Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T06:17:10.911Z Has data issue: false hasContentIssue false

Chapter 50 - Athrotaxis

Cupressales: Athrotaxaceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Small to moderately tall monoecious evergreen trees, with clasping to awl-shaped forward-pointing evergreen leaves set relatively thickly on stout spreading or ascending shoots which are borne, in earlier life, from approximately whorled branches which are typically well furnished on a symmetric tapering crown in earlier life. In later life the tree habit becomes much more irregular, often gnarled and gaunt with only distal foliar clumps.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 213 - 231
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, K.J., Ogden, J., Buckley, B.M., Cook, E.R. & Baker, P.J. 2011. The potential to reconstruct broadscale climate indices associated with southeast Australian droughts from Athrotaxis species, Tasmania. Climate Dynamics 37: 17991821.CrossRefGoogle Scholar
Archangelsky, S. 1963. A new Mesozoic flora from Tico, Santa Cruz province, Argentina. Bulletin of the British Museum Natural History Geology 8: 492.Google Scholar
Bell, W.A. 1956. Lower Cretaceous floras of Western Canada. Geological Survey of Canada Memoir 285.Google Scholar
Berry, E.W. 1911. A revision of several genera of gymnospermous plants from the Potomac Group, Maryland and Virginia. U.S. National Museum Proceedings 40: 289318.CrossRefGoogle Scholar
Bowler, J.M. 1976. Aridity in Australia: age, origins and expressions in Aeolian land forms and sediments. Earth Science Reviews 12: 297310.CrossRefGoogle Scholar
Bowler, J.M. 1982. Aridity on the Late Tertiary and Quaternary of Australia. Pp 3545 in Barker, W.R. & Greenslade, P.J.M. (eds.), Evolution of the Flora and Fauna of Arid Australia. Adelaide: Peacock Press.Google Scholar
Brodribb, T. & Hill, R.S. 1998. The photosynthetic drought physiology of a diverse group of Southern Hemisphere conifer species is correlated with minimum seasonal rainfall. Functional Ecology 12: 465471.CrossRefGoogle Scholar
Brown, P.B. 1988. Distribution and Conservation of King Billy Pine. Hobart: Forestry Commission.Google Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodiaceae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Cantrill, D.J. & Falcon-Lang, H.J. 2001. Cretaceous (Late Albian) Coniferales of Alexander Island, Antarctica. Part 2. Foliage, reproductive structures and roots. Review of Palaeobotany and Palynology 115: 119145.CrossRefGoogle Scholar
Carpenter, R.J., Hill, R.S. & Jordan, G.J. 1994. Cenozoic vegetation in Tasmania: macrofossil evidence. Pp 276298 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Chaw, S.-M, Zharkikh, A., Sung, H.-M., Lau, T.-C. & Li, W.-H 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rDNA sequences. Molecular Biology and Evolution 14: 5668.CrossRefGoogle Scholar
Cheng, Y., Nicholson, G., Tripp, K. & Chaw, S.-M. 2000. Phylogeny of Taxaceae and Cephalotaxaceae genera inferred from chloroplast matK gene and nuclear rDNA ITS region. Molecular Phylogenetics and Evolution 14: 353365.CrossRefGoogle Scholar
Chochieva, K.I. 1980. The family of Taxodiaceae in the fossil flora of Georgia. Izvestiya Akademii Nauk Gruzinsloi SSR Seriya Biologicheskaya (Bulletin of the Academy of Sciences of the Georgian Soviet Socialist Republic, ser. Biological) 6(1): 6166 (in Russian, with English summary).Google Scholar
Colhoun, E.A. 1980. Glacial diversion of drainage in the Cradle Mountain National Park, Tasmania. Australian Geographer 14(6): 365367.CrossRefGoogle Scholar
Clifford, H.T. & Constantine, J. 1980. Fern, Fern Allies and Conifers of Australia. Brisbane: University of Queensland Press.Google Scholar
Costin, A.B. 1981. Vegetation of high mountains in Australia. Pp 717731 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Cullen, P.J. 1987. Regeneration patterns in populations of Athrotaxis selaginoides from Tasmania. Journal of Biogeography 14: 3951.CrossRefGoogle Scholar
Cullen, P.J. 1991. Regeneration of Athrotaxis selaginoides and other rainforest tree species on landslide faces in Tasmania, Australia. Pp 191200 in Banks, M.R. (ed.), Aspects of Tasmanian Botany: A Tribute to Winifred Curtis. Hobart: Royal Society of Tasmania.Google Scholar
Cullen, P.J. & Kirkpatrick, J.B. 1988a. Studies on the ecology of Athrotaxis D. Don (Taxodiaceae). I. Regeneration patterns in populations of A. cupressoides. Australian Journal of Botany 36: 547560.CrossRefGoogle Scholar
Cullen, P.J. & Kirkpatrick, J.B. 1988b. Studies on the ecology of Athrotaxis D. Don (Taxodiaceae). II. The distribution and ecological differentiation of A. cupressoides and A. selaginoides. Australian Journal of Botany 36: 561573.CrossRefGoogle Scholar
Curtis, W.M. 1975. The Endemic Flora of Tasmania. Part 5. Text (paintings by Margaret Stones). London: The Ariel Press.Google Scholar
Del Fueyo, G.M., Archangelsky, S. & Cuneo, R. 2008. Coniferous ovulate cones from the lower Cretaceous of Santa Cruz Province, Argentina. International Journal of Plant Sciences 169: 799813.CrossRefGoogle Scholar
Deng, S. 1998. Plant fossils from Early Cretaceous of Pingzhuan–Yuanbaoshan Basin, Inner Mongolia. Geoscience 12: 168172.Google Scholar
Deng, S. 2007. Palaeoclimatic implications of main fossil plants of the Mesozoic (in Chinese with English abstract). Journal of Palaeogeography 9: 559574.Google Scholar
Derbyshire, E. 1972. Pleistocene glaciation of Tasmania: review and speculations. Australian Geographical Studies 10: 7984.CrossRefGoogle Scholar
de Seoane, L.V. 1998. Comparative study of extant and fossil conifer leaves from the Baqueró Formation (Lower Cretaceous), Santa Cruz Province, Argentina. Review of Palaeobotany and Palynology 99(3–4): 247263.CrossRefGoogle Scholar
Dodson, J.R. 2001. A vegetation and fire history in a subalpine woodland and rain-forest region, Solomon Jewel Lake, Tasmania. Holocene 11: 111116.CrossRefGoogle Scholar
Eckenwalder, J.E. 1976. Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger. Madrõno 23: 237256.Google Scholar
Escapa, I., Cuneo, N.R. & Axsmith, B. 2008. A new genus of Cupressaceae (sensu lato) from the Jurassic of Patagonia: implications for conifer megasporangiate cone homologies. Review of Palaeobotany and Palynology 151: 110122.CrossRefGoogle Scholar
Escapa, I.H., Decombeix, A.L., Taylor, E.L. & Taylor, T.N. 2010. Evolution and relationships of the conifer seed cone Telemachus: evidence from the Triassic of Antarctica. International Journal of Plant Sciences 171: 560573.CrossRefGoogle Scholar
Fang, K., Wang, Y., Yu, T., et al. 2008. Isolation of de-exined pollen and cytological studies of the pollen intines of Pinus bungeana Zucc. Ex Endl and Picea wilsonii Mast Flora morphology distribution. Functional Ecology of Plants 203(4): 332340.CrossRefGoogle Scholar
Farjon, A. & Ortiz García, S. 2003. Cone and ovule development in Cunninghamia and Taiwania (Cupressaceae sensu lato) and its significance for conifer evolution. American Journal of Botany 90: 816.CrossRefGoogle Scholar
Florin, R. 1960. Die fruhere Verbreitung der Konifergattung Athrotaxis D.Don. Seckenbergiana Lethaea 41: 19207.Google Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Gadek, G.A. & Quinn, C.J. 1989. Biflavones of Taxodiaceae. Biochemical Systematics and Ecology 17: 365372.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Gibbs, L.S. 1920. Notes of the phytogeography and flora of the mountain summit plateaux of Tasmania. Journal of Ecology 8: 117, 89–117.CrossRefGoogle Scholar
Gibson, N., Barker, P.C.J., Cullen, P.J. & Shapcott, A. 1995. Conifers of southern Australia. Pp 223251 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Melbourne: Melbourne University Press.Google Scholar
Gregory‐Evans, C.Y., Vieira, H., Dalton, R., et al. 2004. Ocular coloboma and high myopia with Hirschsprung disease associated with a novel ZFHX1B missense mutation and trisomy 21. American Journal of Medical Genetics Part A 131(1): 8690.CrossRefGoogle ScholarPubMed
Greguss, P. 1955. Identification of Living Gymnosperms on the Basis of Xylotomy. Budapest: Akademia Kiado.Google Scholar
Halle, T.G. 1913. Some Mesozoic plant-bearing deposits in Patagonia and Tierra del Fuego and their floras. Kunglinga Svenska Vetenskapsakademiens Handlingar 51: 158.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hayata, B. 1906. On Taiwania, a new genus of Coniferae from the island of Formosa. Journal of the Linnean Society 37: 330.Google Scholar
Herman, A.B. 1994. A review of Late Cretaceous floras and climates of Arctic Russia. In Boulter, M.C. & Fisher, H.C. (eds.), Cenozoic Plants and Climates of the Arctic. Berlin: Springer.Google Scholar
Hernández-Castillo, G.R., Stockey, R.A. & Beard, G. 2005. Taxodiaceous pollen cones from the Early Tertiary of British Columbia, Canada. International Journal of Plant Sciences 166(2): 339346.CrossRefGoogle Scholar
Hill, R.S. 2001. The Cenozoic macrofossil record of the Cupressaceae in the Southern Hemisphere. Acta Palaeobotanica 41: 123132.Google Scholar
Hill, R.S. & Carpenter, R.J. 1989. Tertiary gymnosperms from Tasmania: Cupressaceae. Alcheringa 13: 89102.CrossRefGoogle Scholar
Hill, R.S. & Carpenter, R.J. 1991 Extensive past distributions for major Gondwanic floral elements: macrofossil evidence. Papers and Proceedings of the Royal Society of Tasmania 125: 239247.CrossRefGoogle Scholar
Hill, R.S. & McPhail, M.K. 1983. Reconstruction of the Oligocene vegetation at Pioneer, northeast Tasmania. Alcheringa 7: 281299.CrossRefGoogle Scholar
Hill, R.S. & Scriven, L.J. 1995. The angiosperm-dominated woody vegetation of Antarctica: a review. Review of Palaeobotany and Palynology 86(3–4): 175198.CrossRefGoogle Scholar
Hill, R.S., Jordan, G.J. & Carpenter, R.J. 1993. Taxodiaceous macrofossils from Tertiary and Quaternary sediments in Tasmania. Australian Systematic Botany 6: 237249.CrossRefGoogle Scholar
Hizumae, M. 1989. Karyomorphological studies in twelve species in the Taxodiaceae with species reference to cytotaxonomical positions of Sciadopitys verticillata. Memoirs of the Faculty of Educaton of Ehime University Ser. III Natural Science 9: 734.Google Scholar
Hizumae, M., Kondo, T., Shibata, F. & Ishoizuka, R. 2001. Flow cytometric determination of genome size in the Taxodiaceae, Cupressaceae sensu stricto and Sciadopityaceae. Cytologia (Tokyo) 66: 307311.CrossRefGoogle Scholar
Hopf, F.V.L., Colhoun, E.A. & Barton, C.E. 2000. Late-glacial and Holocene record of vegetation and climate at Cynthia Bay, Lake St. Clair, Tasmania. Journal of Quaternary Science 15: 725732.3.0.CO;2-8>CrossRefGoogle Scholar
Iglesias, A., Arbate, A.E. & Morel, E.M. 2011. The evolutions of Patagonian climate and vegetation, from the Mesozoic to the present. Botanical Journal of the Linnean Society 103: 409422.CrossRefGoogle Scholar
Isoda, K., Brodribb, T. & Shiraihi, S. 2000. Hybrid origin of Athrotaxis laxifolia (Taxodiaceae) confirmed by random amplified polymorphic DNA analysis. Australian Journal of Botany 48: 753758.CrossRefGoogle Scholar
Jagel, A. 2002. Morphologische und mophogenetische Untersuchungen zur Systematik und Evolution der Cupressaceae s.l. (Zypressengewächse). Dissertation, Ruhr-University.Google Scholar
James, S.H. 1981. Cytoevolutionary patterns, genetic systems and the phytogeography of Australia. Pp 761782 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Jordan, G.J., Brodribb, T.J. & Loney, P.E. 2004. Water loss physiology and the evolution within the Tasmanian conifer genus Athrotaxis (Cupressaceae). Australian Journal of Botany 52: 765771.CrossRefGoogle Scholar
Kershaw, A.P. & McGlone, M.S. 1995. The Quaternary history of the southern conifers. Pp 3063 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Carlton, VIC: Melbourne University Press.Google Scholar
Kirkpatrick, J.B. & Balmer, J. 1991. The vegetation and higher plant flora of the Cradle Mountain-Pencil Pine area, northern Tasmania. Papers and Proceedings of the Royal Society of Tasmania 124(2): 119137.CrossRefGoogle Scholar
Kirkpatrick, J.B. & Dickinson, K.J.M. 1984. The impact of fire on Tasmanian alpine vegetation and soils. Australian Journal of Botany 32: 613629.CrossRefGoogle Scholar
Kirkpatrick, J.B. & Fowler, M. 1998. Locating likely glacial forest refugia in Tasmania using palynological and ecological information to test alternative climatic models. Biological Conservation 85(1–2): 171182.CrossRefGoogle Scholar
Koidzumi, G. 1942. Further notes on Amentotaxaceae Kudo. Acta Phytotaxica Geobotanica 11: 227229 (in Japanese).Google Scholar
Krassilov, V.A. 1967. Early Cretaceous Flora of South Primorye and its Significance to Stratigraphy. Moscow: Nauka.Google Scholar
Kruckeberg, A.R. 1969. Plant life on serpentine and other ferromagnesian rocks in northwestern North America. Syesis 2: 15114.Google Scholar
Kunzmann, L., Mohr, B.A., Bernardes‐de‐Oliveira, M.E. & Wilde, V. 2006. Gymnosperms from the Early Cretaceous Crato Formation (Brazil). II. Cheirolepidiaceae. Fossil Record 9(2): 213225.CrossRefGoogle Scholar
Kusumi, J., Tsumura, Y., Yoshimaru, H. & Tacida, H. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chiL gene, trnLtrnF IGS region, and trnL intron sequence. American Journal of Botany 87: 14801488.CrossRefGoogle Scholar
Li, L. 1989. Studies on the cytotaxonomy and systematic evolution of Taxodiaceae Warming. Acta Botanica Yunnanica 11: 113131.Google Scholar
Liu, T.S. & Su, H.J. 1983. Biosystematic Studies on Taiwania and Numerical Evaluations on the Systematics of Taxodiaceae. Taipei: Taiwan Museum.Google Scholar
Ma, Q.W., Li, F.L. & Li, C.S. 2006. Epidermal structures of Athrotaxis cupressoides (Taxodiaceae). National Science Museum 2: 4551 (in Chinese with English abstract, seen as English abstract only).Google Scholar
Ma, Q.W., Ferguson, D.K., Li, F. & Li, C.-S. 2009. Leaf epidermal structure of extant plants of Cunninghamia and Taiwania (Cupressaceae sensu lato) and their taxonomic application. Review of Palaeobotany and Palynology 155: 1524.CrossRefGoogle Scholar
Macphail, M.K. 1979. Vegetation and climates in southern Tasmania since the last glaciation. Quaternary Research 11: 306341.CrossRefGoogle Scholar
Macphail, M.K., Hill, R.S., Forsyth, S.M. & Wells, P.M. 1991. A Late Oligocene–Early Miocene cool climate flora in Tasmania. Alcheringa 15: 87106.CrossRefGoogle Scholar
Macphail, M.K., Colhoun, E.A., Kiernan, K. & Hannan, D. 1993. Glacial climates in the Antarctic Region during the late Paleogene: evidence from northwest Tasmania, Australia. Geology 21: 145148.2.3.CO;2>CrossRefGoogle Scholar
Markgraf, V., Bradbury, J. & Busby, J.R. 1986. Palaeoclimates in southwestern Tasmania during the last 13,000 years. Palaeos 1: 368380.CrossRefGoogle Scholar
McElwain, J.C. & Chaloner, W.G. 1996. The fossil cuticle as a skeletal record of environmental change. Palaios 11: 376388.CrossRefGoogle Scholar
McPhail, M.K., Alley, N.F., Trusswell, E.M. & Sluiter, I.R.K. 1994. Early Tertiary vegetation: evidence from pollen and spores. Pp 189261 in Hill, R.S. (ed.) History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
McQuillan, P.B. 1998. Athrotaxivora tasmanica gen. et sp. nov. (Lepidoptera: Gelechioidea): an unusual moth associated with King Wiliam pine (Athrotaxis selaginoides D. Don, Taxodiaceae) in Tasmanian montane rainforest. Australian Journal of Entomology 37: 206213.CrossRefGoogle Scholar
Meyen, S.V. 1997. Permian conifers of Western Angaraland. Review of Palaeobotany and Palynology 96: 351447.CrossRefGoogle Scholar
Miller, C.N. 1982. Current status of Paleozoic and Mesozoic conifers. Review of Palaeobotany and Palynology 37: 99114.CrossRefGoogle Scholar
Miller, C.N. 1988. The origin of modern conifer families. Pp 448486 in Beck, C.B. (ed.), Origin and Evolution of Gymnosperms. New York: Columbia University Press.Google Scholar
Miller, C.N. & LaPasha, C.A. 1981. Structure and affinities of Athrotaxites berryi, a conifer from the Early Cretaceous of Montana, USA. Proceedings of the International Botanical Congress 13: 204.Google Scholar
Miller, C.N. & LaPasha, C.A. 1983. Structure and affinities of Athrotaxis berryi Bell, an Early Cretaceous conifer. American Journal of Botany 70: 772779.CrossRefGoogle Scholar
Mitchell, A.F. 1972. Conifers in the British Isles: A Descriptive Handbook. London: Her Majesty’s Stationery Office.Google Scholar
Nakai, T. 1938. Indigenous species of conifers and taxads of Korea and Manchuria and their distribution. I. Tyosen San-rin Kayho 158: 129 (in Japanese).Google Scholar
Nelson, E.C. 1981. Phytogeography of southern Australia. Pp 733759 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.Google Scholar
Ogden, J. 1978. Investigations of the dendrochronology of the genus Athrotaxis D.Don (Taxodiaceae) in Tasmania. Tree-Ring Bulletin 38: 1-13.Google Scholar
Ogden, J. 2006. On the dendrological potential of Australian trees. Austral Ecology 3: 339356.CrossRefGoogle Scholar
Otto, A. & Simoneit, B.R. 2001. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany. Geochemica Cosmochimica Acta 65: 35053527.CrossRefGoogle Scholar
Passalia, M.G. 2007. A Mid-Cretaceous flora from the Kachaike formation, Patagonia, Argentina. Cretaceous Research 28(5): 830840.CrossRefGoogle Scholar
Pilger, E. & Melchior, H. 1954. Gymnospermae. Pp 312344 in Engler, A. (ed.), Syllabus der Pflanzenfamilien. Berlin: Gebrunder Borntraeger.Google Scholar
Rothwell, G.W., Stockey, R.A., Mapes, G. & Hilton, J. 2011. Structure and relationships of the Jurassic conifer seed cone Hughmillerites juddii gen. et comb. nov.: implications for the origin and evolution of Cupressaceae. Review of Palaeobotany and Palynology 164(1–2): 4559.CrossRefGoogle Scholar
Sakai, A., Paton, D.M. & Wardle, P. 1981. Freezing resistance of trees of the south temperate zone, especially subalpine species of Australasia. Ecology 62(3): 563570.CrossRefGoogle Scholar
Seward, A.C. 1926. The Cretaceous plant-bearing rocks of Western Greenland. Philosophical Transactions of the Royal Society of London B. 215: 57175.Google Scholar
Seward, A.C. 1933. Plant Life Through the Ages. Cambridge: Cambridge University Press.Google Scholar
Srinivasan, V. 1995. Conifers from the Puddledock locality (Potomac Group, Early Cretaceous) in eastern North America. Review of Palaeobotany and Palynology 89(3–4): 257286.CrossRefGoogle Scholar
Stewart, W.N. & Rothwell, G.A. 1993. Palaeobotany and the Evolution of Plants. 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Takaso, T. & Tomlinson, P.B. 1992. Seed cone and ovule ontogeny in Metasequoia, Sequoia and Sequoiadendron (Taxodiaceae – Coniferales). Botanical Journal of the Linnean Society 109: 1537.CrossRefGoogle Scholar
Townrow, J.A. 1967. On a conifer from the Jurassic of east Antarctica. Papers and Proceedings of the Royal Society of Tasmania 101: 137147.CrossRefGoogle Scholar
Townrow, J.A. 1969. Some Lower Mesozoic Podocarpaceae and Araucariaceae. Pp 159184 in Gondwanan Stratigraphy. Gap: UNESCO.Google Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
White, M.E. 1993. The Greening of Gondwana. Chatswood, NSW: A.H. & A.W. Reed.Google Scholar
Yao, X., Taylor, T.N. & Taylor, E.L. 1997. A taxodiaceous seed cone from the Triassic of Antarctica. American Journal of Botany 84(3): 343354.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Athrotaxis
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Athrotaxis
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Athrotaxis
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.014
Available formats
×