Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T04:11:53.209Z Has data issue: false hasContentIssue false

Chapter 47 - Metasequoia

Cupressales: Sequoiaceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Fairly fast-growing monoecious trees of fully winter-deciduous habit. When young they have a typically conical, tapering crown, long remaining symmetric and spire-like, with slender, level branches bearing masses of small, flattened, soft-textured and highly flexible bright-yellow–green leaves set oppositely in two flattened sub-pinnate ranks.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 140 - 171
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archibald, J.D. 2011. Extinction and Radiation: How the Fall of Dinosaurs Led to the Rise of Mammals. Baltimore, MD: Johns Hopkins University Press.CrossRefGoogle Scholar
Arnold, C.A. & Lowther, J.S. 1955. A new Cretaceous conifer from Northern Alaska. American Journal of Botany 42: 522528.CrossRefGoogle Scholar
Axelrod, D.I. 1986. Cenozoic history of some western American pines. Annals of the Missouri Botanical Garden 73: 565641.CrossRefGoogle Scholar
Axelrod, D.I. 1987 The Late Oligocene Creede Flora, Colorado. Berkeley, CA: University of California Press.Google Scholar
Axelrod, D.I. 1988. An interpretation of high montane conifers in western Tertiary floras. Paleobiology 14(3): 301306.CrossRefGoogle Scholar
Baikovskaya, T.N. 1956. Upper Cretaceous floras of northern Asia. Palaeobotanica 2: 49181.Google Scholar
Basinger, J.F. 1981. The vegetative body of Metasequoia milleri from the Middle Eocene of southern British Columbia. Canadian Journal of Botany 59: 23792410.CrossRefGoogle Scholar
Basinger, J.F. 1984. Seed cones of Metasequoia milleri from the Middle Eocene of southern British Columbia. Canadian Journal of Botany 62: 281289.CrossRefGoogle Scholar
Basinger, J.F. 1991. The fossil forests of the Buchanan Lake Formation (early Tertiary), Axel Heiberg Island, Canadian High Arctic: preliminary floristics and paleoclimate. Geological Survey of Canada Bulletin 403: 3966.Google Scholar
Battles, J.J., Armento, J.J., Vann, D.R., et al. 2002. Vegetation composition, structure and biomass of two unpolluted watersheds in the Cordillera de Piuchue, Chiloé Island, Chile. Plant Ecology 158: 519.CrossRefGoogle Scholar
Bechtel, A., Sachsenhofer, R.F., Markic, M., et al. 2003. Paleoenvironmental implications from biomarker and stable isotope investigations on the Pliocene Velenje lignite seam (Slovenia). Organic Geochemistry 34(9): 12771298.CrossRefGoogle Scholar
Beering, D.J. & Woodward, F.I. 2001. Vegetation and the Terrestrial Carbon Cycle: Modelling the First 4000 Million Years. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Beerling, D.J. & Osborne, C.P. 2002. Physiological ecology of Metasequoia polar forests in a high CO2 environment. Annals of Botany 89: 111.CrossRefGoogle Scholar
Berner, R.A. & Kothavala, Z. 2001. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science 301(2): 182204.CrossRefGoogle Scholar
Blokhina, N.I. 1982. Dopointel’nyye dannyye o paleogena ide Metasequoia klerkiana (Taxodiaceae) [Additional data on the Paleogene species Metasequoia klerkiana (Taxodiaceae)]. Botanicheskii Zhurnal 67: 988996.Google Scholar
Blokhina, N.I. 1995. Petrified wood of Metasequoia from the Miocene of Kamchatka (Korfa Bay). Paleontological Journal 29: 103112.Google Scholar
Boulter, M.C. & Kvaček, Z. 1989. The Palaeocene flora of the Isle of Mull. Palaeontological Association of London Special Papers on Palaeontology 42: 1149.Google Scholar
Brentnall, S.J., Beerling, D.J. & Osborne, C.P. 2005. Climatic and ecological determinants of leaf lifespan in polar forests of the high CO2 Cretaceous ‘greenhouse’ world. Global Change Biology 11: 21772195.CrossRefGoogle ScholarPubMed
Brinkhuis, H. S., Schouten, M.E., Collinson, A., et al. 2006. Episodic fresh surface waters in the Eocene Arctic Ocean. Nature 441: 606609.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodiaceae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Budantsev, L.Y. 1997. Late Eocene flora of Western Kamchatka. Proceedings of the Botanical Institute of the Russian Academy of Sciences 19: 3115.Google Scholar
Canright, J.E. 1972. A first report on the occurrence of Metasequoia in the middle Miocene of Taiwan. American Journal of Botany 59: 660.Google Scholar
Cantrill, D.J. & Poole, I. 2002. Cretaceous patterns of floristic change in the Antarctic Peninsula. Pp 141152 in Crame, J.A. & Owen, A.W. (eds.), Palaeobiogeography and Biodiversity Change: The Ordovician and Mesozoic-Cenozoic Radiations. London: Geological Society of London.Google Scholar
Chaney, R.W. 1947. Tertiary centers and migration routes, in origin and development of natural floristic areas with special reference to North America. Ecological Monographs 17(2): 139148.CrossRefGoogle Scholar
Chaney, R.W. 1951. A revision of fossil Sequoia and Taxodium in western North America based on the recent discovery of Metasequoia. Transactions of the American Philosophical Society New Series 40: 171263.CrossRefGoogle Scholar
Chochiyeva, K.I. 1968. Novye dannye o przdnepliotsenovoi – postpliosenovi rastitel’nosti Zapadnoi Gruzii. Bulletin Academy of Science Georgia SSR 52: 219222 (in Russian).Google Scholar
Chochiyeva, K.I. 1975. Khvarbetskiy Iskopayemyy Khvoynyy Les. [The Khvarbetian Fossil Coniferous Forest]. Tiflis: Metsniyereba.Google Scholar
Chochiyeva, K.I. 1980. The family of Taxodiaceae in the fossil flora of Georgia. Izvestiya Akademii Nauk Gruzinsloi SSR Seriya Biologicheskaya (Bulletin of the Academy of Sciences of the Georgian Soviet Socialist Republic, ser. Biological) 6(1): 6166 (in Russian, with English summary).Google Scholar
Chu, K. & Cooper, W.S. 1950. An ecological reconnaissance in the native home of Metasequoia glyptostroboides. Ecology 31: 260278.CrossRefGoogle Scholar
Chu, L.-L. 1987. Looking at the origin of Sequoia sempervirens from the point of view of karyotype. Acta Botanica Yunnanica 9: 187190 (in Chinese).Google Scholar
Collinson, M.E. 1983. Palaeofloristic assemblages and palaeoecology of the lower Oligocene Bembridge marls, Hamstead Ledge, Isle of Wight. Botanical Journal of the Linnean Society 86: 177225.CrossRefGoogle Scholar
Craggs, H.J. 2005. Late Cretaceous climate signal of the Northern Pekulney range flora of northeastern Russia. Palaeogeography, Palaeoclimatology, Palaeoecology 217: 2546.CrossRefGoogle Scholar
Crane, P.R. & Lidgard, S. 1989. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246: 675678.CrossRefGoogle Scholar
Creber, G.T. & Chaloner, W.G. 1985. Tree growth in the Mesozoic and Early Tertiary and the reconstruction of palaeoclimates. Palaeogeography, Palaeoclimatology and Palaeoecology 52: 3560.CrossRefGoogle Scholar
Daly, R.J., Jolley, D.W. & Spicer, R.A. 2011. The role of angiosperms in Palaeocene Arctic ecosystems: a palynological study from the Alaskan North Slope. Palaeogeography, Palaeoclimatology, Palaeoecology 309(3–4): 374382.CrossRefGoogle Scholar
Dawson, M. R., West, R.M., Langston, W., Jr. & Hutchison, J. H. 1976. Paleogene terrestrial vertebrates: northernmost occurrence, Ellesmere Island, Canada. Science 192(4241): 781782.CrossRefGoogle ScholarPubMed
Dickens, G.R., O’Neil, J.R., Rea, D.K. & Owen, R.M. 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Palaeocene. Paleoceanography 10: 965971.CrossRefGoogle Scholar
Eberle, J.J. 2005. A new ‘tapir’ from Ellesmere Island, Arctic Canada: implications for northern high latitude palaeobiogeography and tapir palaeobiology. Palaeogeography, Palaeoclimatology, Palaeoecology 227: 311322.CrossRefGoogle Scholar
Eberle, J.J. 2006. Early Eocene Brontotheriidae (Perissodactyla) from the Eureka Sound Group, Ellesmere Island, Canadian High Arctic: implications for brontothere origins and high-latitude dispersal. Journal of Vertebrate Paleontology 26: 381386.CrossRefGoogle Scholar
Eberle, J.J. & McKenna, M.C. 2002. Early Eocene Leptictida, Pantolesta, Creodonta, Carnivora, and Mesonychidae (Mammalia) from the Eureka Sound Group, Ellesmere Island, Nunavut. Canadian Journal of Earth Sciences 39(6): 899910.CrossRefGoogle Scholar
Eberle, J., Fricke, H. & Humphrey, J. 2009. Lower-latitude mammals as year-round residents in Eocene Arctic forests. Geology 37(6): 499502.CrossRefGoogle Scholar
Eberle, J.J., Fricke, H.C., Humphrey, J.D., et al. 2010. Seasonal variability in Arctic temperatures during early Eocene time. Earth and Planetary Science Letters 296(3–4): 481486.CrossRefGoogle Scholar
Eckenwalder, J.E. 1976. Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger. Madrõno 23: 237256.Google Scholar
Endo, S. 1951. A record of Sequoia from the Jurassic of Manchuria. Botanical Gazette 113: 228230.Google Scholar
Equiza, M.A., Day, M.E. & Jagels, R. 2006a. Physiological responses of three deciduous conifers (Metasequoia glyptostroboides, Taxodium distichum and Larix laricina) to continuous light: adaptive implications for the early Tertiary polar summer. Tree Physiology 26: 353364.CrossRefGoogle ScholarPubMed
Equiza, M.A., Day, M.E., Jagels, R, & Li, X. 2006b. Photosynthetic downregulation in the conifer Metasequoia glyptostroboides growing under continuous light: the significance of carbohydrate sinks and paleoecophysiological implications. Canadian Journal of Botany 84: 14531461.CrossRefGoogle Scholar
Equiza, M.A., Jagels, R. & Cirelli, D. 2007. Differential carbon allocation in Metasequoia glyptostroboides, Taxodium distichum and Sequoia sempervirens growing under continuous light. Bulletin of the Peabody Museum of Natural History 48(2): 269280.CrossRefGoogle Scholar
Estes, R. & Hutchison, J.H. 1980. Eocene lower vertebrates from Ellesmere Island, Canadian Arctic archipelago. Palaeogeography, Palaeoclimatology, Palaeoecology 30: 325347.CrossRefGoogle Scholar
Falcon-Lang, H.J., MacRae, R.A. & Csank, A.Z. 2004. Palaeoecology of Late Cretaceous polar vegetation preserved in the Hansen Point Volcanics, NW Ellesmere Island, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 212: 4564.CrossRefGoogle Scholar
Falder, A.B., Stockey, R.A. & Rothwell, G.W. 1999. In situ fossil seedlings of a Metasequoia-like taxodiaceous conifer from Paleocene river floodplain deposits of central Alberta, Canada. American Journal of Botany 86: 900902.CrossRefGoogle ScholarPubMed
Farjon, A. & Page, C.N. (eds.) 1999. Conifers: Status Survey and Conifer Action Plan. IUCN/SSC Conifer Specialist Group Report. Gland: IUCN.Google Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 33: 73110.CrossRefGoogle Scholar
Florin, R. 1952. On Metasequoia, living and fossil. Bot. Notiser 105: 129.Google Scholar
Flower, B.P. & Kennett, J.P. 1994. The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology 108: 537555.CrossRefGoogle Scholar
Fowells, H.A. 1965. Silvics of Forest Trees of the United States. Washington, DC: USDA.Google Scholar
Frakes, L.A., Francis, J.E. & Sykus, J.L. 1992. Climate Models of the Phanerozoic. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Francis, J.E. 1991. The dynamics of polar fossil forests: Tertiary fossil forests of Axel Heiberg Island, Canadian Arctic Archipelago. Geological Survey of Canada Bulletin 403: 2938.Google Scholar
Frederiksen, N.O. 1994. Paleocene floral diversities and turnover events in eastern North America and their relation to diversity models. Review of Palaeobotany and Palynology 82(3–4): 225238.CrossRefGoogle Scholar
Fricke, H.C., Clyde, W.C., O’Neil, J.R. & Gingerich, P.D. 1998. Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming). Earth and Planetary Science Letters 160(1–2): 193208.CrossRefGoogle Scholar
Fulling, E.H. 1976. Metasequoia – Fossil and Living: an initial thirty-year (1941–1970) annotated and indexed bibliography with an historical introduction. The Botanical Review 42(3): 215315.CrossRefGoogle Scholar
Gemmill, C.E. & Johnson, K.R. 1997. Paleoecology of a late Paleocene (Tiffanian) megaflora from the northern Great Divide Basin, Wyoming. Palaios 12(5): 439448.CrossRefGoogle Scholar
Graham, A. 1999. The Tertiary history of the northern temperate element in the northern Latin American biota. American Journal of Botany 86(1): 3238.CrossRefGoogle ScholarPubMed
Greenwood, D.R. & Basinger, J.F. 1994. The paleoecology of high-latitude Eocene swamp forests from Axel Heiberg Island, Canadian High Arctic. Review of Palaeobotany and Palynology 81: 8397.CrossRefGoogle Scholar
Greenwood, D.R. & Wing, S.L. 1995. Eocene continental climates and latitudinal temperature gradients. Geology 23: 10441048.2.3.CO;2>CrossRefGoogle Scholar
Greenwood, D.R., Archibald, S.B., Mathewes, R.W. & Moss, P.T. 2005. Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington State: climates and ecosystems across an Eocene landscape. Canadian Journal of Earth Sciences 42(2): 167185.CrossRefGoogle Scholar
Greguss, P. 1955. Identification of Living Gymnosperms on the Basis of Xylotomy. Budapest: Akademia Kiado.Google Scholar
Grier, C.C. & Logan, R.S. 1977. Old-growth Pseudotsuga menziesii communities of a western Oregon watershed: biomass distribution and production budgets. Ecological Monographs 47: 373400.CrossRefGoogle Scholar
Grime, J.P. 2001. Plant Strategies, Vegetation Processes, and Ecosystem Processes, 2nd edn. Chichester: Wiley.Google Scholar
Harland, M., Francis, J.E., Brentnall, S.J. & Beerling, D.J. 2007. Cretaceous (Albian–Aptian) conifer wood from Northern Hemisphere high latitudes: forest composition and palaeoclimate. Review of Palaeobotany and Palynology 143(3–4): 167196.CrossRefGoogle Scholar
Harris, A.S. 1973. Dawn redwood in Alaska. Journal of Forestry 71: 228.Google Scholar
Harris, T.M. 1943. The fossil conifer Elatides williamsoni. Annals of Botany 7: 325339.CrossRefGoogle Scholar
Harris, T.M. 1953. Conifers of the Taxodiaceae from the Wealden Formation of Belgium. Memoirs of the Royal Belgian Institute of Natural Sciences 126: 143.Google Scholar
Harris, T.M. 1979. The Yorkshire Jurassic Flora. 5. Coniferales. London: British Museum.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hase, Y. & Hatanaka, K.I. 1984. Pollen stratigraphical study of the Late Cenozoic sediments in southern Kyushu, Japan. Quaternary Research, Tokyo 23: 120.CrossRefGoogle Scholar
He, Z., Li, J., Cai, Q., Li, X. & Huang, H. 2004. Cytogenetic studies on Metasequoia glyptostroboides, a living fossil species. Genetica 122: 269276.CrossRefGoogle ScholarPubMed
Hejinowicz, A. 1973. Anatomical studies on the development of Metasequoia glyptostroboides Hu et Cheng wood. Acta Soc Acta Poloniae 42: 473491.CrossRefGoogle Scholar
Herman, A.B. 1994. A review of Late Cretaceous floras and climates of Arctic Russia. Pp 127149 in Boulter, M.C. & Fisher, H.C. (eds.), Cenozoic Plants and Climates of the Arctic. Berlin: Springer.CrossRefGoogle Scholar
Herman, A.B. & Spicer, R.A. 1995. Latest Cretaceous flora of northeastern Russia and the ‘terminal Cretaceous event’ in the Arctic. Paleontological Journal 29: 2235.Google Scholar
Herman, A.B. & Spicer, R.A. 1996. Palaeobotanical evidence for a warm Cretaceous Arctic ocean. Nature 380: 330333.CrossRefGoogle Scholar
Herman, A.B. & Spicer, R.A. 1997. New quantitative palaeoclimate data for the Late Cretaceous Arctic: evidence for a warm polar ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 128: 227251.CrossRefGoogle Scholar
Herman, A.B. & Spicer, R.A. 2010. Mid-Cretaceous floras and climate of the Russian high Arctic (Novosibirsk Islands, northern Yakutia). Palaeogeography, Palaeoclimatology, Palaeoecology 295(3–4): 409422.CrossRefGoogle Scholar
Hernández-Castillo, G.R., Stockey, R.A. & Beard, G. 2005. Taxodiaceous pollen cones from the Early Tertiary of British Columbia, Canada. International Journal of Plant Sciences 166(2): 339346.CrossRefGoogle Scholar
Hopkins, D.M. (ed.). 1967. The Bering Land Bridge. Stanford, CA: Stanford University Press.Google Scholar
Hu, H.H. 1946. Notes on a Palaeogene species of Metasequoia in China. Bulletin of the Geological Society of China 26: 105107.CrossRefGoogle Scholar
Hu, H.H. 1948. How Metasequoia, the ‘living fossil’, was discovered in China. Journal of the New York Botanic Garden 49: 201207.Google Scholar
Hu, H.-H. & Cheng, W.C. 1948. On the new family Metasequoiaceae and on Metasequoia glyptostroboides, a living species of the genus Metasequoia found in Szechuan and Hupeh. Bulletin of the Fan Memorial Institute Biology, NS 1: 153161.Google Scholar
Hu, S.-Y. 1980. The Metasequoia flora and its phytogeographic significance. Journal of the Arnold Arboretum 61: 4194.CrossRefGoogle Scholar
Hu, Z.-A., Wang, H.-X. & Liu, C.-J. 1986. Biochemical systematics of Gymnosperms (4): seed protein peptides and needle peroxidases of Taxodiaceae. Acta Phytotaxica Sinica 24: 471473.Google Scholar
Ishida, S., Makinouchi, T., Nishimura, A., et al. 1980. Middle Pleistocene of Kakegawa district, central Japan. The Quaternary Research (Daiyonki-Kenkyu) 19(3): 133147.CrossRefGoogle Scholar
Iwauchi, A. & Hase, Y. 1992. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan – part 5. Yoshino area (Middle Pleistocene). Journal of the Geological Society of Japan 98: 205221.Google Scholar
Jagels, R. & Day, M.E. 2003. The adaptive physiology of Metasequoia to Eocene high-latitude environments. Pp 398429 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. London: Elsevier.Google Scholar
Jagels, R. & Equiza, M.A. 2005. Competitive advantages of Metasequoia in warm, high latitudes. Pp 335349 in LePage, B.A., Williams, C.J. & Yang, H. (eds.), The Geobiology and Ecology of Metasequoia; With Contributions from the 1st International Metasequoia Symposium 2002 Aug 5–7, Wuhan, Hubei, People’s Republic of China. Dordrecht: Springer.Google Scholar
Jagels, R. & Equiza, M.A. 2007. Why did Metasequoia disappear from North America but not from China? Bulletin of the Peabody Museum of Natural History 48: 281290.CrossRefGoogle Scholar
Jagels, R., Visscher, G.E., Lucas, J. & Goodell, B. 2003. Palaeo-adaptive properties of the xylem of Metasequoia: mechanical/hydraulic compromises. Annals of Botany 92: 79-88.CrossRefGoogle Scholar
Jahren, A.H. 2007. The Arctic forest of the middle Eocene. Annual Reviews of Earth Planetary Science 35: 509540.CrossRefGoogle Scholar
Jahren, A.H., LePage, B.A. & Werts, S.P. 2004. Methanogenesis in Eocene Arctic soils inferred from 13C of tree fossil carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology 214: 347358.CrossRefGoogle Scholar
Johnson, K.R. 1992. Leaf-fossil evidence for extensive floral extinction at the Cretaceous–Tertiary boundary, North Dakota, USA. Cretaceous Research 13(1): 91117.CrossRefGoogle Scholar
Kingdon-Ward, F. 1954. Berried Treasure. London: Ward Lock and Co. Ltd.Google Scholar
Kohn, M.J. 1996. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60(23): 48114829.CrossRefGoogle Scholar
Kovar-Eder, J. & Hably, L. 2006. The flora of Mataschen: a unique plant assemblage from the late Miocene of eastern Styria (Austria). Acta Palaeobotanica Krakow 46(2): 157.Google Scholar
Kowalski, E.A. & Dilcher, D.L. 2003. Warmer paleotemperatures for terrestrial ecosystems. Proceedings of the National Academy of Sciences, USA 100: 167170.CrossRefGoogle ScholarPubMed
Kuan, C.-T. 1981. Fundamental features of the distribution of Coniferae in Sichuan. Acta Phytotaxica Sinica 14: 407420 (in Chinese).Google Scholar
Kumagi, H., Sweda, T., Hayashi, K., et al. 1995. Growth-ring analysis of Early tertiary conifer woods from the Canadian High Arctic and its paleoclimatic interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology 116: 247262.CrossRefGoogle Scholar
Kunzmann, L. & Mai, D.H. 2011. The first record of fossil Metasequoia (Cupressaceae) from continental Europe. Review of Palaeobotany and Palynology 164: 247250.CrossRefGoogle Scholar
Kusumi, J., Tsumura, Y., Yoshimaru, H. & Tacida, H. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chiL gene, trnLtrnF IGS region, and trnL intron sequence. American Journal of Botany 87: 14801488.CrossRefGoogle Scholar
LaPasha, C.A. & Miller, C.N. 1981. New taxodiaceous seed cones from the Upper Cretaceous of New Jersey. American Journal of Botany 68: 13741382.CrossRefGoogle Scholar
Lemoigne, Y. 1967. Paleoflore a Cupressales dans le Trias-Rhetien du contentin. Comptes Rendus de l’Academie des Sciences (Paris) 264: 715718.Google Scholar
Leng, Q. 2005. Cuticle analysis of living and fossil Metasequoia. Pp 197217 in LePage, B.A., Williams, C.J. & Yang, H. (eds.), The Geobiology and Ecology of Metasequoia; With Contributions from the 1st International Metasequoia Symposium 2002 Aug 5–7, Wuhan, Hubei, People’s Republic of China. Dordrecht: Springer.Google Scholar
Leng, Q., Yang, H., Yang, Q. & Zhou, J. 2001. Variation of cuticle micromorphology in native population of Metasequoia glyptostroboides (Taxodiaceae). Botanical Journal of the Linnean Society 136: 207219.CrossRefGoogle Scholar
LePage, B. & Basinger, J. 1989. Early Tertiary Larix from the Canadian High Arctic. Musk-Ox 37: 103109.Google Scholar
LePage, B.A., Williams, C.J. & Yang, H. (eds.) 2005. The Geobiology and Ecology of Metasequoia; With Contributions from the 1st International Metasequoia Symposium 2002 Aug 5–7, Wuhan, Hubei, People’s Republic of China. Dordrecht: Springer.Google Scholar
Lesquereux, L. 1883. Contributions to the Fossil Flora of the Western Territories, vol. 3. Washington, DC: US Government Printing Office.Google Scholar
Li, C.X. & Yang, Q. 2002. Polymorphism of ITS sequences of nuclear ribosomal DNA in Metasequoia glyptostroboides. Journal of Genetics and Molecular Biology 13(4): 264271.Google Scholar
Li, C.X. & Yang, Q. 2003. Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae from 28S rDNA sequences. Yi Chuan= Hereditas 25(2): 177180.Google ScholarPubMed
Li, H.-L. 1953. Present distribution and habitats of the conifers and taxads. Evolution 7: 245261.CrossRefGoogle Scholar
Li, H.-L. 1957. The discovery and cultivation of Metasequoia. Morris Arboretum Bulletin 8: 4953.Google Scholar
Li, J. 1999. Metasequoia: an overview of its phylogeny, reproductive biology, and ecotypic variation. Arnoldia 58: 5459.CrossRefGoogle Scholar
Li, L.-C. 1989. Studies on the cytotaxonomy and systematic evolution of Taxodiaceae Warming. Acta Botanica Yunnanica 11: 113131 (in Chinese with English abstract).Google Scholar
Li, L.-C. 1990. Two evolutionary lines of Taxodiaceae. Acta Phytotaxonomica Sinica 28: 19 (in Chinese with English abstract).Google Scholar
Li, X.-D., Huang, H.-W. & Li, J.Q. 2003. Genetic diversity of the relict plant Metasequoia glyptostroboides. Biodiversity Science 11(2): 100108 (in Chinese with English abstract).Google Scholar
Li, Y.-H. 1948. Anatomical study of the wood of ‘Shuisha’ (Metasequoia glyptostroboides Hu et Cheng). Tropical Woods 94: 2829.Google Scholar
Li, Y.Y., Chen, X.-Y., Zhang, X., et al. 2005. Genetic differences between wild and artificial populations of Metasequoia glyptostroboides Hu et Cheng (Taxodiaceae): implications for species recovery. Conservation Biology 19: 224231.CrossRefGoogle Scholar
Li, Z.X. & Powell, C.McA. 2001. An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Science Reviews 53: 237277.CrossRefGoogle Scholar
Liang, H., Chow, K.Y. & Au, C.N. 1948. Properties of a ‘living fossil’ wood (Metasequoia glyptostroboides). Wood Technology 1: 16.Google Scholar
Liu, Y.-J. & Li, C.-S. 2000. On Metasequoia in Eocene age from Liaoning Province of Northeast China. Acta Botanica Sinica 42: 873878.Google Scholar
Liu, Y.-J., Arens, N.C. & Li, C.-S. 2007. Range change in Metasequoia: relationship to palaeoclimate. Botanical Journal of the Linnean Society 154: 115127.CrossRefGoogle Scholar
Liu, Y.-S. & Basinger, J.F. 2009. Metasequoia Hu et Cheng (Cupressaceae) from the Eocene of Axel Heiberg Island, Canadian High Arctic. Palaeontographica Abteilung B-Palaophytologie 282: 6997.CrossRefGoogle Scholar
Longman, A., Dick, J. & Page, C.N. 1982. Cone induction with gibberellin for taxonomic studies in Cupressaceae and Taxodiaceae. Biologia Plantarum 24: 195201.CrossRefGoogle Scholar
López-Pujol, J., Zhang, F.M., Sun, H.Q., Ying, T.S. & Ge, S. 2011. Mountains of southern China as ‘plant museums’ and ‘plant cradles’: evolutionary and conservation insights. Mountain Research and Development 31(3): 261269.CrossRefGoogle Scholar
Ma, J. & Shao, G. 2003. Rediscovery of the first collection of the ‘living fossil’ Metasequoia glyptostroboides. Taxon 52: 585588.CrossRefGoogle Scholar
Ma, Q.-W. & Gu, F.-Q. 2000. Comparative studies on morphological features of some genera in Taxodiaceae. China Bulletin of Botany 17: 161164.Google Scholar
Ma, Q.-W., Ferguson, D.K., Li, F. & Li, C.-S. 2009. Leaf epidermal structure of extant plants of Cunninghamia and Taiwania (Cupressaceae sensu lato) and their taxonomic application. Review of Palaeobotany and Palynology 155: 1524.CrossRefGoogle Scholar
Ma, Q.W., Li, F.L. & Li, C.S. 2005. The coast redwoods (Sequoia, Taxodiaceae) from the Eocene of Heilongjiang and the Miocene of Ongjiang and the Miocene of Yinnan, China. Review of Palaeobotany and Palynology 135: 117129.CrossRefGoogle Scholar
Maekawa, F. 1974. Origin and characteristics of Japan’s flora. Pp 3386 in Numa-Ta, N. (ed.), The Flora and Vegetation of Japan. Tokyo: Kodansha.Google Scholar
Manchester, S.R., Chen, Z., Geng, B.A., Tao, J.U. 2005. Middle Eocene flora of Huadian, Jilin Province, Northeastern China. Acta Palaeobotanica Krakow 45(1): 3.Google Scholar
Manum, S.B. 1963. Some new species of Deflandrea and their probable affinity with Peridinium. Rbok-Norsk Polarinstitutt 1962: 5467.Google Scholar
Markevich, V.S., Golovneva, L.B. & Bugdaeva, E.V. 2005. Floristicheskaya kharakteristika santon-kampanskikh otlozheny Zeisko-Bureinskovo basseina – Priamur’e (summary: The Santonian Campanian flora of the Zeya-Bureya Basin – Amur Region). Pp 198206 in Akhmet’ev, M.A. & German, A.B. (eds.), Sovremennye problemy paleofl oristiki, paleofi togeografi i i fi tostratigrafi i. Moscow: GEOS.Google Scholar
Markwick, P.J. 1998. Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates: implications for using paleontological data in reconstructing microclimates. Palaeogeography, Palaeoclimatology and Palaeoecology 137: 205271.CrossRefGoogle Scholar
Maslova, N.P. 2000. New species of Metasequoia Miki (Taxodiaceae, Coniferales) from the late Paleocene of western Kamchatka. Paleontological Journal 34(1): 98104.Google Scholar
Matsuo, H. 1954. On the Miocene plant fossils from the Hokuriku Region. II. On the genus Metasequoia. Hokiriku Journal of Botany 3: 4548, 58–61 (in Japanese with English summary).Google Scholar
McIntyre, D.J. 1991. Pollen and spore flora of an Eocene forest, Eastern Axel Heiberg Island, N.W.T. Geological Survey of Canada Bulletin 403: 8398.Google Scholar
McKenna, M.C. 1975. Fossil mammals and Early Eocene North Atlantic land continuity. Annals of the Missouri Botanical Garden 62: 335353.CrossRefGoogle Scholar
Meyer, H.W. 2005. Metasequoia in the Oligocene Bridge Creek Flora of Western North America: ecological implications and the history of research. Pp 159186 in LePage, B.A., Williams, C.J. & Yang, H. (eds.), The Geobiology and Ecology of Metasequoia; With Contributions from the 1st International Metasequoia Symposium 2002 Aug 5–7, Wuhan, Hubei, People’s Republic of China. Dordrecht: Springer.Google Scholar
Meyer, H.W. & Manchester, S.R. 1997. The Oligocene Bridge Creek flora of the John Day Formation, Oregon. University of California Publications in Geological Sciences 141: 1195.Google Scholar
Miki, S. 1941. On the change of flora in eastern Asia since Tertiary period. 1. The clay and lignite beds flora in Japan with special reference to the Pinus trifoliate beds in central Hondo. Japanese Journal of Botany 11: 237303.Google Scholar
Miki, S. 1948. Metasequoia, a “living fossil”. Botanica Magazine (Tokyo) 61: 108.CrossRefGoogle Scholar
Miller, C.N. 1975. Petrified cones and needle-bearing twigs of a new taxodiaceous conifer from the Early Cretaceous of California. American Journal of Botany 62: 706713.CrossRefGoogle Scholar
Miller, C.N. 1977. Mesozoic conifers. Biological Review 43: 218280.Google Scholar
Miller, C.N. 1982. Current status of Paleozoic and Mesozoic conifers. Review of Palaeobotany and Palynology 37: 99114.CrossRefGoogle Scholar
Mitchell, A.F. 1972. Conifers in the British Isles. A Descriptive Handbook. London: Her Majesty’s Stationery Office.Google Scholar
Momohara, A. 1993. Early Pleistocene plant extinction and evolution in and around central Japan. Abstract no. 1368 in International Botanical Congress, Tokyo.Google Scholar
Momohara, A. 1994a. Floral and paleoenvironmental history from the Late Pliocene to Middle Pleistocene in and around central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 108(3–4): 281293.CrossRefGoogle Scholar
Momohara, A. 1994b. Paleoecology and paleobiogeography of Metasequoia. Fossils 57: 2430.Google Scholar
Momohara, A. 2005. Palaeoecology and history of Metasequoia in Japan, with reference to its extinction and survival in East Asia. Pp 115156 in LePage, B.A., Williams, C.J. & Yang, H. (eds.), The Geobiology and Ecology of Metasequoia: With Contributions from the 1st International Metasequoia Symposium 2002 Aug 5–7, Wuhan, Hubei, People’s Republic of China. Dordrecht: Springer.CrossRefGoogle Scholar
Mustoe, G.E. 1985. Eocene amber from the Pacific coast of North America. Geological Society of America Bulletin 96(12): 15301536.2.0.CO;2>CrossRefGoogle Scholar
Nakamura, J. 1952. Pollen analyses from two Pliocene beds in Shikoku. Report Kochi University Natural Sciences 2: 14.Google Scholar
Nordt, L.C., Boutton, T.W., Jacob, J.S. & Mandel, R.D. 2002. C4 plant productivity and climate-CO2 variations in south-central Texas during the late Quaternary. Quaternary Research 58(2): 182188.CrossRefGoogle Scholar
Osborne, C.P. & Beerling, D.J. 2003. The penalty of a long, hot summer: photosynthetic acclimation to high CO2 and continuous light in ‘living fossil’ conifers. Plant Physiology 133: 803812.CrossRefGoogle ScholarPubMed
Osborne, C.P., Royer, D.L. & Beeerling, D.J. 2004. Adaptive role of leaf-habit in extinct polar forests. International Forestry Review 6: 181186.CrossRefGoogle Scholar
Page, C.N. 1973. Ferns, polyploids, and their bearing on the evolution of the Canarian flora. Monographia Biologicae Canariensis 4: 8388.Google Scholar
Page, C.N. 1977. An ecological survey of the ferns of the Canary Islands. Fern Gazette 11: 297312.Google Scholar
Page, C.N. 1979. The experimental biology of ferns. Pp 551579 in Dyer, A.F. (ed.), The Experimental Biology of Ferns. London: Academic Press.Google Scholar
Parrish, J.T. 1998. Interpreting Pre-Quaternary Climate from the Geologic Record. New York: Columbia University Press.Google Scholar
Parrish, J.T. & Spicer, R.A. 1988. Cretaceous (Nanushuk Group, Albian–Cenomanian) wetland environments of the North Slope, Alaska. Abstracts, Geological Society of America 30: 366.Google Scholar
Pearson, P.N. & Palmer, M.R. 2000. Atmospheric carbon dioxide concentration over the past 60 million years. Nature 406: 695699.CrossRefGoogle ScholarPubMed
Price, R.A. & Lowenstein, J.M. 1989. An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Systematic Botany 14: 141149.CrossRefGoogle Scholar
Price, R.A., Thomas, J., Strauss, S.H., et al. 1993. Familial relationships of the conifers from rbcL sequence data. American Journal of Botany 80(172): 2233.Google Scholar
Quinn, C.J., Price, R.A. & Gadek, P.A. 2002. Familial concepts and relationships in the conifers based on rbcL and matK sequence comparisons. Kew Bulletin 57: 513531.CrossRefGoogle Scholar
Rasmussen, J. & Koch, E. 1963. Fossil Metasequoia from Mikines, Faroe Islands. Frooskaparvit (Annales Soc. Science Faeroensis) 12: 8396 (in Danish with English summary).Google Scholar
Read, J. & Frances, J. 1992. Responses of some Southern Hemisphere tree species to a prolonged dark period and their implications for high-latitude Cretaceous and Tertiary floras. Palaeogeography, Palaeoclimatology, Palaeoecology 99: 271290.CrossRefGoogle Scholar
Richter, S. L. & LePage, B.A. 2005. A high-resolution palynological analysis, Axel Heiberg Island, Canadian High Arctic. Pp 137158 in LePage, B.A., Williams, C.J. & Yang, H. (eds.), The Geobiology and Ecology of Metasequoia: With Contributions from the 1st International Metasequoia Symposium 2002 Aug 5–7, Wuhan, Hubei, People’s Republic of China. Dordrecht: Springer.CrossRefGoogle Scholar
Ricketts, B.D. 1991. Lower Paleocene drowned valley and barred estuaries, Canadian Arctic Islands: aspects of their geomorphological and sedimentological evolution. Clastic Tidal Sedimentology 16: 91106.Google Scholar
Rothwell, G.W. & Basinger, J.F. 1979. Metasequoia milleri n. sp., anatomically preserved pollen cones from the Middle Eocene (Allenby Formation) of British Columbia. Canadian Journal of Botany 57: 958970.CrossRefGoogle Scholar
Royer, D.L., Osborne, C.P. & Beerling, D.J. 2005. Carbon loss by deciduous trees in a CO2-rich ancient polar environment. Nature 424: 6062.CrossRefGoogle Scholar
Sakai, A. 1971. Freezing resistance of relicts from the Arcto-Tertiary flora. New Phytologist 70: 11991205.CrossRefGoogle Scholar
Schlarbaum, S.E. & Tsuchiya, T. 1984. Cytotaxonomy and phylogeny in certain species of Taxodiaceae. Plant Systematics and Evolution 147: 2954.CrossRefGoogle Scholar
Schloemer-Jaeger, A. 1958. Alttertiaere Pflanzen aus Floezcn der Broegger-halbinsel Spitzbergens. Palaeontographica Abteilung B 104: 39103.Google Scholar
Schoenhut, K. 2005. Ultrastructural preservation in Middle Eocene Metasequoia leaf tissues from the Buchanan Lake Formation. Pp 219252 in LePage, B.A., Williams, C.J. & Yang, H. (eds.), The Geobiology and Ecology of Metasequoia: With Contributions from the 1st International Metasequoia Symposium 2002 Aug 5–7, Wuhan, Hubei, People’s Republic of China. Dordrecht: Springer.CrossRefGoogle Scholar
Serbet, R. & Stockey, R.A. 1991. Taxodiaceous pollen cones from the Upper Cretaceous (Horseshoe Canyon Formation) of Drumheller, Alberta, Canada. Review of Paleobotany and Palynology 70: 6776.CrossRefGoogle Scholar
Seward, A.C. 1933. Plant Life Through the Ages. Cambridge: Cambridge University Press.Google Scholar
Shao, Q.H. 1982. Silviculture of some important tree species in China. Allgemeine Forst Zeitschrift 11: 314315.Google Scholar
Shimada, M. 1953 . The pollen analyses of sonie lignite beds in the north-eastern provinces of Japan. BZCLL Society of Plant Ecology 3.Google Scholar
Spicer, R.A. & Chapman, J.L. 1990. Climate change and the evolution of high-latitude terrestrial vegetation and floras. Trends in Ecology and Evolution 5: 279284.CrossRefGoogle ScholarPubMed
Srinivasan, V. & Friis, E.M. 1989. Taxodiaceous conifers from the Upper Cretaceous of Sweden. Biologiske Skrifter 35: 157.Google Scholar
Stebbins, G.L. 1948. The chromosomes and relationships of Metasequoia and Sequoia. Science 108: 9598.CrossRefGoogle ScholarPubMed
Stockey, R.A., Rothwell, G.W. & Falder, A.B. 2001. Diversity among taxodioid conifers: Metasequoia foxii sp. nov. from the Paleocene of central Alberta, Canada. International Journal of Plant Sciences 162: 221234.CrossRefGoogle Scholar
Sun, G., Quan, C., Sun, C.L., et al. 2005. Some new knowledge on subdivisions and age of Wuyun Formation in Jiayin of Heilongjiang, China. Journal of Jilin University (Geoogical Edition) 35(2): 137142.Google Scholar
Sunderlin, D., Loope, G., Parker, N.E. & Williams, C.J. 2011. Paleoclimatic and paleoecological implications of a Paleocene–Eocene fossil leaf assemblage, Chickaloon Formation, Alaska. Palaios 26(6): 335345.CrossRefGoogle Scholar
Sveshnikova, I.N. 1967. Late Cretaceous Coniferae from the U.S.S.R., I. Fossil Coniferae of the Viliuyian depression. Trud Bot Inst An SSSR Ser 8 Paleobotanika 6: 177203.Google Scholar
Takaso, T. & Tomlinson, P.B. 1992. Seed cone and ovule ontogeny in Metasequoia, Sequoia and Sequoiadendron (Taxodiaceae – Coniferales). Botanical Journal of the Linnean Society 109: 1537.CrossRefGoogle Scholar
Tanai, T. 1961. Neogene floral change in Japan. Journal of the Faculty of Science, Hokkaido University 4(9): 1112.Google Scholar
Tarduno, J.A., Brinkman, D.B., Renne, P.R., et al. 1998. Evidence for extreme climatic warmth from Late Cretaceous Arctic vertebrates. Science 18(5397): 22412243.CrossRefGoogle Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Vann, D.R. 2005. Physiological ecology of Metasequoia glyptostroboides Hu et Cheng. Pp 305333 in LePage, B.A., Williams, C.J. & Yang, H. (eds.), The Geobiology and Ecology of Metasequoia: With Contributions from the 1st International Metasequoia Symposium 2002 Aug 5–7, Wuhan, Hubei, People’s Republic of China. Dordrecht: Springer.CrossRefGoogle Scholar
Vann, D.R., Williams, C.J., & LePage, B.A. 2003. Experimental evaluation of photosystem parameters and their role in the evolution of stand structure and deciduousness in response to paleoclimate seasonality in Metasequoia glyptostroboides (Huet Cheng). Pp 431449 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. London: Elsevier.Google Scholar
Visscher, G.E. & Jagels, R. 2003. Separation of Metasequoia and Glyptostrobus (Cupressaceae) based on wood anatomy. IAWA Journal 24(4): 439450.CrossRefGoogle Scholar
Wang, C.-W. 1961. The forests of China, with a survey of grassland and desert vegetation. Maria Moors Cabot Foundation Publication 5: 1313.Google Scholar
Wang, F.-H. & Chien, N.-F. 1964. Embryogeny of Metasequoia. Acta Botanica Sinica 1: 241262 (in Chinese with English summary).Google Scholar
Wang, X.-Q. & Guo, B.-X. 2002. Suggestions for the protection and study of Metasequoia glyptostroboides. Hubei Forest Science and Technology 1: 2729 (in Chinese).Google Scholar
West, R.M. & Dawson, M.R. 1978. Vertebrate paleontology and the Cenozoic history of the North Atlantic region. Polarforschung 48(1–2): 103119.Google Scholar
Wilf, P. 2000. Late Paleocene–early Eocene climate changes in southwestern Wyoming: paleobotanical analysis. Geological Society of America Bulletin 112(2): 292307.2.0.CO;2>CrossRefGoogle Scholar
Wilf, P. & Labandeira, C.C. 1999. Response of plant–insect associations to Paleocene–Eocene warming. Science 284(5423): 21532156.CrossRefGoogle ScholarPubMed
Wilf, P., Cuneo, N.R., Johnson, K.R., et al. 2003. High plant diversity in Eocene South America: evidence from Patagonia. Science 300: 122125.CrossRefGoogle ScholarPubMed
Williams, C.A., Hanan, N., Scholes, R.J. & Kutsch, W. 2009. Complexity in water and carbon dioxide fluxes following rain pulses in an African savanna. Oecologia 161: 469480.CrossRefGoogle Scholar
Williams, C.J. 2005. Ecological characteristics of Metasequoia glyptostroboides. Pp 285304 in LePage, B.A., Williams, C.J. & Yang, H. (eds.), The Geobiology and Ecology of Metasequoia: With Contributions from the 1st International Metasequoia Symposium 2002 Aug 5–7, Wuhan, Hubei, People’s Republic of China. Dordrecht: Springer.CrossRefGoogle Scholar
Williams, C.J., Johnson, A.H., LePage, B.A., Vann, D.R. & Sweda, T. 2003. Reconstruction of Metasequoia forests. II: Structure, biomass, and productivity of Eocene floodplain forests in the Canadian Arctic. Paleobiology 29: 271292.2.0.CO;2>CrossRefGoogle Scholar
Wing, S.L., Alroy, J. & Hickey, L.J. 1995. Plant and mammal diversity in the Paleocene to Early Eocene of the Bighorn Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 115: 117155.CrossRefGoogle Scholar
Wolfe, J.A. 1972. An interpretation of Alaskan Tertiary floras. Pp 201233 in Graham, A. (ed.). Floristics and Paleofloristics of Asia and Eastern North America. Amsterdam: Elsevier.Google Scholar
Wolfe, J.A. 1977. Paleogene floras from the Gulf of Alaska region: U.S. Geological Survey Professional Paper 997.CrossRefGoogle Scholar
Wolfe, J.A. 1978. A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere. American Science 66: 694703.Google Scholar
Wolfe, J.A. 1979. Temperature parameters of humid to mesic forests of eastern Asia and relation to forests of other regions of the northern hemisphere and Australia. US Geological Survey Professional paper 1106.CrossRefGoogle Scholar
Wolfe, J.A. 1985. Distribution of major vegetational types during the Tertiary. Geophysical Monographs 32: 357375.Google Scholar
Wolfe, J.A. 1987. Late Cretaceous–Cenozoic history of deciduousness and the terminal Cretaceous event. Paleobiology 13: 215226.CrossRefGoogle Scholar
Wolfe, J.A. 1994. Tertiary climatic changes at middle latitudes of western North America. Palaeogeography, Palaeoclimatology, Palaeoecology 108: 195205.CrossRefGoogle Scholar
Wolfe, J.A. 1995. Paleoclimatic estimates from Tertiary leaf assemblages. Annual Review of Earth and Planetary Sciences 23: 119142.CrossRefGoogle Scholar
Wolfe, J.A. & Upchurch, G.R. Jr. 1987. North American nonmarine climates and vegetation during the Late Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology 61: 3377.CrossRefGoogle Scholar
Woodward, F.I. & Kelly, C.K. 2008. Responses of global plant diversity capacity to changes in carbon dioxide concentration and climate. Ecology Letters 11(11): 12291237.CrossRefGoogle Scholar
Xi, Y.-Z. 1986. Studies on pollen morphology of Taxodiaceae. Bulletin of Botanical Research 6(3): 127144.Google Scholar
Xiong, X.Z. 1986. Palaeocene flora from the Wuyun Formation in Jiayin of Heilongjiang. Acta Palaeontologica Sinica 25(5): 571576.Google Scholar
Yamakawa, C., Momohara, A., Nunotani, T., Matsumoto, M & Watano, Y. 2008. Paleovegetation reconstruction of fossil forests dominated by Metasequoia and Glyptostrobus from the late Pliocene Kobiwako Group, central Japan. Paleontological Research 12: 167180.CrossRefGoogle Scholar
Yang, H. 2005. Biomolecules from living and fossil Metasequoia: biological and geological applications. Pp 253281 in LePage, B.A., Williams, C.J. & Yang, H. (eds.), The Geobiology and Ecology of Metasequoia:; With Contributions from the 1st International Metasequoia Symposium 2002 Aug 5–7, Wuhan, Hubei, People’s Republic of China. Dordrecht: Springer.CrossRefGoogle Scholar
Yang, H. & Jin, J.-H. 2000. Phytogeographical history and evolutionary stasis of Metasequoia: geological and genetic information contrasted. Acta Palaeontologica Sinica 39 (suppl.): 288307.Google Scholar
Yao, X., Zhou, Z. & Zhang, B. 1998. Reconstruction of the Jurassic conifer Sewardiodendron laxum (Taxodiaceae). American Journal of Botany 85: 12891300.CrossRefGoogle ScholarPubMed
Yarmolenko, A.V. & Krystofovich, A.N. 1956. Taxodiaceae. Oligotsenovaia flory gory Ashutas v Kazakhstana. Paleobotanika 1: 5159.Google Scholar
Ying, T.-S. & Li, L.-Q. 1981. Ecological distribution of endemic genera of taxads and conifers in China and neighbouring area in relation to phytogeographical significance. Acta Phytotaxonomica Sinica 14: 415425.Google Scholar
Ying, T. S., Zhang, Y. L. & Boufford, D. E. 1993. The Endemic Genera of Seed Plants of China. Beijing: Science Press.Google Scholar
Zachos, J., Oaganini, M., Sloan, I., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686693.CrossRefGoogle ScholarPubMed
Zachos, J.C., Stott, L.D. & Lohmann, K.C. 1994. Evolution of early Cenozoic marine temperatures. Palaeoceanography 9: 353387.CrossRefGoogle Scholar
Zalewska, Z. 1959. The fossil flora of Turow near Bogatinia. Coniferae: Taxodiaceae. Prace Muzeum Ziemi 3: 6973 (in Polish and English).Google Scholar
Zhilin, S.G. 1989. History of the development of the temperate forest flora in Kazakhstan (USSR) from the Oligocene to the Early Miocene. Botanical Review 55: 205.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Metasequoia
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Metasequoia
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Metasequoia
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.011
Available formats
×