Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T06:41:55.808Z Has data issue: false hasContentIssue false

Chapter 41 - Fitzroya

Cupressales: Fitzroyaceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Distinctively tall to very tall and sometimes massive, columnar, dense-crowned, evergreen trees. The crowns are symmetric, becoming extensive, irregular and more billowing with age, eventually exposing extremely long lengths of naked, shaft-like, strongly erect trunks with deep rich reddish-brown stringing bark.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 15 - 31
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allnutt, T.R., Newton, A., Lara, A., et al. 2002. Genetic variation in Fitzroya cupressoides (alerce), a threatened South American conifer. Molecular Ecology 8: 975987.CrossRefGoogle Scholar
Armesto, J.J., Villagran, C., Aravena, C., et al. 1995. Conifer forests of the Chilean Coastal Range. Pp 156170 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Carlton, VIC: Melbourne University Press.Google Scholar
Barker, P.F. & Burrell, J. 1977. The opening of Drake passage. Marine Geology 25(1–3): 1534.CrossRefGoogle Scholar
Battles, J.J., Armesto, J.J., Vann, D.R., et al. 2002. Vegetation composition, structure and biomass of two unpolluted watersheds in the Cordillera de Piuchue, Chiloé Island, Chile. Plant Ecology 158: 519.CrossRefGoogle Scholar
Berry, E.W. 1928. Tertiary fossil plants from the Argentine Republic. Proceedings of the U.S. National Museum 73: 127.Google Scholar
Beu, A.G., Griffin, M. & Maxwell, P.A. 1997. Opening of Drake Passage gateway and Late Miocene to Pleistocene cooling reflected in Southern Ocean molluscan dispersal: evidence from New Zealand and Argentina. Tectonophysics 281: 8397.CrossRefGoogle Scholar
Bodnar, J. & Escapa, I.H. 2016. Towards a whole plant reconstruction of Austrohamia (Cupressaceae): new fossil wood from the Lower Jurassic of Argentina. Reviews of Palaeobotany and Palynology 234: 181197.CrossRefGoogle Scholar
Boninsegna, J.A. & Holmes, R.L. 1985. Fitzroya cupressoides yields a 1534-year long South American chronology. Tree Ring Research 45: 3742.Google Scholar
Burbidge, N.T. 1960. The phytogeography of the Australian region. Australian Journal of Botany 8: 57212.CrossRefGoogle Scholar
Cunningham, W.D., Dalziel, I.W.D., Lee, T.Y. & Lawver, L.A. 1995. Southernmost South America–Antarctic Peninsula relative plate motions since 84 Ma: implications for the tectonic evolution of the Scotia Arc region. Journal of Geophysical Research – Solid Earth 100: 82578266.CrossRefGoogle Scholar
Dettmann, M.E. 1989. Antarctic: Cretaceous cradle of austral temperate rainforests ? Pp 89105 in Crane, J.A. (ed.) Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Dettmann, M.E. & Jarzen, D.M. 1990. The Antarctic/Australasian rift valley: Late Cretaceous cradle of northeastern Australasian relicts? Review of Palaeobotany and Palynology 65: 131144.CrossRefGoogle Scholar
Devall, M.S., Parresol, B.R. & Armesto, J.J. 1998. Dendroecological analysis of a Fitzroya cupressoides and a Nothofagus nitida stand in the Cordillera Pelada, Chile. Forest Ecology and Management 108: 135145.CrossRefGoogle Scholar
DiesterHass, L. & Zahn, R. 1996. Eocene-Oligocene transition in the Southern Ocean: history of water mass circulation and biological productivity. Geology 24: 163166.2.3.CO;2>CrossRefGoogle Scholar
Dingle, R.V. & Lavelle, M. 1998. Late Cretaceous Cenozoic climatic variations of the northern Antarctic Peninsula: new geochemical evidence and review. Palaeogeography, Paleoclimatology, Palaeoecology 141: 215232.CrossRefGoogle Scholar
Dong, C., Wang, Y.-D., Yang, X.-J. & Sun, B.-N. 2018. Whole plant reconstruction and updated phylogeny of Austrohamia acanthobracteata (Cupressaceae) from the Middle Jurassic of northwest China. International Journal of Plant Sciences 179: 640652.CrossRefGoogle Scholar
Donoso, C., Cortes, M. & Soto, L. 1980. Antecedentes sobre semillas y germinacion de Alerce, Ciprés de las Guaitecas, Ciprés de la Cordillera y Tineo. Bosque 3: 96100.CrossRefGoogle Scholar
Donoso, C., Grez, R. & Sandoval, V. 1990. Caracterización del tipo forestal alerce. Bosque 11: 2134.CrossRefGoogle Scholar
Donoso, C., Cortes, M. & Escobar, B. 1993. Efecto del árbol semillero y la época de cosecha de semillas en la capacidad germinativa en vivero de Fitzroya cupressoides. Bosque 14: 6371.CrossRefGoogle Scholar
Doyle, J. & Saxton, W.I. 1933. Contribution ot the life-history of Fitzroya. Proceedings of the Royal Irish Academy B41: 191217.Google Scholar
Escapa, I., Cuneo, N.R. & Axsmith, B. 2008. A new genus of Cupressaceae (sensu lato) from the Jurassic of Patagonia: implications for conifer megasporangiate cone homologies. Review of Palaeobotany and Palynology 151: 110122.CrossRefGoogle Scholar
Exon, N.F., Berry, R.F., Crawford, A.J. & Hill, P.J. 1997. Geological evolution of the east Tasman Plateau, a continental fragment southeast of Tasmania. Australian Journal of Earth Sciences 44: 597608.CrossRefGoogle Scholar
Farjon, A. & Page, C.N. (eds) 1999. Conifers: Status Survey and Conifer Action Plan. IUCN/SSC Conifer Specialist Group Report. Gland: International Union for the Conservation of Nature.Google Scholar
Florin, R. 1940. The Tertiary fossil conifers of southern Chile and their phytogeographical significance. K. Svenska Vetenskaps Akademie Handl. 19(2): 1107.Google Scholar
Fraver, S., González, M.E., Silla, F., Lara, A & Gardner, M. 1999. Composition and structure of remnant Fitzroya cupressoides forests of Southern Chile’s central depression. Journal of the Torrey Botanical Society 126: 4957.CrossRefGoogle Scholar
Frenguelli, J. 1949a. Los estratos con ‘Estheria’ en el Chubut. Revista de la Asociación Geológica Argentina 4: 1124.Google Scholar
Frenguelli, J. 1949b. Adenda a la flora del Gondwana Superior en la Argentina.I. ‘Palissya conferta’ Feist. y Palissya Jabalpurensis Feist. En el Jurásico Superior del Chubut, Patagonia. Physis 20: 139146.Google Scholar
Gardner, M.F. & Lara, A. 2003. The conifers of Chile: an overview of their distribution and ecology. Pp 165170 in Mill, R.R. (ed.). Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Gardner, M.F., Thomas, P., Lara, A. & Escobar, B. 1999. Fitzroya cupressoides. Curtis’s Botanical Magazine 16: 229240.CrossRefGoogle Scholar
Godoy, R., Carillo, R., Hildebrand-Vogel, R. & Vogel, A. 1994. The importance of mycorrhizae in the Fitzroya cupressoides forests of southern Chile. Verhandlungen – Gesellschaft fur Ökologie 23: 135141.Google Scholar
Grosfeld, J. & Barthelemy, D. 2001. Dioecy in Fitzroya cupressoides (Molina) I.M.Johnst. and Pilgerodendron uviferum (D.Don) Florin (Cupressaceae). Comptes Rendus de l’Academie des Sciences, ser III Life Science 324: 245250.Google Scholar
Gutiérrez, A.G., Armest, J.J. & Aravena, J.C. 2004. Disturbance and regeneration dynamics of an old-growth North Patagonian rain forest in Chiloé Island, Chile. Journal of Ecology 92: 598608.CrossRefGoogle Scholar
Hair, J.B. 1968. The chromosomes of the Cupressaceae. 1. Tetraclineae and Actinostrobeae (Callitroideae). New Zealand Journal of Botany 6: 277284.CrossRefGoogle Scholar
Heine, C., Muller, R.D. & Steinberger, B. 2010. Integrating deep earth dynamics in paleogeographic reconstructions of Australia. Tectonophysics 483: 135150.CrossRefGoogle Scholar
Heusser, C.J. 1966. Late-Pleistocene pollen diagrams from the Province of Llanquihue, southern Chile. Proceedings of the American Philosophical Society 110: 269305.Google Scholar
Heusser, C.J. 1982. Palynology of cushion bogs of the Cordillera Pelada, Province of Valdivia, Chile. Quaternary Research 17: 7192.CrossRefGoogle Scholar
Heusser, C.J. 1990. Ice age vegetation and climate of sub-topical Chile. Palaeogeography, Palaeoclimatology, Palaeoclimatology 80: 107127.CrossRefGoogle Scholar
Hill, R.S. & Brodribb, T.J. 1999. Southern conifers in time and space. Australian Journal of Botany 47: 639696.CrossRefGoogle Scholar
Hill, R.S. & Paull, R. 2003. Fitzroya (Cupressaceae) macrofossils from Cenozoic sediments in Tasmania, Australia. Review of Palaeobotany and Palynology 126: 145152.CrossRefGoogle Scholar
Hill, R.S. & Scriven, L.J. 1995. The angiosperm-dominated woody vegetation of Antarctica: a review. Review of Palaeobotany and Palynology 86: 175198.CrossRefGoogle Scholar
Hill, R.S. & Whang, S.S. 1996. A new species of Fitzroya (Cupressaceae) from Oligocene sediments in north-western Tasmania. Australian Systematic Botany 9: 867875.CrossRefGoogle Scholar
Jordan, G.J. & Hill, R.S. 2002. Cenozoic plant macrofossil sites of Tasmania. Papers and Proceedings of the Royal Society of Tasmania 136: 127139.CrossRefGoogle Scholar
Jovane, L., Coccioni, R., Marsili, A. & Acton, G. 2009. Late Eocene Earth: Hothouse icehouse and impacts. Geological Society of America Special Papers 452: 149168.Google Scholar
Konar, R.M. 1962. Investigations on the development of the male cones in Fitzroya cupressoides (Mol.) Johnst. and Pilgerodendron uviferum (Dom.) Flor. Phytomorphology 12: 191195.Google Scholar
Lanyon, R., Varne, R. & Crawford, A.J. 1993. Tasmanian Tertiary basalts, the Balleny Plume, and the opening of the Tasman Sea (southwest Pacific Ocean) Geology 21: 555558.2.3.CO;2>CrossRefGoogle Scholar
Lara, A. 1991a. The dynamics and disturbance regimes of Fitzroya cupressoides forests in the South-Central Andes of Chile. PhD Thesis, University of Colorado, Boulder.Google Scholar
Lara, A. 1991b. A Strategy for the Conservation of Alerce (Fitzroya cupressoides) Forests in Chile. Gland: WWF.Google Scholar
Lara, A. & Villalba, R. 1993. A 3620-year temperature record from Fitzroya cupressoides tree rings in southern South America. Science 260: 11041106.CrossRefGoogle ScholarPubMed
Lara, A., Fraver, S., Aravena, J. & Wolodarsky-Franke, A. 1999. Fire and the dynamics of Fitzroya cupressoides (alerce) forests of Chile’s Cordillera Pelada. Ecoscience 6: 100109.CrossRefGoogle Scholar
Lara, A., Gardner, M.F. & Vergara, R. 2003. The use and conservation of Fitzroya cupressoides (Alerce) forests in Chile. Acta Horticultura 615: 381386.CrossRefGoogle Scholar
Lawver, L.A. & Gahagan, L.M. 2003. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeography, Palaeoclimatology, Palaeoecology 198: 1137.CrossRefGoogle Scholar
Lusk, C.H. & Matus, F. 2000. Juvenile tree growth rates and species-sorting on fine-scale soil fertility gradients in a Chilean temperate rainforest. Journal of Biogeography 27: 10111020.CrossRefGoogle Scholar
Lusk, C.H., Contreras, O. & Figueroa, J. 1997. Growth, biomass allocation and plant nitrogen concentration in seedlings of Chilean temperate rainforest trees: effects of nutrient availability. Oecologia 109: 4958.CrossRefGoogle Scholar
Mancini, M.V. 1998. Vegetational changes during the Holocene in extra-Andean Patagonia, Santa Cruz province, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 138: 207219.CrossRefGoogle Scholar
Mancini, M.V., Prieto, A.R., Paez, M.M. & Schabitz, F. 2008. Late Quaternary vegetation and climate of Patagonia. Developments in Quaternary Sciences 11: 351367.CrossRefGoogle Scholar
Markgraf, V. 1983. Late and Postglacial vegetation and palaeoclimatic changes in subantarctic, temperate and arid environments in Argentina. Palynology 7: 4370.CrossRefGoogle Scholar
Markgraf, V. 1984. Late Pleistocene and Holocene vegetation history of temperate Argentina: Lago Morenito, Bariloche. Dissertationes Botanicae 72: 235254.Google Scholar
Markgraf, V. 1993. Paleoenvironments and paleoclimates in Tierra del Fuego and southernmost Patagonia, South America. Palaeogeography, Palaeoclimatology, Palaeoecology 102: 5368.CrossRefGoogle Scholar
Marks, K.M., Stock, J.M. & Quinn, K.J. 1999. Evolution of the Australian–Antarctic discordance since Miocene time. Journal of Geophysical Research – Solid Earth 104: 49674981.CrossRefGoogle Scholar
McGowran, B., Li, Q.Y., Cann, J., et al. 1997. Biogeographic impact of the Leeuwin Current in southern Australia since the late Middle Eocene. Palaeogeography, Palaeoclimatology, Palaeoecology 136: 1940.CrossRefGoogle Scholar
Molino, J.F. & Sabatier, D. 2001. Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis. Science 294(5547): 17021704.CrossRefGoogle ScholarPubMed
Moore, D.M. 2000. Biogeography: Chile refuges. Nature 408: 532533.CrossRefGoogle ScholarPubMed
Moreno, P.I. 1997. Vegetation and climate near Lago Llanquihue in the Chilean lake district between 200 and 9500, 14Cyr BP. Journal of Quaternary Science 12: 485500.3.0.CO;2-4>CrossRefGoogle Scholar
Moreno, P.I. 2004. Millennial-scale climate variability in northwest Patagonia over the last 15,000 yr. Journal of Quaternary Science 19: 3547.CrossRefGoogle Scholar
Neall, V.E. & Trewick, S.A. 2008. The age and origin of the Pacific Islands: a geological overview. Philosophical Transactions of the Royal Society B 363: 32933308.CrossRefGoogle ScholarPubMed
Neira, E. & Lara, A. 2000. Desarrollo de cronologias de ancho de anolos para alrece (Fitzroya cupressoides) en Contao y Morador (Chile). Revista Chilena de Historia Natural 73: 693703.CrossRefGoogle Scholar
Parker, T. & Donoso, C. 1993. Natural regeneration of Fitzroya cupressoides in Chile and Argentina. Forest Ecology and Management 59: 6385.CrossRefGoogle Scholar
Paull, R. & Hill, R.S. 2010. Early Oligocene Callitris and Fitzroya (Cupressaceae) from Tasmania. American Journal of Botany 97: 809820.CrossRefGoogle ScholarPubMed
Pérez, C.A., Carmona, M.R., Aravena, J.C., Farina, J.M. & Armesto, J.J. 2009. Environmental controls and patterns of cumulative radial increment of evergreen tree species in montane, temperate rainforests of Chiloé Island, southern Chile. Austral Ecology 34: 259271.CrossRefGoogle Scholar
Porter, S.C. 1981. Pleistocene glaciation in the southern Lake District of Chile. Quaternary Research 16: 263292.CrossRefGoogle Scholar
Premoli, A.C., Kitzberger, T. & Veblen, T.T. 2000. Isozyme variation and recent biogeographical history of the long-lived conifer Fitzroya cupressoides. Journal of Biogeography 27: 251260.CrossRefGoogle Scholar
Premoli, A.C., Vergara, R., Souto, C.P., Lara, A. & Newton, A.C. 2003. Lowland valleys shelter the ancient conifer Fitzroya cupressoides in the Central Depression of southern Chile. Journal of the Royal Society of New Zealand 33: 623631.CrossRefGoogle Scholar
Quintanilla-Pérez, V. 2005. Fragilidad del bosque de Fitzroya cupressoides (Mol.) I.M. Johnst., en Andino Patagonico Chileao. Pirineos 160: 6986.CrossRefGoogle Scholar
Rack, F.R. 1993. A geologic perspective on the Miocene evolution of the Antarctic Circumpolar Current system. Tectonophysics 222: 397415.CrossRefGoogle Scholar
Roig, F.A. 1992. Comparative wood anatomy of southern South American Cupressaceae. IAWA Journal 13(2): 151162.CrossRefGoogle Scholar
Roig, F.A. & Villalba, R. 2008. Understanding climate from Patagonian tree rings. Developments in Quaternary Science 11: 411435.CrossRefGoogle Scholar
Rollet, N., Royer, J.Y., Exon, N.F. & Hill, P.J. 1996. The South Tasmanian rise (South Tasmania); a collage of two fragments of eastern Gondwana ? Comptes Rendus de l’Academie des Sciences Ser. Ii, Fasc. A. – Sciences de la Terre et des Planetes 323: 865872.Google Scholar
Royer, J.Y. & Rollet, N. 1997. Plate-tectonic setting of the Tasmanian region. Australian Journal of Earth Sciences 44: 543560.CrossRefGoogle Scholar
Sanhi, B. & Singh, T.C.N. 1931. Notes on the vegetative anatomy and female cones of Fitzroya patagonica (Hook. fils). Journal of the Indian Botanical Society 10: 120.Google Scholar
Scriven, L.J. & Hill, R.S. 1996. Relationships amongst Tasmanian Tertiary Nothofagus (Nothofagaceae) populations. Botanical Journal of the Linnean Society 121: 345364.Google Scholar
Shi, G., Leslie, A.G., Heredneen, P.S., et al. 2014. Whole-plant reconstruction and phylogenetic relationships of Elatides zhoui sp.nov. (Cupressaceae) from the early Cretaceous of Mongolia. International Journal of Plant Science 175: 911930.CrossRefGoogle Scholar
Silla, F., Fraver, S., Lara, A., Allnutt, T.R. & Newton, A. 2002. Regeneration and stand dynamics of Fitzroya cupressoides (Cupressaceae) forests of southern Chile’s Central Depression. Forest Ecology and Management 165: 213224.CrossRefGoogle Scholar
Smith-Ramírez, C. 2007. Regeneration of Fitzroya cupressoides after indigenous and non-indigenous timber harvesting in southern Chilean forests. Forest Ecology and Management 248: 193201.CrossRefGoogle Scholar
Soto, D.P. 2009. New record of Fitzroya cupressoides (Molina) I.M.Johnst. population in its northern limit in Isla del Rey, Chile. Gayana Botánica 66(1):103106.CrossRefGoogle Scholar
Veblen, T. & Ashton, D. 1982. The regeneration status of Fitzroya cupressoides in the Cordillera Pelada, Chile. Biological Conservation 23: 141161.CrossRefGoogle Scholar
Veblen, T., Delmastro, R. & Schlatter, J. 1976. The conservation of Fitzroya cupressiodes and its environment in southern Chile. Environmental Conservation 3: 291301.CrossRefGoogle Scholar
Veblen, T.T., Burns, B.R., Kitzberegeerr, A.L. & Villalba, R. 1995. The ecology of the conifers of southern South America. Pp 120155 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Washington, DC: Smithsonian Institution Press.Google Scholar
Veevers, J.J., Powell, C.M. & Roots, S.R. 1991. Review of sea-floor spreading around Australia. 1. Synthesis of the patterns of spreading. Australian Journal of Earth Sciences 38: 373389.CrossRefGoogle Scholar
Villagran, C. 1988. Expansion of Magellanic moorland during the Late Pleistocene: palynological evidence from northern Isla de Chiloe, Chile. Quaternary Research 29: 294306.CrossRefGoogle Scholar
Villagran, C. 1991. Historia de los bosques templados del sur de Chile durante el Tardiglacial y Postglacial. Revista Chilena de Historia Natural 64: 447460.Google Scholar
Villagran, C. & Armesto, J.J. 1993. Full and late glacial paleoenvironment scenarios for the west coast of southern South America. Pp 195207 in Mooney, H.A., Fuentes, E.R. & Kronberg, B.I. (eds.), Earth System Responses to Global Change: Contrast between North and South America. New York: Academic Press.Google Scholar
Villagran, C. & Hinojosa, L.F. 1997. History of the forests of southern South America. 2. Phytogeographical analysis. Revista Chilena de Historia Natural 70: 241267.Google Scholar
Vuilleumier, F. 1971. Pleistocene changes in the fauna and flora of South America. Science 173: 771780.CrossRefGoogle ScholarPubMed
Waldmann, N., Ariztegui, D., Anselmetti, F.S., Coronato, A. & Austin, J.A. 2010. Geophysical evidence of multiple glacier advances in Lago Fagano (54 degrees S), southernmost Patagonia. Quaternary Science Reviews 29: 11881200.CrossRefGoogle Scholar
Wolodarsky-Franke, A. & Lara, A. 2005. The role of ‘forensic’ dendrochronology in the conservation of alerce (Fitzroya cupressoides (Molina) Johnston) forests in Chile. Dendrochronologia 22: 235240.CrossRefGoogle Scholar
Yang, Z.Y., Ran, J.H. & Wang, X.Q. 2012. Three genome-based phylogeny of Cupressaceae sl: further evidence for the evolution of gymnosperms and Southern Hemisphere biogeography. Molecular Phylogenetics and Evolution 64(3): 452470.CrossRefGoogle ScholarPubMed
Zarin, D.J., Johnson, A.H. & Thomas, S.M. 1998. Soil organic carbon and nutrient status in old-growth montane coniferous watersheds, Isla Chiloé, Chile. Plant and Soil 201: 251258.CrossRefGoogle Scholar
Zhang, J.W., D’Rozario, A., Wang, L.J., Li, Y. & Yao, J.X. 2012. A new species of the extinct genus Austrohamia (Cupressaceae s.l.) in the Daohgou Jurassic flora of China and its phytogeographical implications. Journal of Systematics and Evolution 50: 7282.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Fitzroya
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Fitzroya
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Fitzroya
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.005
Available formats
×