Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T06:58:55.696Z Has data issue: false hasContentIssue false

Chapter 48 - Cunninghamia

Cupressales: Cunninghamiaceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Tall to very tall, medium-sized to sometimes massive, monoecious evergreen trees typically well furnished with foliage throughout much of life on thick, stout shoots, with strongly whorled branches and a typically bushy but conical and broadly tapering fairly symmetric crown. Its large, broad, tapering dorsiventrally flattened leaves densely furnish all shoots and are swept into two somewhat irregularly spreading ranks across all laterals, which is its most conspicuous feature.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 172 - 194
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkinson, B.A., Rothwell, G.W., & Stockey, R.A. 2014a. Hubbardiastrobus cunninghamioides gen. et sp. nov., evidence for a Lower Cretaceous diversification of cunninghamioid Cupressaceae. International Journal of Plant Sciences 175: 256269.CrossRefGoogle Scholar
Atkinson, B.A., Rothwell, G.W. & Stockey, R.A. 2014b. Hughmillerites vancouverensis sp. nov. and the Cretaceous diversification of Cupressaceae. American Journal of Botany 101: 21362147.CrossRefGoogle ScholarPubMed
Axelrod, D.I. 1988. An interpretation of high montane conifers in western Tertiary floras. Paleobiology 14(3): 301306.CrossRefGoogle Scholar
Berry, E.W. 1903 Flora of the Matawan formation (Crosswick Clays). Bulletin for the New York Botanical Gardens 3: 45103.Google Scholar
Bosama, H.F., van Konijnenburg-van Cittert, J.H.A., van der Ham, R.W.J.M., van Amerom, H.W.J. & Hartkopf-Fröder, C. 2009. Conifers from the Santonian of Limburg, the Netherlands. Cretaceous Research 30: 483495.CrossRefGoogle Scholar
Bosama, H.F., Kunzmann, L., Kvaček, J., & Van Konijnenburg-Van Cittert, J.H.A. 2012. Revision of the genus Cunninghamites (fossil conifers), with special reference to nomenclature, taxonomy and geological age. Review of Palaeobotany and Palynology 182: 2031.CrossRefGoogle Scholar
Brink, K.S., Stockey, R.A., Beard, G. & Wehr, W.C. 2009. Cunninghamia hornbyensis sp. nov.: permineralised twigs and leaves from the Upper Cretaceous of Hornby Island, British Columbia, Canada. Review of Palaeobotany and Palynology 155: 8998.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Budantsev, L.Y. 1997. Late Eocene flora of Western Kamchatka. Proceedings of the Botanical Institute of the Russian Academy of Sciences 19: 3115.Google Scholar
Cabaleri, N.G., Armella, C. & Silva Nieto, D.G. 2005. Saline paleolake of the Cañadón Asfalto Formation (Middle-Upper Jurassic), Cerro Cóndor, Chubut province (Patagonia), Argentina. Facies 51: 350364.CrossRefGoogle Scholar
Cai, S.-K., Yang, Z.-B., Wei, H.-T. & Zong, S.-X. 1984. The growth and ecological characteristics of Chinese fire Cunninghamia lanceolata on the river bank in North Jiangsu Province, China. Acta Botanica Sinica 26: 440447 (in Chinese with English abstract).Google Scholar
Chaw, S.-M, Zharkikh, A., Sung, H.-M., Lau, T.-C. & Li, W.-H 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rDNA sequences. Molecular Biology and Evolution 14: 5668.CrossRefGoogle Scholar
Chen, F.-X., Feng, H.-F., Xue, L., et al. 2010. Impact of ice-snow damage on nutrient distribution of a Cunninghamia lanceolata woodland. Journal of Forestry Research (Harbin) 21: 207212 (seen as abstract only).CrossRefGoogle Scholar
Chen, J., Yu, Y.-C., Wang, G.-P., et al. 1996. Analysis on growth response to fertilization in young Cunninghamia lanceolata plantation. Forest Research 9: 426430.Google Scholar
Cheng, Y., Nicholson, G. Tripp, K. & Chaw, S.-M. 2000. Phylogeny of Taxaceae and Cephalotaxaceae genera inferred from chloroplast matK gene and nuclear rDNA ITS region. Molecular Phylogenetics and Evolution 14: 353365.CrossRefGoogle ScholarPubMed
Chung, H.-H., Yen, C.-H. & Chien, K.-W. 1991. Cultivation of China-fir Cunninghamia lanceolata mycorrhizal seedlings in sandy nursery: select and propagate the effective mycorrhizal fungi. Bulletin of the Taiwan Forestry Research Institute N.S. 6: 147154.Google Scholar
Deng, S. 1998. Plant fossils from Early Cretaceous of Pingzhuan–Yuanbaoshan Basin, Inner Mongolia. Geoscience 12: 168172.Google Scholar
Deng, S. 2007. Palaeoclimatic implications of main fossil plants of the Mesozoic. Journal of Palaeogeography 9: 559574 (in Chinese with English abstract).Google Scholar
Du, B.X., Yan, D.F., Sun, B.N., et al. 2012. Cunninghamia praelanceolata sp. nov. with associated epiphyllous fungi from the upper Miocene of eastern Zhejiang, SE China and their palaeoecological implications. Review of Palaeobotany and Palynology 182: 3243.CrossRefGoogle Scholar
Eberle, J.J. & Storer, J.E. 1999. Northernmost record of brontotheres, Axel Heiberg Island, Canada: implications for age of the Buchanan Lake Formation and brontothere paleobiology. Journal of Paleontology 73(5): 979983.CrossRefGoogle Scholar
Eckenwalder, J.E. 1976. Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger. Madrõno 23: 237256.Google Scholar
Escapa, I., Cúneo, R. & Axsmith, B. 2008. A new genus of the Cupressaceae (sensu lato) from the Jurassic of Patagonia: implications for conifer megasporangiate cone homologies. Review of Palaeobotany and Palynology 151(3–4): 110122.CrossRefGoogle Scholar
Escapa, I.H., Decombeix, A.L., Taylor, E.L. & Taylor, T.N. 2010. Evolution and relationships of the conifer seed cone Telemachus: evidence from the Triassic of Antarctica. International Journal of Plant Sciences 171: 560573.CrossRefGoogle Scholar
Farjon, A. & Ortiz García, S. 2003. Cone and ovule development in Cunninghamia and Taiwania (Cupressaceae sensu lato) and its significance for conifer evolution. American Journal of Botany 90: 816.CrossRefGoogle Scholar
Farjon, A. & Page, C.N. (eds) 1999. Conifers: Status Survey and Conifer Action Plan. IUCN/SSC Conifer Specialist Group Report. Gland: IUCN.Google Scholar
Feng, Z. & Chen, C. 1985. Accumulation, distribution and cycling of nutrient elements in a subtropical Chinese fir stand. Acta Phytoecologica et Geobotanica Sinica 9: 245255.Google Scholar
Fiorillo, A.R. 2004. The dinosaurs of arctic Alaska. Scientific American 291(6): 8491.CrossRefGoogle Scholar
FIVI (Forest Inventory and Planning Institute, Vietnam). 1996. Vietnam Forest Trees. Hanoi: Agricultural Publishing House.Google Scholar
Florin, R. 1958. On the Jurassic taxads and conifers from north-western Europe and eastern Greenland. Acta Horti Bergiani 16: 257402.Google Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Givulescu, R. 1968. Die gattung Cunninghamia R. Br. Im unteren Pannon Rumaeniens. Neues Jahrbuch fuer Geologie und Palaeontologie Abhandlungen 130: 129132.Google Scholar
Givulescu, R. 1973. Sur quelques restes de Cunninghamia from the Neogene of Romania. Revue Roumaine de Geologie, geophysique et Geographie, serie de Geologie 17: 131133.Google Scholar
Greguss, P. 1955. Identification of Living Gymnosperms on the Basis of Xylotomy. Budapest: Akademia Kiado.Google Scholar
Ham, R., van Konijnenburg-van Cittert, J. & Nieuwenhuis, E. 2004. Cunninghamites ubaghsii (Taxodiaceae?) from the Maastrichtian type area (Late Cretaceous, SE Netherlands) discovered. Bulletin de l’Institut Royal des Sciences Naturelles de Belqique, Sciences de la Terre 74.Google Scholar
Harris, T.M. 1943. The fossil conifer Elatides williamsoni. Annals of Botany 7: 325339.CrossRefGoogle Scholar
Harris, T.M. 1953. Conifers of the Taxodiaceae from the Wealden Formation of Belgium. Memoirs of the Royal Belgian Institute of Natural Sciences 126: 143.Google Scholar
Harris, T.M. 1979. The Yorkshire Jurassic Flora. 5. Coniferales. London: British Museum.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hayata, B. 1906. On Taiwania, a new genus of Coniferae from the island of Formosa. Journal of the Linnean Society 37: 330.Google Scholar
Hayata, B. 1907. On Taiwania and its affinity to other genera. Botanical Magazine of Tokyo 21: 2127.CrossRefGoogle Scholar
He, Q., Li, J.-Y., Chen, X.-Y., et al. 2010. Types and extent of damage to Cunninghamia lanceolata plantations due to unusually heavy snow and ice in southern China. Chinese Journal of Plant Ecology 34: 195203.Google Scholar
Heer, O. 1871. Beiträge zur Kreide‐Flora, II. Zur Kreide‐Flora von Quedlinburg. Neue Denkschriften der Allgemeine Schweizerischen Gesellschaft für die gesamten Naturwissenschaften 24: 115.Google Scholar
Heer, O. 1876. Beiträge zur Jura-Flora Ostsibiriens und des Amurlandes. Bulletin de l’Académie impériale des sciences de St.-Pétersbourg, Ser. VII 22(12).Google Scholar
Hernández-Castillo, G.R., Stockey, R.A. & Beard, G. 2005. Taxodiaceous pollen cones from the Early Tertiary of British Columbia, Canada. International Journal of Plant Sciences 166(2): 339346.CrossRefGoogle Scholar
Herrera, F., Leslie, A.B., Shi, G., et al. 2016. New fossil Pinaceae from the Early Cretaceous of Mongolia. Botany 94: 885915.CrossRefGoogle Scholar
Hizumae, M. 1989. Karyomorphological studies in twelve species in the Taxodiaceae with species reference to cytotaxonomical positions of Sciadopitys verticillata. Memoirs of the Faculty of Educaton of Ehime University Ser. III Natural Science 9: 734.Google Scholar
Hizumae, M., Kondo, T., Shibata, F. & Ishoizuka, R. 2001. Flow cytometric determination of genome size in the Taxodiaceae, Cupressaceae sensu stricto and Sciadopityaceae. Cytologia (Tokyo) 66: 307311.CrossRefGoogle Scholar
Hu, Y.‐S. & Ma, R.J. 1989. Anatomy of gymnosperms endemic to China, II. Taiwania flousiana Gaussen (Taxodiaceae). Journal of Systematics and Evolution 27(2): 96104.Google Scholar
Hu, Z.-A., Wang, H.-X. & Liu, C.-J. 1986. Biochemical systematics of gymnosperms (4): seed protein peptides and needle peroxidases of Taxodiaceae. Acta Phytotaxica Sinica 24: 471473.Google Scholar
Hwang, S.Y., Lin, T.P., Ma, C.S., et al. 2003. Postglacial population growth of Cunninghamia konishii (Cupressaceae) inferred from phylogeographical and mismatch analysis of chloroplast DNA variation. Molecular Ecology 12: 26892695.CrossRefGoogle ScholarPubMed
Kimura, T. & Horiuchi, J. 1978. Cunninghamia nodensis sp. nov. from the Palaeogene Noda Group, Northeastern Japan. Proceedings of the Japanese Academy B 54: 589594.CrossRefGoogle Scholar
Kovar, J. 1982. Eine Blätter-Flora des Egerien (Ober-Oligozän) aus marinen Sedimenten der Zentralen Paratethys im Linzer Raum (Österreich). Beitr. Paläont. Österr 9: 12.Google Scholar
Kovar-Eder, J., Kvaček, Z., Martinetto, E. & Roiron, P. 2006. Late Miocene to Early Pliocene vegetation of southern Europe (7–4 Ma) as reflected in the megafossil plant record. Palaeogeography, Palaeoclimatology, Palaeoecology 238(1–4): 321339.CrossRefGoogle Scholar
Kuan, C.-T. 1981. Fundamental features of the distribution of Coniferae in Sichuan. Acta Phytotaxica Sinica 14: 407420 (in Chinese).Google Scholar
Kunzmann, L. 2001. Neue Untersuchungen an Cunninghamites oxycedrus Presl in Sternberg 1838. Feddes Repertorium 112: 421445.CrossRefGoogle Scholar
Kurmann, M.H. 1992. Exine stratification in extant gymnosperms: a review of published transmission electron micrographs. Kew Bulletin 47: 2539.CrossRefGoogle Scholar
Kusumi, J., Tsumura, Y., Yoshimaru, H. & Tacida, H. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chiL gene, trnLtrnF IGS region, and trnL intron sequence. American Journal of Botany 87: 14801488.CrossRefGoogle Scholar
Kvaček, Z. 1999. An ancient Calocedrus (Cupressaceae) from the European Tertiary. Flora, Morphology, Geobotanik, Oekophysiologie 194: 237248.Google Scholar
Kvaček, Z. 2002. Late Eocene landscape, ecosystems and climate in northern Bohemia with particular reference to the locality of Kučlín near Bílina. Bulletin of the Czech Geological Survey 77(3): 217236.Google Scholar
Kvaček, Z. & Rember, W.C. 2000. Shared Miocene conifers of the Clarkia flora and Europe. Acta Universitatis Carolinae, Geologica 44: 7585.Google Scholar
Lakhanpal, R.N. 1958. The Rujada flora of west central Oregon. University of California, Publications in Geological Sciences 35, 166.Google Scholar
LaPasha, C.A. & Miller, C.N. 1981. New taxodiacaeous seed cones from the Upper Cretaceous of New Jersey. American Journal of Botany 68: 13741382.CrossRefGoogle Scholar
LePage, R.A. & Basinger, J.F. 1989. Cunninghamia (Taxodiaceae) from the early Tertiary of the Canadian High Arctic. American Journal of Botany 76 (6 suppl.): 168.Google Scholar
Li, H.-J., Liu, P., Zhang, Z.-X., et al. 2010. Ice and snow damage and subsequent sprouting of Cunninghamia lanceolata (Taxodiaceae) plantation and their related-factors analysis. Acta Botanica Yunnanica 32: 158166.CrossRefGoogle Scholar
Li, L. 1989. Studies on the cytotaxonomy and systematic evolution of Taxodiaceae Warming. Acta Botanica Yunnanica 11: 113131.Google Scholar
Liu, K.B. 1988. Quaternary history of the temperate forests of China. Quaternary Science Reviews 7(1): 120.CrossRefGoogle Scholar
Liu, T.S. & Su, H.J. 1983. Biosystematic Studies on Taiwania and Numerical Evaluations on the Systematics of Taxodiaceae. Taipei: Taiwan Museum.Google Scholar
Ma, Q.-W., Ferguson, D.K., Li, F. & Li, C.-S. 2009. Leaf epidermal structure of extant plants of Cunninghamia and Taiwania (Cupressaceae sensu lato) and their taxonomic application. Review of Palaeobotany and Palynology 155: 1524.CrossRefGoogle Scholar
Ma, X.-Q., Liu, C.-J., Ilvesniemi, H., Westman, C.J. & Liu, A.-Q. 2002. Biomass, litterfall, and the nutrient fluxes in Chinese for stands of different age in subtropical China. Journal of Forestry Research 13: 165170.Google Scholar
Ma, X.-Q., Heral, K.V., Liu, A. & Jarvis, P.G. 2007. Nutrient cycling and distribution in different aged plantations of Chinese fir in southern China. Forest Ecology and Management 243: 6174.CrossRefGoogle Scholar
Maekawa, F. 1974. Origin and characteristics of Japan’s flora. Pp 3386 in Numa-Ta, N. (ed.), The Flora and Vegetation of Japan. Tokyo: Kodansha.Google Scholar
McIver, E.E. 2001. Cretaceous Widdringtonia Endl. (Cupressaceae) from North America. International Journal of Plant Sciences 162(4): 937961.CrossRefGoogle Scholar
Meng, X.Y., Chen, F. & Deng, S.H. 1988. Fossil plant Cunninghamia asiatica (Krassilov) comb, nov. Acta Botanica Sinica 30: 649654 (in Chinese with English abstract).Google Scholar
Miller, C.N. 1975. Petrified cones and needle-bearing twigs of a new taxodiaceous conifer from the Early Cretaceous of California. American Journal of Botany 62: 706713.CrossRefGoogle Scholar
Miller, C.N. 1977. Mesozoic conifers. Biological Review 43: 218280.Google Scholar
Miller, C.N. 1982. Current status of Paleozoic and Mesozoic conifers. Review of Palaeobotany and Palynology 37: 99114.CrossRefGoogle Scholar
Miller, C.N. 1988. The origin of modern conifer families. Pp 448486 in Beck, C.B. (ed.). Origin and Evolution of Gymnosperms. New York: Columbia University Press.Google Scholar
Miller, C.N. 1990. Stems and leaves of Cunninghamiastrobus goedertii from the Oligocene of Washington. American Journal of Botany 77: 963971.CrossRefGoogle Scholar
Miller, C.N. & Crabtree, D.R. 1989. A new taxodiaceous seed cone from the Oligocene of Washington. American Journal of Botany 76(1): 133142.CrossRefGoogle Scholar
Nguyễn Duc To Luu, & Thomas, P. 2004. Cay La Kim Viet Nam (Conifers of Vietnam: An Illustrated Field Guide). Hanoi: World Publishing House.Google Scholar
Nguyễn Tien Hiep, , Phan Ke Loc, , Nguyễn Duc To Luu, , et al. 2004. Vietnam Conifers: Conservation Status Review 2004. Hanoi: Fauna & Flora International, Vietnam Programme.Google Scholar
Ohana, T. & Kimura, T. 1995. Further observations of Cunninghamiastrobus yubariensis Stopes and Fuji from the Upper Yezo Group (Upper Cretaceous), Hokkaido, Japan. Transactions and Proceedings of the Palaeontological Society of Japan, N.S. 178: 122141.Google Scholar
Ohsawa, T. 1994. Anatomy and relationships of petrified seed cones of the Cupressaceae, Taxodiaceae, and Sciadopityceae. Journal of Plant Research 107: 203512.CrossRefGoogle Scholar
Otto, A., Simoneit, B.R. & Rember, W.C. 2003. Resin compounds from the seed cones of three fossil conifer species from the Miocene Clarkia flora, Emerald Creek, Idaho, USA, and from related extant species. Review of Palaeobotany and Palynology 126(3–4): 225241.CrossRefGoogle Scholar
Palmarev, E., Petkova, A. & Uzunova, K. 1978. Beitrage zur Entwicklungsgeschchter der Gattung Taiwania Hay. Und Cunninghamia R.Br. in Holarktis. Fitologia 9: 316.Google Scholar
Pilger, E. & Melchior, H. 1954. Gymnospermae. Pp 312344 in Engler, A. (ed.), Syllabus der Pflanzenfamilien. Berlin: Gebrunder Borntraeger.Google Scholar
Pimenov, G.M. 1990. Miocene Conifer Floras of South Far East and Their Stratigraphic Significance. Vladivostok: USSR Academy of Sciences.Google Scholar
Rich, T.H., Vickers-Rich, P. & Gangloff, R.A. 2002. Polar dinosaurs. Science 295(5557): 979980.CrossRefGoogle ScholarPubMed
Saiki, K.I. & Kimura, T. 1993. Permineralized taxodiaceous seed cones from the Upper Cretaceous of Hokkaido, Japan. Review of Palaeobotany and Palynology 76(1): 8396.CrossRefGoogle Scholar
Schlarbaum, S.E. & Tsuchiya, T. 1984. The chromosomes of Cunninghamia konishii, C. lanceolata and Taiwania cryptomerioides (Taxodiaceae). Plant Systematics and Evolution 145: 169181.CrossRefGoogle Scholar
Schneider, W. 1979. Zur Feinstratigraphie des 2 Lausitzer Floezhorizonts (Miozaen) unter besonder Beruecksichtigung der Verbreitung der Koniferengattung Cunninghamia R. Br. Zeitschrift fuer geologische Wissenchaften 7: 479-485.Google Scholar
Selvatakshami, S., Valu, D., Zhijun, H., Guo, S. & Ma, X.U. 2018. Soil nutrient dynamics in broadleaved tropical forest soils and Chinese fir plantation in subtropical forests. Journal of Tropical Forest Science 30: 242251.Google Scholar
Seward, A.C. 1919. Fossil Plants. Cambridge: Cambridge University Press.Google Scholar
Shi, G., Leslie, A.B., Herendeen, P.S., et al. 2014. Whole-plant reconstruction and phylogenetic relationships of Elatides zhoui sp. nov. (Cupressaceae) from the Early Cretaceous of Mongolia. International Journal of Plant Sciences 175(8): 911930.CrossRefGoogle Scholar
Shimada, M. 1967. The pollen flora from the Tertiary and Cretaceous of Japan in correlation with the palaeobotanical records. Review of Palaeobotany and Palynology 5: 235241.CrossRefGoogle Scholar
Shimahura, M. 1937. Studies on fossil woods from Japan and adjacent lands . Contribution II. The Cretaceous woods from Japan, Saghalien, and Manchoukuo. Science Reports of Tohoku Imperial University Ser. 2 (Geology) 19(1).Google Scholar
Stefanović, S., Jager, M., Deutsch, J., Broutin, J. & Masselot, M. 1998. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. American Journal of Botany 85: 688697.CrossRefGoogle Scholar
Stewart, W.N. & Rothwell, G.A. 1993. Palaeobotany and the Evolution of Plants, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Stockey, R.A., Kvaček, J., Hill, R.S., Rothwell, G.W. & Kvaček, Z. 2005. The fossil record of Cupressaceae s. lat. Pp 5468 in Farjon, A. (ed.), A Monograph of Cupressaceae and Sciadopitys. London: Royal Botanic Gardens Kew.Google Scholar
Stopes, M.C. & Fujii, K. 1910. Studies on the structure and affinities of Cretaceous plants. Philosophical Transactions of the Royal Society of London B 201: 190.Google Scholar
Sveshnikova, I.N. 1963. Atlas and a key for the identification of the living and fossil Sciadopityaceae and Taxodiaceae based on the structure of the leaf epidermis. Paleobotany 4: 207.Google Scholar
Sveshnikova, I.N. 1967. Late Cretaceous Coniferae from the U.S.S.R., I. Fossil Coniferae of the Viliuyian depression. Trud Bot Inst An SSSR Ser 8 Paleobotanika 6: 177203.Google Scholar
Szafer, W. 1958. The genus Cunninghamia R. Br. in the European Miocene. Acta Biologicae Cracow 1: 713.Google Scholar
Tarduno, J.A., Brinkman, D.B., Renne, P.R., et al. 1998. Evidence for extreme climatic warmth from Late Cretaceous Arctic vertebrates. Science 282(5397): 22412243.CrossRefGoogle ScholarPubMed
Teodoridis, V. & Sakala, J. 2008. Early Miocene conifer macrofossils from the Most Basin (Czech Republic). Neues Jahrbuch fur Geologie und Palaontologie-Abhandlungen 250(3): 287.CrossRefGoogle Scholar
Thomas, P., Sengdala, K., Lamxay, V. & Khou, E. 2007. New records of conifers in Cambodia and Laos. Edinburgh Journal of Botany. 64(1): 3744.CrossRefGoogle Scholar
Tsumura, Y., Yoshimura, K., Tomaru, N. & Ohba, K. 1995. Molecular phylogeny of conifers using RFLP analysis of PCR amplified specific chloroplast genes. Theoretical and Applied Genetics 91: 12221236.CrossRefGoogle ScholarPubMed
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Vávra, N. & Walther, H. 1993. Chemofossilien aus dem Harz von Cunninghamia miocenica ETTINGSHAUSEN (Taxodiaceae; Oligo/Miozän). Neues Jahrbuch für Geologie und Paläontologie-Monatshefte 11: 693704.CrossRefGoogle Scholar
Velenovský, J. 1885. Die Gymnospermen der Böhmischen Kreideformation. Praha: E. Greger.CrossRefGoogle Scholar
Vermeij, G.J. 2008. Escalation and its role in Jurassic biotic history. Palaeogeography, Palaeoclimatology, Palaeoecology 263: 38.CrossRefGoogle Scholar
Walther, H. 1989. Cunninghamia miocenica Ettingshausen, eine wichtige Taxodiacee im Tertar Mittleuropas. Flora 182: 287311.CrossRefGoogle Scholar
Wang, D.Y. & Liu, H.L. 1982. New species and a new variety of Cunninghamia from Sichuan Province [Cunninghamia unicanaliculata, Cunninghamia unicanaliculata var. pyramidalis]. Chih wu fen lei hsueh pao = Acta Phytotaxonomica Sinica 1982.Google Scholar
Wu, M., Shao, X.-X., Zhou, C.-L., & Hu, F. 2009. Soil quality evolvement and its environmental significance of typical plantations in mid-sub-tropics of China. Shentaixue Zazhi 28: 18131817 (seen as abstract only).Google Scholar
Wu, P.-F., Ma, X.-Q., Tigabu, M., et al. 2011. Root morphological plasticity and biomass production of two Chinese fir clones with high phosphorous efficiency under low phosphorous stress. Canadian Journal of Forest Research 41: 228234.CrossRefGoogle Scholar
Xue, L. 1996. Nutrient cycling within a Chinese-fir (Cunninghamia lanceolata) stand on a poor site in Yishan, Guangxi. Forest Ecology and Management 89: 115123.CrossRefGoogle Scholar
Yabe, A., Eunkyoung, J., Kyungsik, K. & Kazuhiko, U. 2018. Oligocene–Neogene fossil history of Asian endemic conifer genera in Japan and Korea. Journal of Systematics and Evolution 57: 114128.CrossRefGoogle Scholar
Yang, Z.Y., Ran, J.H. & Wang, X.Q. 2012. Three genome-based phylogeny of Cupressaceae sl: further evidence for the evolution of gymnosperms and Southern Hemisphere biogeography. Molecular Phylogenetics and Evolution 64(3): 452470.CrossRefGoogle ScholarPubMed
Yao, X., Zhou, Z. & Zhang, B. 1998. Reconstruction of the Jurassic conifer Sewardiodendron laxum (Taxodiaceae). American Journal of Botany 85(9): 12891300.CrossRefGoogle ScholarPubMed
Yeh, F.-C., Shi, J., Yang, R., Hong, J.H & Ye, Z. 1994. Genetic diversity and multilocus associations in Cunninghamia lanceolata (Lamb) Hook from the Peoples-Republic-of-China. Theoretical and Applied Genetics 88: 465471.CrossRefGoogle ScholarPubMed
Ying, T.-S. & Li, L.-Q. 1981. Ecological distribution of endemic genera of taxads and conifers in China and neighbouring area in relation to phytogeographical significance. Acta Phytotaxonomica Sinica 14: 415425.Google Scholar
Ying, T.-S., Zhang, Y.-L. & Boufford, D.E. 1993. The Endemic Genera of Seed Plants of China. Beijing: Science Press.Google Scholar
Zhang, J.W., D’Rozario, A., Wang, L.J., Li, Y. & Yao, J.X. 2012. A new species of the extinct genus Austrohamia (Cupressaceae s.l.) in the Daohgou Jurassic flora of China and its phytogeographical implications. Journal of Systematics and Evolution 50: 7282.CrossRefGoogle Scholar
Zhong, A.L. & Hsiung, W.Y. 1993. Evaluation and diagnosis of tree nutritional status in Chinese-fir (Cunninghamia lanceolata (Lamb) Hook) plantations, Jiangxi, China. Forest Ecology and Management 62(1–4): 245270.CrossRefGoogle Scholar
Zhou, Z. 1987. Elatides harrisii, sp. nov. from the Lower Cretaceous of Liaoning, China. Reviews in Palaeobotany and Palynology 51: 189204.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Cunninghamia
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Cunninghamia
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Cunninghamia
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.012
Available formats
×