1952. The Tropical Rain Forest. Cambridge: Cambridge University Press.Google Scholar
Rigg, L.S., Enright, N.J. & Jaffré, T. 1998. Stand structure of the emergent conifer Araucaria laubenfelsii in maquis and rainforest, Mont Do, New Caledonia. Australian Journal of Ecology 23: 528538.CrossRefGoogle Scholar
Schweizer, M., Seehausen, O., Güntert, M. & Hertwig, S.T. 2010. The evolutionary diversification of parrots supports a taxon pulse model with multiple trans-oceanic dispersal events and local radiations. Molecular Phylogenetics and Evolution 54(3): 984994CrossRefGoogle ScholarPubMed
Setoguchi, H., Osawa, T.A., Pintaud, J.-C., Jaffré, T. & Veillon, J.-M. 1998. Phylogenetic relationships within Araucariaceae based on rbcL genes sequences. American Journal of Botany 85: 15071516.CrossRefGoogle Scholar
Soepadmo, E., Wong, K.M., Saw, L.G., Chung, R.C.K. & Kiew, R. 1995. Tree Flora of Sabah and Sarawak. Kuala Lumpur: Forest Research Institute Malaysia.Google Scholar
Stefanović, S., Jager, M., Deutsch, J., Broutin, J. & Masselot, M. 1998. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. American Journal of Botany 85: 688697.CrossRefGoogle Scholar
Steward, G.A. & Beveridge, A.E. 2010. A review of New Zealand kauri (Agathis australis (D. Don) Lindl.): its ecology, history, growth and potential for management for timber. New Zealand Journal of Forestry Science 40: 3359.Google Scholar
Stockey, R.A. 1982. The` Araucariaceae: an evolutionary perspective. Review of Palaeobotany and Palynology 37: 133154.CrossRefGoogle Scholar
Stockey, R.A. 1990. Antarctic and Gondwana conifers. Pp 179191 in Taylor, T.N. & Taylor, E.L. (eds.), Antarctic Paleobiology. New York: Springer.CrossRefGoogle Scholar
Stockey, R.A. 1994. Mesozoic Araucariaceae: morphology and systematic relationships. Journal of Plant Research 107: 493502.CrossRefGoogle Scholar
Stockey, R.A. & Atkinson, I.J. 1993. Cuticle micromorphology of Agathis Salisbury. International Journal of Plant Sciences 154: 187225.CrossRefGoogle Scholar
Stockey, R.A. & Ko, H. 1986. Cuticle micromorphology of Araucaria De Jussieu. Botanical Gazette 147: 508548.CrossRefGoogle Scholar
Stockey, R.A., Ko, H. & Woltz, P. 1992. Cuticle micromorphology of Falcatifolium de Laubenfels (Podocarpaceae). International Journal of Plant Sciences 153: 589601.CrossRefGoogle Scholar
Stöckler, K., Daniel, I.L. & Lockhart, P.J. 2002. New Zealand kauri (Agathis australis (D. Don) Lindl., Araucariaceae) survives Oligocene drowning. Systematic Biology 51(5): 827832.CrossRefGoogle ScholarPubMed
Swanson, F.J., Kratz, T.K., Caine, N. & Woodmansee, R.G. 1988. Landform effects on ecological processes and features. BioScience 38: 9298.CrossRefGoogle Scholar
Swindale, L.D. 1957. The effect of kauri vegetation upon the development of the soils from rhyolite and olivine basalt. New Zealand Soil News 5: 115118.Google Scholar
Thorne, R.F. 1963. Biotic distribution patterns in the Tropical Pacific. Pp 311354 in Gressitt, J.L. (ed.), Pacific Basin Biogeography. Honolulu, HI: Bishop Museum Press.Google Scholar
Thorne, R.F. 1969. Floristic relationships between New Caledonia and the Solomon Islands. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 255(800): 595602.Google Scholar
Van Balgooy, M.M.J. 1960. Preliminary plant-geographic analysis of the Pacific. Blumea 10: 385430.Google Scholar
Veblen, T.T. & Ashton, D.H. 1982. The regeneration status of Fitzroya cupressoides in the Cordillera Pelada, Chile. Biological Conservation 23: 141161.CrossRefGoogle Scholar
Verkaik, E., Jongkind, A.G. & Berendse, F. 2006. Short-term and long-term effects of tannins on nitrogen mineralisation and litter decomposition in kauri (Agathis australis (D.Don) Lindl.) forests. Plant and Soil 287: 337345.CrossRefGoogle Scholar
Verkaik, E., Berendse, F. & Gardner, R.O. 2007. Low soil water and nutrient availability below New Zealand kauri (Agathis australis (D. Don) Lindl.) trees increase the relative fitness of kauri seedlings. Plant Ecology 191: 163170.CrossRefGoogle Scholar
Virot, R. 1956. La vegetation canaque. Memoires du Museum National d’Histoire Naturelle de Paris, ser. 3, Botanique 7: 1400.Google Scholar
Walker, F.S. 1948. The Forests of the British Solomon Islands Protectorate: A Report. London: Crown Agents.Google Scholar
Watt, A. 1999. Conifers of New Caledonia. Pp 4149 in Farjon, A. & Page, C.N. (eds.), Conifers: Status Survey and Conifer Action Plan. Gland: IUCN.Google Scholar
Webb, L.J. 1959. A physiognomic classification of Australian rainforests. Journal of Ecology 47: 551570.CrossRefGoogle Scholar
Webb, L.J. 1968. Environmental relationships of the structural types of Australian rainforest vegetation. Ecology 49: 296311.CrossRefGoogle Scholar
Webb, L.J. & Tracey, J.G. 1967. An ecological guide to new planting areas and site potential for hoop pine. Australian Forestry 31: 224239.CrossRefGoogle Scholar
Webb, L.J. & Tracey, J.G. 1981. Australian rainforests: patterns and change. Pp 605694 in Keast, A.J. (ed.), Ecological Biogeography of Australia. The Hague: W. Junk.CrossRefGoogle Scholar
White, M.E. 1981. Revision of the Talbragar Fish Bed Flora (Jurassic) of New South Wales. Records of the Australian Museum 33: 695721.CrossRefGoogle Scholar
Whitmore, T.C. 1966a. Guide to the Forests of the British Solomon Islands. Oxford: Oxford University Press.Google Scholar
Whitmore, T.C. 1966b. The social status of Agathis in a rainforest in Melanesia. Journal of Ecology 54: 285301.CrossRefGoogle Scholar
Whitmore, T.C. 1975. Tropical Rainforest of the Far East. Oxford: Clarendon Press.Google Scholar
Whitmore, T.C. 1977. A First Look at Agathis. Oxford: University of Oxford.Google Scholar
Whitmore, T.C. & Page, C.N. 1980. Evolutionary implications of the distribution and ecology of the tropical conifer Agathis. New Phytologist 84: 407416.CrossRefGoogle Scholar
Wilf, P. 2012. Rainforest conifers of Eocene Patagonia: attached cones and foliage of the extant Southeast Asian and Australasian genus Dacrycarpus (Podocarpaceae). American Journal of Botany 99: 562584.CrossRefGoogle Scholar
Wilf, P., Escapa, I.H., Cúneo, N.R., et al. 2014. First South American Agathis (Araucariaceae), Eocene of Patagonia. American Journal of Botany 101: 156179.CrossRefGoogle Scholar
Wilson, V.R., Gould, K.S., Lovell, P.H. & Aitken-Christie, J. 1998. Branch morphology and abscission in kauri, Agathis australis (Araucariaceae). New Zealand Journal of Botany 36: 135240.CrossRefGoogle Scholar
Worthy, T.H., Tennyson, A.J., Archer, M., et al. 2006. Miocene mammal reveals a Mesozoic ghost lineage on insular New Zealand, southwest Pacific. Proceedings of the National Academy of Sciences 103(51): 1941919423.CrossRefGoogle ScholarPubMed
Wunder, J., Fowler, A.M., Cook, E.R., Pirie, M. & McCloskey, S.P.J. 2013. On the influence of tree size on the climate–growth relationship of New Zealand kauri (Agathis australis): insights from annual, monthly and daily growth patterns. Trees: Structure and Function. 27: 937948.CrossRefGoogle Scholar
Yokohama, Y., Lambeck, K., De Dekker, P., Johnston, P. & Fifield, K. 2000. Timing of the Late Glacial Maximum from observed sea-level minima. Nature 406: 713716.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Agathis
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Agathis
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Agathis
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.017
Available formats
×