Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T04:10:07.125Z Has data issue: false hasContentIssue false

Chapter 54 - Podocarpus

Podocarpales: Podocarpaceae S.S.

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Moderate to large in size, tall and usually long-lived evergreen trees, with multiple slender, widely spaced branch and branchlet systems bearing typically willow-like (salignoid) leaves, which are dorsiventrally flattened to form distinctive upper and lower surfaces, each with a raised midrib along the dorsal side. The whole forms, when mature, usually broad open crowns borne from smoothly thin-barked trunks.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 316 - 356
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdillahi, H.S. 2011. Anti-inflammatory, antioxidant, anti-tyrosinase and phenolic content of four Podocarpus species used in traditional medicine in South Africa. Journal of Ethnopharmacology 136: 496503.CrossRefGoogle ScholarPubMed
Abdillahi, H.S., Stafford, G.I., Finnie, J.F. & von Staden, J. 2010. Ethnobotany, phytochemistry and pharmacology of Podocarpus sensu latissimo (s.l.). South African Journal of Botany 76: 124.CrossRefGoogle Scholar
Adam, P. 1992. Australian Rainforests. Oxford: Clarendon Press.CrossRefGoogle Scholar
Adie, H. & Lawes, M.J. 2009. Explaining conifer dominance in Afrotemperate forests: shade tolerance favours Podocarpus latifolius over angiosperm species. Forest Ecology and Management 259(2): 176186.CrossRefGoogle Scholar
Anderson, J.M. & Anderson, H.M. 2003. Heyday of the Gymnosperms: Systematics and Biodiversity of the Late Triassic Molteno Fructifications. Pretoria: National Botanical Institute.Google Scholar
Archangelsky, S. 1963. A new Mesozoic flora from Tico, Santa Cruz province, Argentina. Bulletin of the British Museum Natural History Geology 8: 492.Google Scholar
Archangelsky, S. & Delfueyo, G. 1989. Squamostrobus gen. N. a fertile podocarp from the early Cretaceous of Patagonia, Argentina. Review of Palaeobotany and Palynology 59: 109126.CrossRefGoogle Scholar
Archangelsky, S. & Romero, E. 1974. Pollen de Gimnospermos (Coniferas) del Cretacico superior y Paleocento de Patagonia. Ameghiniana 11: 217236.Google Scholar
Askin, R.A. 1989. Endemism and heterochronity in the Late Cretaceous (Campanian) to Paleocene palynofloras of Seymour Island, Antarctica: implications for origins, dispersal and palaeoclimates of southern floras. Pp 107119 in Crane, J.A. (ed.), Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Askin, R.A. & Raine, J.I. 2000. Oligocene and Early Miocene terrestrial palynology of the Cape Roberts Drillhole CRP-2/2A, Victoria Land Basin, Antarctica. Terra Antarctica 7: 493501.Google Scholar
Barrett, P.J. 1999. Antarctic climate history over the last 100 million years. Terra Antarctica Reports 3: 5372.Google Scholar
Baylis, G.T.S. 1969. Mycorrhizal nodules and growth in Podocarpus in nitrogen-poor soil. Nature 223: 13851386.CrossRefGoogle Scholar
Baylis, G.T.S., McNabb, R.F.R. & Mossison, T.M. 1963. The root nodules of podocarps. Transactions of the British Mycological Society 46: 378384.CrossRefGoogle Scholar
Beard, J.S. 1977. Tertiary evolution of the Australian flora in the light of latitudinal movements of the continent. Journal of Biogeography 4: 111118.CrossRefGoogle Scholar
Bera, S. & Sen, I. 2004. Podocarpoxylon pantii sp. Nov., first record of podocarpaceous wood from the Tertiary sediments of Bengal Basin, Eastern India. Pp 241247 in Srivastava, P.C. (ed.), Vistas in Palaeobotany and Plant Morphology: Evolutionary and Environmental Perspectives. Lucknow: U.P. Offset.Google Scholar
Berendse, F. & Scheffer, M. 2009. The angiosperm radiation revisited: an ecological explanation for Darwin’s ‘abominable mystery’. Ecological Letters 12: 865872.CrossRefGoogle ScholarPubMed
Bergersen, F.J. & Costin, B. 1964. Root nodules of Podocarpus lawrencei and their ecological significance. Australian Journal of Biological Sciences 17: 4448.CrossRefGoogle Scholar
Bergin, D. O., Kinberley, M.O. & Low, C.B. 2008. Provenance variation in Podocarpus totara (D.Don): growth, tree form and wood density on a coastal site in the north of the natural range, New Zealand. Forest Ecology and Management 255: 13671378.CrossRefGoogle Scholar
Berry, E.W. 1938. Tertiary flora from the Rio Pichileufu, Argentina. Geological Society of America Special Papers 12: 1149.CrossRefGoogle Scholar
Beu, A.G., Griffin, M. & Maxwell, P.A. 1997. Opening of Drake Passage gateway and Late Miocene to Pleistocene cooling reflected in Southern Ocean molluscan dispersal: evidence from New Zealand and Argentina. Tectonophysics 281: 8397.CrossRefGoogle Scholar
Bice, K.L., Huber, B.T. & Norris, R.D. 2003. Extreme polar warmth during the Cretaceous greenhouse? Paradox of the late Turonian δ18O record at Deep Sea Drilling project Site 511. Paleoceanography 18: 1031.CrossRefGoogle Scholar
Biffin, E., Conran, J.G. & Lowe, A.J. 2011. Podocarp evolution: a molecular phylogenetic perspective. Ecology of the Podocarpaceae in tropical forests. Pp 120 in Turner, B. & Cemusak, L. (eds.), Smithsonian Contributions to Botany. Washington, DC: Smithsonian Institution.Google Scholar
Birkenmajer, K., Gaździcki, A. & Krajewaki, K.P. 2005. First Cenozoic glaciers in West Antarctica. Polish Polar Research 26: 312.Google Scholar
Blackburn, D.T. & Sluiter, I.R. 1994. The Oligo-Miocene coal floras of southeastern Australia. Pp 328367 in Hill, R.S. (ed.), Australian Vegetation History: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Blakey, R.C. 2008. Gondwana paleogeography from assembly to breakup: a 500 m.y. odyssey. Pp 128 in Fielding, C.R., Frank, T.D. & Isbell, J.L. (eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Boulder, CO: Geological Society of America.Google Scholar
Bobrov, A.V. & Melikian, A.P. 1998. Spetsificheskie priznakh semennoj kozhur’ i vozmozhnost’ ikh ispol’ovaniya v sistematike semejstva Podocarpaceae Endlicher, 1847. Byull. Mosk. Obshch. Isp. Prir., Otd. Biol. 103(1): 5662.Google Scholar
Bond, W.J. 1989. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society 36: 227249.CrossRefGoogle Scholar
Boyce, C.K., Brodribb, T., Feild, T.S. & Zwieniecki, M.A. 2009. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings of the Royal Society of London B 276: 17711776.Google Scholar
Brea, M., Bellosi, E. & Krause, M. 2009. Taxaceoxylon katuatenkum sp. nov. en la Formación Koluel-Kaike (Eoceno inferior-medio), Chubut, Argentina: un componente de los bosques subtropicales paleógenos de Patagonia. Ameghiniana 46(1): 127140.Google Scholar
Brentnall, S.J., Beerling, D.J. & Osborne, C.P. 2005. Climatic and ecological determinants of leaf lifespan in polar forests of the high CO2 Cretaceous ‘greenhouse’ world. Global Change Biology 11: 21772195.CrossRefGoogle ScholarPubMed
Brodribb, T. & Hill, R.S. 2004. The rise and fall of the Podocarpaceae in Australia: a physiological explanation. Pp 381399 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. London: Academic Press.CrossRefGoogle Scholar
Brodribb, T.J., Pittermann, J. & Coomes, D.A. 2012. Elegance versus speed: examining the competition between conifer and angiosperm trees. International Journal of Plant Sciences 173(6): 673694.CrossRefGoogle Scholar
Brown, M.J. & Hill, R.S. 1999. Regional action plan: conifers of Tasmania. Pp 6371. In Farjon, A. & Page, C.N. (eds.), Status Survey and Conservation Action Plan: Conifers. Gland: IUCN.Google Scholar
Brundrett, M.C. 2002. Coevolution of roots and mycorrhizas of land plants. New Phytologist 154(2): 275304.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Buchholz, J.T. 1941. Embryogeny of the Podocarpaceae. Botanical Gazette 103: 137.CrossRefGoogle Scholar
Buchholz, J.T. & Gray, N.E. 1948. A taxonomic revision of Podocarpus. I. Journal of the Arnold Arboretum 29: 4963.CrossRefGoogle Scholar
Cameron, D.G. 1987. Temperate rainforests of East Gippsland. Pp 3646 in Werren, G. & Kershaw, A.P. (eds.), The Rainforest Legacy: Australian National Rainforests Study. Canberra: AGPS.Google Scholar
Cantrill, D.J. 1991. Broad leaved coniferous foliage from the Lower Cretaceous of southern Victoria, Australia. Alcheringa 15: 177190.CrossRefGoogle Scholar
Cantrill, D.J. 1992. Araucarian foliage from the Lower Cretaceous of southern Victoria, Australia. International Journal of Plant Sciences 153: 622645.CrossRefGoogle Scholar
Cantrill, D.J. 1995 The occurrence of the fern Hausmannia Dunker (Dipteridaceae) in the Cretaceous of Alexander Island, Antarctica. Alcheringa 19: 243254.CrossRefGoogle Scholar
Cantrill, D.J. 1996. Fern thickets from the Cretaceous of Alexander Island, Antarctica, containing Alamatus bifurcates Douglas and Aculea acicularis sp. nov. Cretaceous Research 17: 169182.CrossRefGoogle Scholar
Cantrill, D.J. 1998. Early Cretaceous fern foliage from President Head, Snow Island, Antarctica. Alcheringa 22: 241258.CrossRefGoogle Scholar
Cantrill, D.J. 2000. A Cretaceous (Aptian) flora from President Head, Snow Island, Antarctica. Palaeontographica B, 253: 153191.CrossRefGoogle Scholar
Cantrill, D.J. & Falcon-Lang, H.J. 2001. Cretaceous (Late Albian) Coniferales of Alexander Island, Antarctica. Part 2. Foliage, reproductive structures and roots. Review of Palaeobotany and Palynology 115: 119145.CrossRefGoogle Scholar
Cantrill, D.J. & Poole, I. 2002. Cretaceous patterns of floristic change in the Antarctic Peninsula. Pp 141152 in Crame, J.A. & Owen, A.W. (eds.), Palaeobiogeography and Biodiversity Change: The Ordovician and Mesozoic–Cenozoic Radiations. London: Geological Society of London.Google Scholar
Cantrill, D.J. & Poole, I. 2012. The Vegetation of Antarctica through Geological Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cantrill, D.J., Wanntorp, L. & Drinnan, A.N. 2011. Mesofossil flora from the Late Cretaceous of New Zealand. Cretaceous Research 32: 164173.CrossRefGoogle Scholar
Carpenter, R.J. 1991. Palaeovegetation and environment at Cethana, Tasmania. PhD Thesis, University of Tasmania.Google Scholar
Carpenter, R.J., Hill, R.S. & Jordan, G.J. 1994. Cenozoic vegetation in Tasmania: macrofossil evidence. Pp 276298 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Césari, S.N., Remesal, M. & Parica, C. 2001. Ferns: a palaeoclimatic significant component of the Cretaceous flora from Livingstone Island, Antarctica. Pp 4550 in 7th International Symposium on Mesozoic Terrestrial Ecosystems. Buenos Aires: Associatión Paleontologica Argentina.Google Scholar
Chaloner, W.G. & Creber, G.T. 1989. The phenomenon of forest growth in Antarctica: a review. Pp 8588 in Crane, J.A. (ed.) Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Chaw, S.M., Long, H., Wang, B.-S., Zharkikh, A. & Li, W.-H. 1993. The phylogenetic position of Taxaceae based on 18S rRNA sequences. Journal of Molecular Evolution 37: 624630.CrossRefGoogle ScholarPubMed
Chesson, P.L. & Warner, R.R. 1981. Environmental variability promotes coexistence in lottery competitive systems. The American Naturalist 117(6): 923943.CrossRefGoogle Scholar
Christophel, D.C. 1981. Tertiary megafossil floras of Australia as indicators of floristic associations and the palaeoclimate. Pp 379390 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W. Junk.Google Scholar
Christophel, D.C. 1994. The early Tertiary macrofloras of continental Australia. Pp 263275 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Christophel, D.C. & Blackburn, D.T. 1978. The Tertiary megafossil Flora of Masilin Bay, South Australia – a preliminary report. Alcheringa 2: 311319.CrossRefGoogle Scholar
Christophel, D.C. & Greenwood, D.R. 1988. A comparison of Australian tropical rainforest and Tertiary fossil leaf beds. Proceedings of the Ecological Society of Australia 15: 139148.Google Scholar
Collins, L.S., Coates, A.G., Berggren, W.A., Aubry, M.P. & Zhang, J. 1996. The late Miocene Panama Isthmian Strait. Geology 24(8): 687690.2.3.CO;2>CrossRefGoogle Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Cornelissen, J.H., Diez, P.C. & Hunt, R. 1996. Seedling growth allocation and leaf attributes in a wide range of woody plant species and types. Journal of Ecology 84: 755765.CrossRefGoogle Scholar
Couper, R.A. 1960. Southern Hemisphere Mesozoic and Tertiary Podocarpaceae and Fagaceae and their palaeogeographic significance. Proceedings of the Royal Society of London B. 152: 491500.Google Scholar
Coxall, H.K., Wilson, P.A., Pälike, H., Lear, C.H. & Backman, J. 2005. Rapid stepwise onset of Antarctic glaciations and deeper calcite compensation in the Pacific Ocean. Nature 433; 5357.CrossRefGoogle ScholarPubMed
Davies, B.J., O’Brien, I.E.W. & Murray, B.G. 1997. Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Systematics and Evolution 208: 169185.CrossRefGoogle Scholar
De Conto, R.M. & Pollard, D. 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421: 245249.CrossRefGoogle ScholarPubMed
De Laubenfels, D.J. 1969a. A revision of the Malesian and Pacific rainforest conifers. I. Podocarpaceae, in part. Journal of the Arnold Arboretum 50: 274314.CrossRefGoogle Scholar
De Laubenfels, D.J. 1969b. A revision of the Malesian and Pacific rainforest conifers. I. Podocarpaceae, in part. Journal of the Arnold Arboretum 50: 315369.CrossRefGoogle Scholar
De Laubenfels, D.J. 1985. A taxonomic revision of the genus Podocarpus. Blumea 30(2): 250278.Google Scholar
Dettmann, M.E. 1986. Significance of the Cretaceous–Tertiary spore genus Cyatheacidite in tracing the origin and migration of Lophosoria (Filicopsida). Special Papers in Palaeontology 35: 6394.Google Scholar
Dettmann, M.E. 1989. Antarctic: Cretaceous cradle of austral temperate rainforests ? Pp 89105 in Crane, J.A. (ed.), Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Dettmann, M.E. 1994. Cretaceous vegetation: the microfossil record. Pp 143170 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Dettmann, M.E. & Jarzen, D.M. 1990. The Antarctic/Australasian rift valley: late Cretaceous cradle of northeastern Australasian relicts? Review of Palaeobotany and Palynology 65: 131144.CrossRefGoogle Scholar
Dettmann, M.E. & Jarzen, D.M. 1991. Pollen evidence for Late Cretaceous differentiation of Proteaceae in southern polar forests. Canadian Journal of Botany 69: 901906.CrossRefGoogle Scholar
Dettmann, M.E. & Thomson, M.R.A. 1987. Cretaceous palymorphs from the James Ross island areas, Antarctica: a pilot study. British Antarctic Survey Bulletin 77: 1359.Google Scholar
Dew, J.L. & Wright, P. 1998 Frugivory and seed dispersal by four species of primates in Madagascar’s eastern rain forest. Biotropica 30: 425437.CrossRefGoogle Scholar
Di Pasquo, M. & Martin, J.E. 2013. Palyno assemblages associated with a theropod dinosaur from Snow Hill Island Formation (Lower Maastrichtian) at the Naze, James Ross Island, Antarctica. Cretaceous Research 45: 135154.CrossRefGoogle Scholar
Dickie, I.A. & Holdaway, R.J. 2010. Podocarp roots, mycorrhizas, and nodules. Pp 175187 in Turner, B.L. & Cernusak, L. (eds), Ecology of Podocarpaceae in Tropical Forests. Washington, DC: Smithsonian Institution Scholarly Press.Google Scholar
Diester-Haass, L. & Zahn, R. 1996. Eocene–Oligocene transition in the Southern Ocean: history of water mass circulation and biological productivity. Geology 24: 163166.2.3.CO;2>CrossRefGoogle Scholar
Dilcher, D.L. 1969. Podocarpus from the Eocene of North America. Science 164: 299301.CrossRefGoogle Scholar
Dingle, R.V. & Lavelle, M. 1998. Late Cretaceous Cenozoic climatic variations of the northern Antarctic Peninsula: new geochemical evidence and review. Palaeogeography, Paleoclimatology, Palaeoecology 141: 215232.CrossRefGoogle Scholar
Dodson, J.R. & Macphail, M.K. 2004. Palynological evidence for aridity events and vegetation change during the Middle Pliocene, a warm period in southwestern Australia. Global Planetary Change 41: 34.CrossRefGoogle Scholar
Douglas, J.G. 1994. Cretaceous vegetation: the macrofossil record. Pp 171188 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Douglas, J.G. & Williams, G.E. 1982. Southern polar forests: the Early Cretaceous floras of Victoria and their palaeoclimatic significance. Palaeogeography, Palaeoclimatology, Palaeoecology 39: 171185.CrossRefGoogle Scholar
Doyle, M.F. 1999. Regional action plan: conifers of the oceanic islands of the Insular South Pacific (Fiji, Tonga, Solomon Islands and Vanuatu). Pp 7274 in Farjon, A. & Page, C.N. (eds.), Conifers: Status Survey and Conifer Action Plan. Gland: IUCN.Google Scholar
Drinnan, N. & Chambers, T.C. 1986. Flora of the Lower Cretaceous Koonwarra Fossil Bed (Korumburra Group), South Gippsland, Victoria. In Jell, P.A. & Roberts, J. (eds.), Plants and Invertebrates from the Koonwarra Fossil Bed, South Gippsland, Victoria. Sydney: Association of Australasian Palaeontologists.Google Scholar
Enright, N.J. & Hill, R.S. (eds.). 1995. Ecology of the Southern Conifers. Carlton, Victoria. Washington, DC: Smithsonian Institution Press.Google Scholar
Escapa, I.H. & Catalano, S.A. 2013. Phylogenetic analysis of Araucariaceae: integrating molecules, morphology, and fossils. International Journal of Plant Sciences 174: 11531170.CrossRefGoogle Scholar
Escudero, A., Del Arco, J.M., Sanz, I.C. & Ayala, J. 1992. Effects of leaf longevity and retranslocation efficiency on the retention time of nutrients in the leaf biomass of different woody species. Oecologia 90: 8087.CrossRefGoogle ScholarPubMed
Everard, D.A., Midggley, J.J. & van Wyk, G.F. 1995. Dynamics of some forests in KwaZulu-Natal, South Africa, based on ordinations and size-class distributions. South African Journal of Botany 61: 283292.CrossRefGoogle Scholar
Falcon-Lang, H.J. & Cantrill, D.J. 2002. Terrestrial paleoecology of the Cretaceous (early Aptian) Cerro Negro Formation, South Shetland Islands, Antarctica: a record of polar vegetation in a volcanic arc environment. Palaios 17: 709725.2.0.CO;2>CrossRefGoogle Scholar
Fang, K., Wang, Y., Yu, T., et al. 2008. Isolation of de-exined pollen and cytological studies of the pollen intines of Pinus bungeana Zucc. Ex Endl and Picea wilsonii Mast Flora morphology distribution. Functional Ecology of Plants 203(4): 332340.CrossRefGoogle Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 33: 73110.CrossRefGoogle Scholar
FIVI (Forest Inventory and Planning Institute, Vietnam) 1996. Vietnam Forest Trees. Hanoi: Agricultural Publishing House.Google Scholar
Florin, R. 1940. The Tertiary conifers of southern Chile and their phytogeographical significance. Kungliga Svenska Vetenskapsakademiens Handlingar 19: 1107.Google Scholar
Florin, R. 1958. Notes of the systematics of the Podocarpaceae. Acta Horti Bergiani 17: 403411.Google Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Flory, W.S. 1936. Chromosome numbers and phylogeny in the gymnosperms. Journal of the Arnold Arboretum. 17: 8389.CrossRefGoogle Scholar
Fradkina, A.F. 1985. Paleogene and Neogene in the lower reaches of the Kolyma River. Pp 5265 in Palynological Stratigraphy of Mesozoic and Cenozoic. Russia: Novosibirsk.Google Scholar
Francis, J.E. 1986. Growth rings in Cretaceous and Tertiary wood from Antarctica and their palaeoclimatic interpretations. Palaeontology 29: 665684.Google Scholar
Frederiksen, N.O. 1984. Stratigraphy, paleoclimatic and paleobiogeographic significance of Tertiary sporomorphs from Massachusetts. US Geological Survey Professional Paper 1308: 1–25.Google Scholar
Gee, C.T. 1989. Revision of the Late Jurassic/Early Cretaceous flora from Hope Bay, Antarctica. Palaeontographica B 213: 149214.Google Scholar
Gentry, A.H. 1993. A Field Guide to the Families and Genera of Woody Plants of Northwest South America (Columbia, Ecuador, Peru). Washington, DC: Conservation International.Google Scholar
Gilmore, S. & Hill, K.D. 1997. Relationships of the Wollemi Pine (Wollemia nobilis) and a molecular phylogeny of the Araucariaceae. Telopea 7: 275291.CrossRefGoogle Scholar
Gray, N.E. 1953. A taxonomic revision of Podocarpus VIII. The African species of section Eupodocarpus, subsections A and E. Journal of the Arnold Arboretum 34: 163175.CrossRefGoogle Scholar
Gray, N.E. & Buchholz, J.T. 1948. A taxonomic revision of Podocarpus III. The American species of Podocarpus. Journal of the Arnold Arboretum 19: 117122.Google Scholar
Greenwood, D.R. 1987. Early Tertiary Podocarpaceae megafossils from the Eocene Anglesea locality, Victoria, Australia. Australian Journal of Botany 35: 111133.CrossRefGoogle Scholar
Greenwood, D.R. 1994. Palaeobotanical evidence for Tertiary climates. Pp 4459 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Hair, J.B. 1963. Cytological relationships of the southern Podocarps. Pp 401414 in Gressitt, J.L. (ed.), Pacific Basin Biogeography. Honolulu: Bishop Museum Press.Google Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature, London 181: 15841586.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hewitt, E.J. 1952. Sand and water culture methods used in the study of plant nutrition. Commonwealth Agriculture Bureau, Technical Communication 22: 1241.Google Scholar
Hill, R.S. (ed.). 1994. History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Hill, R.S. 2004. Origins of the southeastern Australian vegetation. Philosophical Transactions of the Royal Society London B 359: 15371549.CrossRefGoogle ScholarPubMed
Hill, R.S. & Brodribb, T.J. 1999. Southern conifers in time and space. Australian Journal of Botany 47: 639696.CrossRefGoogle Scholar
Hill, R.S. & Macphail, M.K. 1994. Tertiary history and origins of the flora and vegetation. In Reid, J.B., Hill, R.S. & Brown, M.J. (eds.), Vegetation of Tasmania. Hobart: Government Printer.Google Scholar
Hill, R.S. & Merrifield, H.E. 1993. An Early Tertiary macroflora from West Dale, south-western Australia. Alcheringa 17: 285326.CrossRefGoogle Scholar
Hill, R.S. & Pole, M. 1992. Leaf and shoot morphology of extant Afrocarpus, Nageia and Retrophyllum (Podocarpaceae) species and species with similar leaf arrangement from Tertiary sediments in Australasia. Australian Systematic Botany 5: 337358.CrossRefGoogle Scholar
Hill, R.S. & Scriven, L.J. 1995. The angiosperm-dominated woody vegetation of Antarctica: a review. Review of Palaeobotany and Palynology 86: 175198.CrossRefGoogle Scholar
Iglesias, A., Wilf, P., Johnson, K.R., et al. 2007. A Paleocene lowland macroflora from Patagonia reveals significantly greater richness than North American analogues. Geology 35: 947950.CrossRefGoogle Scholar
Iglesias, A., Arbate, A.E. & Morel, E.M. 2011. The evolutions of Patagonian climate and vegetation, from the Mesozoic to the present. Botanical Journal of the Linnean Society 103: 409422.CrossRefGoogle Scholar
Ivany, L., Van Simaeys, S., Domack, E.W. & Sampson, S.D. 2006. Evidence for an earliest Oligocene ice sheet on the Antarctic peninsula. Geology 34: 377380.CrossRefGoogle Scholar
Jamieson, S.S.R., Sugden, D.E. & Hulton, N.R.J. 2010. The evolution of the sub-glacial landscape of Antarctica. Earth and Planetary Science Letters 293: 127.CrossRefGoogle Scholar
Janse, J.M. 1897. Les endophytes radicaux de quleques plantes javanaises. Annales du Jardin Botanique se Buitenzorg 14: 53201.Google Scholar
Johns, R.J., Edwards, P.J., Utteridge, T.M.A. & Hopkins, H.C.F. 2006. Alpine and Subalpine Flora of Mount Jaya. London: Royal Botanic Gardens Kew.Google Scholar
Jovane, L., Coccioni, R., Marsili, A. & Acton, G. 2009. Late Eocene Earth: Hothouse icehouse and impacts. Geological Society of America Special Papers 452: 149168.Google Scholar
Kaeiser, M. 1954. Microstructure of wood of Podocarpus. Phytomorphology 4: 3947.Google Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Kelch, D.G. 1998. Phylogeny of Podocarpaceae: comparison of evidence from morphology and 18S rDNA. American Journal of Botany 85: 986996.CrossRefGoogle ScholarPubMed
Kemp, E.M. 1978. Tertiary climatic evolution and vegetation history in the southeast Indian Ocean region. Palaeogeography, Palaeoclimatology, Palaeoecology 24: 169208.CrossRefGoogle Scholar
Keng, H. 1977. Phyllocladus and its bearing on the systematics of conifers. Pp 235251 in Kubitsky, K. (ed.), Flowering Plants: Evolution and Classification of the Higher Categories. New York: Springer.CrossRefGoogle Scholar
Kennett, J.P. 1980. Palaeoceanographic and biogeographical evolution of the Southern Ocean during the Cenozoic, and Cenozoic microfossil datums. Palaeogeography, Palaeoclimatology, Palaeoecology 31: 123152.CrossRefGoogle Scholar
Kershaw, A.P. 1994. Pleistocene vegetation of the humid tropics of northeastern Queensland, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 109: 39412.CrossRefGoogle Scholar
Khan, A.G. 1967. Podocarpus root nodules in sterile culture. Nature 215: 5106.CrossRefGoogle Scholar
Khan, A.M. 1976. Palynology of Tertiary sediments for Papua New Guinea: II. Gymnosperm pollen from Upper Tertiary sediments. Australian Journal of Botany 24: 783791.CrossRefGoogle Scholar
Khoshoo, T.N. 1959. Polyploidy in gymnosperms. Evolution 13: 2439.CrossRefGoogle Scholar
Kimura, T., Ohana, T. & Mimoto, K. 1988. Discovery of a podocarpaceous plant from the Lower Cretaceous of Kohi Prefecture, in the Uter zone of southwest Japan. Proceedings of the Japan Academy B 64: 213216.CrossRefGoogle Scholar
Knopf, P., Schulz, C., Little, D.P., Stützel, T. & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28: 271299.CrossRefGoogle ScholarPubMed
Kondo, T. 1931. Zur Kenntnis des N-Gehaltes des Mykorrhiza-Knölichens von Podocarpus macrophyllus D.Don. Botanical Magazine (Tokyo) 45: 495501 (in Japanese and German).Google Scholar
Krassilov, V.A. 1967. Early Cretaceous Flora of South Primorye and Its Significance to Stratigraphy. Moscow: Nauka.Google Scholar
Krassilov, V.A. 1971. Evolution and systematics of conifers, a critical review. Paleontologiske Zhurnal 1: 720 (in Russian).Google Scholar
Krassilov, V.A. 1974. Podocarpus from the Upper Cretaceous of eastern Asia and its bearing on the theory of conifer evolution. Paleontology 17: 365370.Google Scholar
Lertzman, K.P. 1992. Patterns of gap-phase replacement in a sub-alpine, old-growth forest. Ecology 70: 657669.CrossRefGoogle Scholar
Leslie, A.B., Beaulieu, J.M., Rai, H.S., et al. 2012. Hemisphere-scale differences in conifer evolutionary dynamics. Proceedings of the National Academy of Sciences 109(40): 1621716221.CrossRefGoogle ScholarPubMed
Li, L.-C & Fu, Y.-X. 1996. Studies on the karyotypes and the cytogeography of Cupressus (Cupressaceae). Acta Botanica Sinica 34: 117123.Google Scholar
Li, L.C. 1993. Studies on the karyotype and systematic position of Larix Mill. (Pinaceae). Acta Phytotaxonomica Sinica 31: 405412.Google Scholar
Li, L.C. 1995. Studies on the karyotype and phylogeny of the Pinaceae. Acta Phytotaxonomica Sinica 33: 417432.Google Scholar
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle ScholarPubMed
Liu, G.G. & Leopold, E.B. 1992. Paleoecology of a Miocene flora from Shanwang Formation, Shandong Province, north east China. Palynology 16: 187212.CrossRefGoogle Scholar
Lusk, C.H. 1996. Stand dynamics of the shade-tolerant conifers Podocarpus nubigena and Saxegothaea conspicua in Chilean temperate rain forest. Journal of Vegetation Science 7: 549558.CrossRefGoogle Scholar
Lusk, C.H. & Matus, F. 2000. Juvenile tree growth rates and species-sorting on fine-scale soil fertility gradients in a Chilean temperate rainforest. Journal of Biogeography 27: 10111020.CrossRefGoogle Scholar
Lusk, C.H. & Ogden, J. 1992. Age structure and dynamics of a podocarp-broadleaf forest in Tongariro national park, New Zealand. Journal of Ecology 80: 379393.CrossRefGoogle Scholar
Lusk, C.H. & Smith, B. 1998. Life history differences and tree species coexistence in an old-growth New Zealand rain forest. Ecology 79: 795806.CrossRefGoogle Scholar
Macphail, M.K., Hill, R.S., Forsyth, S.M. & Wells, P.M. 1991. A Late Oligocene–Early Miocene cool climate flora from Tasmania. Alcheringa 15: 87106.CrossRefGoogle Scholar
Macphail, M.K., Alley, N., Truswell, E.M. & Sluiter, I.R.K. 1994. Early Tertiary vegetation: evidence from spores and pollen. Pp 189261 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Marshall, C.W., Chagné, D., Deusch, O., et al. 2015. A DNA-based diagnostic for differentiating among New Zealand endemic Podocarpus. Tree Genetics and Genomes 11: 113.CrossRefGoogle Scholar
McLuckie, J. 1923. Contribution to the morphology and physiology of the root nodules of Podocarpus spinulosus and P. elata. Proceedings of the Linnean Society of New South Wales 48: 8293.Google Scholar
McVaugh, R. 1966. The occurrence of the genus Podocarpus in western Mexico. Ciencia, Mex., 24: 223226.Google Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Melendi, D.L., Scafati, L.H. & Volkheimer, W. 2003. Palynostratigraphy of the Paleogene Huitera Formation in N-W Patagonia. Neues Jahrbuch für Geologie und Paläontologie 228: 205273.CrossRefGoogle Scholar
Menéndez, C.A. 1969. Die fossilen floren Südamerikas. Biogeography and Ecology in South America 2: 519561.Google Scholar
Midgley, J.J., Seydack, A., Reynell, D. & Mckelly, D. 1990. Fine-grain pattern in Southern Cape Plateau forests. Journal of Vegetation Science 1: 539546.CrossRefGoogle Scholar
Midgley, J.J., Bond, W.J. & Geldenhuys, C.J. 1995. The ecology of southern African conifers. Pp 6480 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Melbourne: Melbourne University Press.Google Scholar
Migliore, J., Lézine, A.M. & Hardy, O.J. 2020. The recent colonization history of the most widespread Podocarpus tree species in Afromontane forests. Annals of Botany 126(1): 7383.CrossRefGoogle ScholarPubMed
Mildenhall, D.C. 1976. Early Cretaceous podocarp Megastrobilus. New Zealand Journal of Geology and Geophysics 19(3): 389391.CrossRefGoogle Scholar
Mill, R.R. 2003. Towards a biogeography of the Podocarpaceae. Pp 137147 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Miller, C.N. 1988. The origin of modern conifer families. Pp 448486 in Beck, C.B. (ed.), Origin and Evolution of Gymnosperms. New York: Columbia University Press.Google Scholar
Miller, C.N. 1999. Implications of fossil conifers for the phylogenetic relationships of living families. The Botanical Review 65: 239277.CrossRefGoogle Scholar
Muller, J. 1966. Montane pollen from the Tertiary of northwest Borneo. Blumea 14: 231235.Google Scholar
Murray, B.G., Friesen, N. & Hesop-Harrison, J.S. 2002. Molecular cytogenetic analysis of Podocarpus and comparisons with other gymnosperm species. Annals of Botany 89: 483489.CrossRefGoogle ScholarPubMed
Nakamura, J. & Yamanaka, M. 1992. Vegetation history during the Quaternary in southern Shikoku, Japan. The Quaternary Research (Daiyonki-kenkyu) 31(5): 389397.CrossRefGoogle Scholar
Ogden, J. & Stewart, G.H. 1995. Community dynamics of the New Zealand conifers. Pp 81119 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Washington, DC: Smithsonian Institution Press.Google Scholar
Ogden, J., Fordham, R.A., Horrocks, M, Pilkington, S. & Serra, R.C. 2005. Long-term dynamics of the long-lived conifer Libocedrus bidwillii after a volcanic eruption 2000 years ago Journal of Vegetation Science 16: 321330.Google Scholar
Ornelas, J.F., Ruiz‐Sánchez, E. & Sosa, V. 2010. Phylogeography of Podocarpus matudae (Podocarpaceae): pre‐Quaternary relicts in northern Mesoamerican cloud forests. Journal of Biogeography 37(12): 23842396.CrossRefGoogle Scholar
Orr, M.Y. 1944. The leaf anatomy of Podocarpus. Transactions and Proceedings of the Botanical Society of Edinburgh 34: 154.CrossRefGoogle Scholar
Osborne, C.P. & Beerling, D.J. 2003. The penalty of a long hot summer: photosynthetic acclimation to high CO2 and continuous light in ‘living fossil’ conifers. Plant Physiology 133: 803812.CrossRefGoogle ScholarPubMed
Osborne, C.P., Royer, D.L. & Beeerling, D.J. 2004. Adaptive role of leaf-habit in extinct polar forests. International Forestry Review 6: 181186.CrossRefGoogle Scholar
Page, C.N. 1979. The diversity of ferns: an ecological perspective. Pp 1056 in Dyer, A.F. (ed.), The Experimental Biology of Ferns. London: Academic Press.Google Scholar
Page, C.N. 1982. The Ferns of Britain and Ireland, 1st edn. Cambridge: Cambridge University Press.Google Scholar
Page, C.N. 1988. Ferns: Their Habitats in the Landscape of Britain and Ireland. London: Collins.Google Scholar
Page, C.N. 1990. Araucariaceae. Pp 294299 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Page, C.N. 2002. Ecological strategies in fern evolution: a neopteridological overview. Review of Palaeobotany and Palynology 119: 133.CrossRefGoogle Scholar
Page, C.N. 2004. Adaptive ancientness of vascular plants to exploitation of low-nutrient substrates: a neobotanical overview. Pp 445466 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. Amsterdam: Elsevier Academic Press.Google Scholar
Page, C.N. 2006. Fern range determination within the Atlantic Arc by an environment of complex and interacting factors. Pp 5964 in Leach, S.J., Page, C.N., Peytoureau, Y. & Sandford, M.N. (eds.), Botanical Links in the Atlantic Arc. London: BSBI & English Heritage.Google Scholar
Page, C.N. 2019. New and maintained genera in the taxonomic alliance of Prumnopitys s.l. (Podocarpaceae), and circumscription of a new genus: Pectinopitys. New Zealand Journal of Botany 57(3): 137153.CrossRefGoogle Scholar
Palazzesi, L. & Barreda, V. 2007. Major vegetation trends in the Tertiary in Patagonia (Argentina): a qualitative approach based on palynological evidence. Flora 202: 328337.CrossRefGoogle Scholar
Parrish, J.T., Daniel, I.L., Kennedy, E.M., & Spicer, R.A. 1998. Palaeoclimatic significance of mid-Cretaceous floras from the Middle Clarence Valley, New Zealand. Palaios 13: 149159.CrossRefGoogle Scholar
Pilger, E. 1926. Coniferae. Pp 121407 in Engler, A. & Prantl, K. (eds.), Die Naturlichen Pflanzenfamilien, 2nd edn. Leipzig: Wilhelm Engelmann.Google Scholar
Pole, M.S. 1992. Eocene vegetation from Hasties, north-east Tasmania. Australian Systematic Botany 5: 431475.CrossRefGoogle Scholar
Pole, M.S. 1993. Miocene broad-leaved Podocarpus from Foulden Hills, New Zealand. Alcheringa 17: 173177.CrossRefGoogle Scholar
Pole, M. 1997. Miocene conifers from the Manuherikia Group, New Zealand. Journal of the Royal Society of New Zealand 27: 355370.CrossRefGoogle Scholar
Pole, M.S. 2000. Mid-Cretaceous conifers from the Eromanga Basin, Australia. Australian Systematic Botany 13(2): 153197.CrossRefGoogle Scholar
Powell, C.McA., Roots, S.R. & Veevers, J.J. 1988. Pre-breakup continental extension in East Gondwanaland and the early opening of the eastern Indian Ocean. Tectonophysics 155: 261283.CrossRefGoogle Scholar
Quilty, P.G. 1994. The background: 144 million years of Australian palaeoclimate and palaeogeography. Pp 1443 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Quinn, C.J. 1970. Generic boundaries in the Podocarpaceae. Proceedings of the Linnean Society N.S.W. 94: 166172.Google Scholar
Quinn, C.J. & Price, R.A. 2003. Phylogeny of the Southern Hemisphere conifers. Pp 129133 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Quiroga, M.P., Mathiasen, P., Iglesias, A., Mill, R.R. & Premoli, A.C. 2016. Molecular and fossil evidence disentangle the biogeographical history of Podocarpus, a key genus in plant geography. Journal of Biogeography 43(2): 372383.CrossRefGoogle Scholar
Rack, F.R. 1993. A geologic perspective on the Miocene evolution of the Antarctic Circumpolar Current system. Tectonophysics 222: 397415.CrossRefGoogle Scholar
Read, J. & Francis, J. 1992. Responses of some Southern Hemisphere tree species to a prolonged dark period and their implications for high-latitude Cretaceous and Tertiary floras. Palaeogeography, Palaeoclimatology, Palaeoecology 99(3–4): 271290.CrossRefGoogle Scholar
Read, J. & Hill, R.S. 1988. The dynamics of some rainforest associations in Tasmania. Journal of Ecology 76: 558584.CrossRefGoogle Scholar
Reinink-Smith, L.M. & Leopold, E.B. 2005. Warm climate in the late Miocene of the south coast of Alaska and the occurrence of Podocarpaceae pollen. Palynology 29: 205262.CrossRefGoogle Scholar
Richards, B.N. & Voigt, G.K. 1964. Role of mycorrhiza in nitrogen fixation. Nature 201(4916): 310311.CrossRefGoogle Scholar
Rothwell, G.W., Mapes, G., Stockey, R.A. & Hilton, J. 2012. The seed cone Eathiestrobus gen. nov.: fossil evidence for a Jurassic origin of the Pinaceae. American Journal of Botany 9: 708720.CrossRefGoogle Scholar
Rouse, G.E., Hopkins, W.S. & Piel, K.M. 1971. Palynology of some Late Cretaceous and early tertiary deposits in British Columbia and adjacent Alberta. Geological Society of America Special Papers 127: 213–146.Google Scholar
Royer, D.L., Osborne, C.P. & Beering, D.J. 2003. Carbon loss by deciduous trees in a CO2 rich ancient polar environment. Nature 424: 6062.CrossRefGoogle Scholar
Russell, A.J., Bidartondo, M.I. & Bitterfield, B.G. 2002. The root nodules of Podocarpaceae harbour arbuscular mycorrhizal fungi. New Phytologist 156: 283295.CrossRefGoogle ScholarPubMed
Sato, S. 1963. Palynological study on Miocene sediments of Hokkaido, Japan. Journal of the Faculty of Science, Hokkaido University 4(112): 1130.Google Scholar
Sato, S. 1972. Palynological considerations on Tertiary marine sediments of Hokkaido, compared with animal faunas. Journal of the Faculty of Science, Hokkaido University 15(1–2): 217271.Google Scholar
Saxton, W.T. 1930. The root nodules of Podocarpaceae. South African Journal of Science 27: 323325.Google Scholar
Schoonraad, E. & van der Schjiff, H.P. 1975. Distribution and some interesting morphological aspects of the South African Podocarpaceae. Boissiera 24.Google Scholar
Scotese, C.R. 1998. Quicktime Computer Animations: PALEOMAP Project, Department of Geology, Arlington, Texas. www.scotese.comGoogle Scholar
Seddon, G. & Cameron, D. 1985. Temperate rainforest. Landscape Australia 2(85): 141151.Google Scholar
Silba, J. 1996. A new species of Pseudotaxus Cheng (Taxaceae) from China. Phytologia 81: 322328.Google Scholar
Sirkin, L. & Owens, J.P. 1998. Palynology of latest Neogene (middle Miocene to late Pliocene) strata in the Delmarva Peninsula of Maryland and Virginia. Northeastern Geology and Environmental Sciences 20(2): 117132.Google Scholar
Smith, S.E. & Read, D.J. 2008. Mycorrhizal Symbiosis. Cambridge: Academic Press.Google Scholar
Song, Z.-C. & Zheng, Y.-H. 2000. On Tertiary rain forest in China. Pp 151159 in Song, Z.-C. (ed.), Palynofloras and Palynomorphs of China. Nanching: 10 International Palynological Congress.Google Scholar
Spicer, R.A. & Chapman, J.L. 1990. Climate change and the evolution of high-latitude terrestrial vegetation and floras. Trends in Ecology and Evolution 5: 279284.CrossRefGoogle ScholarPubMed
Spicer, R.A. & Parrish, J.T. 1986. Paleobotanical evidence for cool north polar climates in middle Cretaceous (Albian–Cenomanian) time. Geology 14: 703706.2.0.CO;2>CrossRefGoogle Scholar
Spratt, E.R. 1912. The formation and physiological significance of root nodules in the Podocarpineae. Annals of Botany 25: 643684.Google Scholar
Sternberg, P. 1996. Simulation of the effects of shoot structure and orientation on vertical gradients in intercepted light by conifer canopies. Tree Physiology 16: 99108.CrossRefGoogle Scholar
Stevens, G.R. 1989. The nature and timing of biotic links between New Zealand and Antarctica in Mesozoic and early Cenozoic times. Pp 141166 in Crame, J.A. (ed.), Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Stockey, R.A. 1990. Antarctic and Gondwana conifers. Pp 179191 in Taylor, T.N. & Taylor, E.L. (eds.), Antarctic Paleobiology. New York: Springer.CrossRefGoogle Scholar
Storey, B.C., Dalziel, I.W.D. & Garrett, S.W. 1988. West Antarctica in Gondwanaland: crustal blocks, reconstruction and breakup processes. Tectonophysics 155: 381390.CrossRefGoogle Scholar
Storey, B.C., Leat, P.T., Weaver, S.D., Pankhurst, R.J. & Kelley, S. 1999. Mantle plumes and Antarctica–New Zealand rifting: evidence from mid-Cretaceous mafic dykes. Journal of the Geological Society of London 156: 659671.CrossRefGoogle Scholar
Tanai, T. 1971. Tertiary history of vegetation in Japan. Pp 225245 in Graham, A. (ed.), Floristics and Paleofloristics of Asian and Eastern North America. Amsterdam: Elsevier.Google Scholar
Tomskaya, A.I. 1981. Palinologia Kainozoya Yakutii [Palynology of Yakutia’s Coenozoic]. Novosibirsk (in Russian).Google Scholar
Torres, T. & Méon, H. 1998. Nothofagidites Erdtman ex Potoniédans le Paléogène de l’île Roi Georges, Antarctique. Geobios 31(4): 419435.CrossRefGoogle Scholar
Torres-Romero, J.H. 1988. Podocarpaceae. Pp 173 in Pinto, P. & Lozano, G. (eds.), Flora of Colombia. Bogotá: Universidad Nacional de Colombia.Google Scholar
Torrey, R.E. 1923. The comparative anatomy and phylogeny of the Coniferales. Pt. 3. Mesozoic and Tertiary coniferous woods. Memoirs of the Boston Society of Natural History 6: 41106.Google Scholar
Townrow, J.A. 1965. Notes on Tasmanian pines. I: some Lower Tertiary Podocarps. Papers and Proceedings of the Royal Society of Tasmania 99: 87108.CrossRefGoogle Scholar
Townrow, J.A. 1967a. On Voltiopsis, a southern conifer of Lower Triassic age. Papers and Proceedings of the Royal Society of Tasmania 101: 173188.CrossRefGoogle Scholar
Townrow, J.A. 1967b. On Rissikia and Mataia, podocarpaceous conifers from the Lower Mesozoic of southern lands. Papers and Proceedings of the Royal Society of Tasmania 101: 103136.CrossRefGoogle Scholar
Troedson, A.L. & Smellie, J.L. 2002. Upper Oligocene to lowermost Miocene strata of King George Island, South Shetland Islands, Antarctica: stratigraphy, facies analysis and implications for the glacial history of the Antarctic Peninsula. Journal of Sedimentary Research 72: 510523.CrossRefGoogle Scholar
Truswell, E.M. 1991. Antarctica: a history of terrestrial vegetation. Pp 499537 in Tinget, R.J. (ed.), The Geology of Antarctica. Oxford: Clarendon Press.Google Scholar
Truswell, E.M. & Macphail, M.K. 2009. Polar forests on the edge of extinction: what does the fossil spore and pollen evidence from east Antarctica say? Australian Systematic Botany 22: 57106.CrossRefGoogle Scholar
Upchurch, G.R., Otti-Bliesner, B.L. & Scotese, C.R. 1999. Terrestrial vegetation and its effects on climate during the latest Cretaceous. Pp 407426 in Barrere, E. & Johnson, C.C. (eds.), Evolution of the Cretaceous Ocean–Climate System. Boulder, CO: Geological Society of America.Google Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Van der Hammen, T. & Hooghiemstra, H. 2000. Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quaternary Science Review 19: 725743.CrossRefGoogle Scholar
Veblen, T.T. & Stewart, G. 1980. Comparison of forest structure and regeneration on Bench and Stewart Islands, New Zealand. New Zealand Journal of Ecology 3: 5068.Google Scholar
Veblen, T.T. & Stewart, G. 1982. On the conifer regeneration gap in New Zealand: the dynamics of Libocedrus bidwillii stands on South Island. Journal of Ecology 70: 413436.CrossRefGoogle Scholar
Veblen, T.T., Burns, B.R., Kitzberegeerr, A.L. & Villalba, R. 1995. The ecology of the conifers of southern South America. Pp 120155 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Washington, DC: Smithsonian Institution Press.Google Scholar
Veevers, J.J. 2004. Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangaea to 185–100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating. Earth Science Reviews 68: 1132.CrossRefGoogle Scholar
Wang, B. & Qi, Y.L. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16: 299363.CrossRefGoogle ScholarPubMed
Wardle, P. 1972. Podocarpus totara var. waihoensis var. nov.: the results of introgressive hybridisation between P. totara and P. acutifolius. New Zealand Journal of Botany 10: 195201.CrossRefGoogle Scholar
Webb, L.J. 1959. A physiognomic classification of Australian rainforests. Journal of Ecology 47: 551570.CrossRefGoogle Scholar
Webby, R.F., Makham, K.R. & Molloy, B.P.J. 1987. The characterisation of New Zealand Podocarpus hybrids using flavenoid markers. New Zealand Journal of Botany 25: 355366.CrossRefGoogle Scholar
Wells, A., Duncan, R.P. & Stewart, G.H. 2001. Forest dynamics in Westland, New Zealand: the importance of large, infrequent earthquake-induced disturbance. Journal of Ecology 89: 10061018.CrossRefGoogle Scholar
Wilcox, J.B. & Stagg, H.M.J. 1990. Australia’s southern margin: a product of oblique extension. Tectonophysics 173: 269281.CrossRefGoogle Scholar
Wilf, P. 2012. Rainforest conifers of Eocene Patagonia: attached cones and foliage of the extant Southeast Asian and Australasian genus Dacrycarpus (Podocarpaceae). American Journal of Botany 99: 562584.CrossRefGoogle ScholarPubMed
Wilf, P., Cúneo, N.R., Escapa, I.H., Pol, D. & Woodburne, M.O. 2013. Splendid and seldom isolated: the paleobiogeography of Patagonia. Annual Review of Earth and Planetary Sciences 41: 561603.CrossRefGoogle Scholar
Wilford, G.E. & Brown, P.J. 1994. Maps of late Mesozoic–Cenozoic Gondwana break-up: some palaeogeographical implications. Pp 513 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Williams, A., Ridgway, H.J. & Norton, D.A. 2011. Growth and competitiveness of the New Zealand tree species of Podocarpus cunninghamii is reduced by ex-agricultural AMF but enhanced by forest AMF. Soil Biology and Biochemistry 43: 339345.CrossRefGoogle Scholar
Williams, P.A. & Karl, B.J. 1996. Fleshy fruits of indigenous and adventive plants in the diet of birds in forest remnants, Nelson, New Zealand. New Zealand Journal of Ecology 20: 127145.Google Scholar
Wilson, V.R. & Owens, J.N. 1999. The reproductive biology of totara (Podocarpus totara) (Podocarpaceae). Annals of Botany 83(4): 401411.CrossRefGoogle Scholar
Xu, L., Zhang, X. & Zhang, D. 2019. Using morphotype attributes for the assessment of nutritional responses of Buddhist pine (Podocarpus macrophyllus) seedlings to experimental fertilisation. PLoS One 14: e0225708.CrossRefGoogle Scholar
Yamanoi, T. 1992 The palynoflora of early Middle Miocene sediments in the Pohang and Yangnam Basins, Korea. Pp 437480 in Ishizaki, K. & Saito, T. (eds.), Centenary of Japanese Micropaleontology. Tokyo: Terra Scientific Publishing Company.Google Scholar
Young, D.A., Wright, A.P., Roberts, J.L., et al. 2011. A dynamic early East Antarctic Ice Sheet suggested by ice-covered fjord landscapes. Nature 474: 7275.CrossRefGoogle ScholarPubMed
Zachos, J., Oaganini, M., Sloan, I., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686693.CrossRefGoogle Scholar
Zhou, Q.-X. & Gu, Z.-J. 2001. Kryomorphology of Podocarpus s.l. in Cinna and its systematic significance. Caryologia 54: 121127.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Podocarpus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Podocarpus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Podocarpus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.018
Available formats
×