Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T22:43:58.240Z Has data issue: false hasContentIssue false

Chapter 72 - Saxegothaea

Podocarpales: Saxegotheaceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Monoecious, medium-sized evergreen trees of strongly columnar habit, the crown much-branched, the macronodes marking annual growth increments giving rise to strong annual whorls of branchlet systems arising typically in whorls of five. The simple linear foliage is of markedly yew-like form and remains similar throughout the tree.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 589 - 605
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aravena, J.C., Carmona, M.R., Pérez, C.A. & Armesto, J.J. 2002. Changes in tree species richness, stand structure and soil properties in a successional chronosequence in northern Chiloé Island, Chile. Revista Chilena de Historia Natural 75: 339360.CrossRefGoogle Scholar
Archangelsky, S. & de la Sota, R.E. 1962. Estudio anatómico de un estípite petrifacado de ‘Osmundites’ de edad Jurásica, procedente del Gran Bajo de San Julián, provincia de Santa Cruz. Ameghiniana 2: 153164.Google Scholar
Armesto, J.J. & Figueroa, J. 1987. Stand structure and dynamics in the temperate rain forests of Chiloé Archipelago, Chile. Journal of Biogeography 14: 367376.CrossRefGoogle Scholar
Armesto, J.J., Villagran, C., Aravena, C., et al. 1995. Conifer forests of the Chilean Coastal Range. Pp 156170 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Carlton, VIC: Melbourne University Press.Google Scholar
Armesto, J.J., Villagran, C. & Arroyo, M.K. 1996. Ecologia de los bosques nativos de Chile. Santiago: Editorial Universitaria.Google Scholar
Armesto, J.J., Rozzi, R. & Caspersen, J. 2001. Temperate forests of North and South America. Pp 223249 in Chapin, F.S., Sala, O.E. & Huber-Sannwald, E. (eds.), Global Biodiversity in a Changing Environment: Scenarios for the 21st Century. New York: Springer.CrossRefGoogle Scholar
Axsmith, B.J. & Taylor, T.N. 1997. The Triassic conifer seed cone Glyptolepis. Review of Palaeobotany and Palynology 96: 7179.CrossRefGoogle Scholar
Axsmith, B.J., Taylor, T.N. & Taylor, E.L. 1998. Anatomically preserved leaves of the conifer Notophyllum krauselii (Podocarpaceae) from the Triassic of Antarctica. American Journal of Botany 85: 704713.CrossRefGoogle Scholar
Berry, E.W. 1938. Tertiary flora from the Rio Pichileufu, Argentina. Geological Society of America Special Papers 12: 1149.CrossRefGoogle Scholar
Biffin, E., Conran, J.G. & Lowe, A.J. 2011. Podocarp evolution: a molecular phylogenetic perspective. Ecology of the Podocarpaceae in tropical forests. Pp 120 in Turner, B. & Cemusak, L. (eds.), Smithsonian Contributions to Botany. Washington, DC: Smithsonian Institution.Google Scholar
Brodribb, T. & Hill, R.S. 2004. The rise and fall of the Podocarpaceae in Australia: a physiological explanation. Pp 381399 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. London: Academic Press.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Buchholz, J.T. 1941. Embryogeny of the Podocarpaceae. Botanical Gazette 103: 137.CrossRefGoogle Scholar
Cantrill, D.J. & Poole, I. 2012. The Vegetation of Antarctica through Geological Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Carpenter, R.J. 1991. Palaeovegetation and environment at Cethana, Tasmania. PhD Thesis, University of Tasmania.Google Scholar
Castillo, C.G., Rubio, R., Rouanet, J.L. & Borie, F. 2006. Early effects of tillage and crop rotation on arbuscular mycorrhizal fungal propagules in an Ultisol. Biology and Fertility of Soils 43: 8392.CrossRefGoogle Scholar
Chowdhury, C.R. 1962. The embryology of conifers: a review. Phytomorphology 12: 313338.Google Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Dickie, I.A. & Holdaway, R.J. 2010. Podocarp roots, mycorrhizas, and nodules. Pp 175187 in Turner, B.L. & Cernusak, L. (eds), Ecology of Podocarpaceae in Tropical Forests. Washington, DC: Smithsonian Institution Scholarly Press.Google Scholar
Dilcher, D.L. 1969. Podocarpus from the Eocene of North America. Science 164: 299301.CrossRefGoogle ScholarPubMed
Donoso, C.R. 1993. Bosques Templados de Chile y Argentina: Variacion, Estructura y Dinamica. Santiago del Chile: Editorial Universitaria, Santiago.Google Scholar
Donoso, C., Grez, R., Escobar, B. & Real, P. 1984. Estructura y dinámica de bosques del tipo forestal siempreverde en un sector de Chiloé Insular. Bosque 5: 82104.CrossRefGoogle Scholar
Donoso, C.R., Deus, J.C., Cockbaine, J.C. & Castillo, H. 1986. Variaciones estructurales del tipo forestall Coigue-Rauli-Tepa. Bosque 7: 1735.CrossRefGoogle Scholar
Donoso, P.J. & Lusk, C.H. 2007. Differential effects of emergent Nothofagus dombeyi on growth and basal area of canopy species in an old‐growth temperate rainforest. Journal of Vegetation Science 18(5): 675684.Google Scholar
Doweld, A.B. & Reveal, J.L. 1998. Validation of new suprageneric names in Pinophyta. Phytologia 84: 363367.Google Scholar
Doyle, J. & Looby, W.J. 1939. Embryology in Saxegothaea and its relation to other podocarps. Scientific Proceedings of the Royal Dublin Society 22: 127147.Google Scholar
Erdtman, G. 1965. Pollen and Spore Morphology/Plant Taxonomy. III. Gymnospermae, Bryophyta. Stockholm: Almqvist & Wiksell.Google Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
Florin, R. 1940. The Tertiary conifers of southern Chile and their phytogeographica significance. Kungliga Svenska Vetenskapsakademiens Handlingar 19: 1107.Google Scholar
Gajardo, R., Woltz, P., Gondran, M. & Marguerier, J. 1996. Xylogie des conifères endémiques des Andes méredionales au MEB. I. Saxegotheaceae. Revue de Cytologie et de Biologie Végétales – Le Botaniste 19: 3145.Google Scholar
Gamerro, J.C. 1995. Morphología del pollen de Saxegothaea conspicua (Podocarpaceae). Darwiniana 33: 295300.Google Scholar
Gardner, M.F. & Lara, A. 2003. The conifers of Chile: an overview of their distribution and ecology. Pp 165170 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Gaussen, H. 1973. Les Gymnospermes Actualles et Fossils. Les Podocarpinees. Etudes Général. Travaux Laboratoire Forestière Toulouse 12: 1108.Google Scholar
Gaussen, H. 1974. Les Gymnospermes Actualles et Fossils. Les Podocarpinees sauf Podocarpus. Travaux Laboratoire Forestière Toulouse 13: 1174.Google Scholar
Gaussen, H. 1976. Les Gymnospermes actuelles et fossiles. Genre Podocarpus. Conclusion des Podocarpnes. Travaux du Laboratoire Forestal de Toulouse 14: 150.Google Scholar
Gayoso, A.J. & Guerra, C.J. 2005. Contenido de carbono en la biomasa aérea de bosques nativos en Chile. Bosque (Valdivia) 26(2): 3338.CrossRefGoogle Scholar
Gnaedinger, S. 2007. Podocarpaceae woods (Coniferales) from middle Jurassic La Matilde formation, Santa Cruz province, Argentina. Review of Palaeobotany and Palynology, 147(1–4): 7793.CrossRefGoogle Scholar
Gutiérrez, A.G., Armest, J.J. & Aravena, J.C. 2004. Disturbance and regeneration dynamics of an old-growth North Patagonian rain forest in Chiloé Island, Chile. Journal of Ecology 92: 598608.CrossRefGoogle Scholar
Hair, J.B. 1963. Cytogeographical relationships of the southern podocarps. Pp 401414 in Gressitt, J.L. (ed.), Pacific Basin Biogeography. Honolulu, HI: Bishop Museum Press.Google Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Herbst, R. 2003. Osmundicaulis tehuelchense nov. sp. (Osmundaceae, Filices) from the Middle Jurassic of Santa Cruz province (Patagonia, Argentina). CFS Courier Forschungsinstitut Senckenberg 241: 8595.Google Scholar
Hervé, F., Moreno, H. & Parada, M.A. 1974. Granitoids of the Andean Range, Valdivia Province, Chile. Pacific Geology 8: 3945.Google Scholar
Hill, R.S. & Brodribb, T.J. 1999. Southern conifers in time and space. Australian Journal of Botany 47: 639696.CrossRefGoogle Scholar
Hill, R.S. & Carpenter, R.J. 1989. Tertiary gymnosperms from Tasmania: Cupressaceae. Alcheringa 13: 89102.CrossRefGoogle Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Kelch, D.G. 1998. Phylogeny of Podocarpaceae: a comparison of evidence from morphology and 18S rDNA. American Journal of Botany 85: 986996.CrossRefGoogle ScholarPubMed
Kildahl, N.J. 1908. The morphology of Phyllocladus. Botanical Gazette 46: 339348.CrossRefGoogle Scholar
Kimura, T., Ohana, T. & Mimoto, K. 1988. Discovery of a podocarpaceous plant from the Lower Cetaceous of Kohi Prefecture, in the outer zone of southwest Japan. Proceedings of the Japan Academy B 64: 213216.CrossRefGoogle Scholar
Krassilov, V.A. 1974. Podocarpus from the Upper Cretaceous of eastern Asia and its bearing on the theory of conifer evolution. Paleontology 17: 365370.Google Scholar
Lara, A., Altamirano, A., Thiers, O. & Tacón, A. 2002. Plan de Manejo, Proyecto CIPMA FMAM, Unidad demonstrativa Piloto, Predio San Pablo de Tregua. Valdivia: Facultad de Ciencias Forestales, Unversidad Austral de Chile.Google Scholar
Lawver, L.A. & Gahagan, L.M. 2003. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeography, Palaeoclimatology, Palaeoecology 198: 1137.CrossRefGoogle Scholar
Lindley, J. 1851. Notices of certain ornamental plants lately introduced into England. Journal of the Horticultural Society, London 6: 258273.Google Scholar
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle Scholar
Looby, W.J. & Doyle, J. 1939. The ovule, gametophyte and pro-embryo in Saxegothaea. Scientific Proceedings of the Royal Dublin Society 22: 95117.Google Scholar
Lusk, C.H. 1995. Seed size, establishment sites and species coexistence in Chilean rain forest. Journal of Vegetation Science 6: 249256.CrossRefGoogle Scholar
Lusk, C.H. 1996. Stand dynamics of the shade-tolerant conifers Podocarpus nubigenus and Saxegothaea conspicua in Chilean temperate rain forest. Journal of Vegetation Science 7: 549558.CrossRefGoogle Scholar
Medus, J., Gajardo, R. & Woltz, P. 1989. Exine structure of Dacrydium fonkii, Saxegothaea conspicua and Syachycarpus andinus (Podocarpaceae) from South America. Grana 28: 1923.CrossRefGoogle Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Melikan, A.P. & Bobrov, A.V.F.C. 2000. Morphology of female reproductive structures and the experience of building of phylogenetic system of the orders Podocarpales, Cephalotaxales and Taxales. Botanichekij Zhurnal 85: 5068 (in Russian).Google Scholar
Mill, R.R. 2003. Towards a biogeography of the Podocarpaceae. Pp 137147 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Mill, R.R. & Stark Schilling, D.M. 2009. Cuticle micromorphology of Saxegothaea (Podoacarpaceae). Botanical Journal of the Linnean Society 159: 5867.CrossRefGoogle Scholar
Miller, C.N. 1988. The origin of modern conifer families. Pp 448486 in Beck, C.B. (ed.), Origin and Evolution of Gymnosperms. New York: Columbia University Press.Google Scholar
Miller, C.N. 1999. Implications of fossil conifers for the phylogenetic relationships of living families. The Botanical Review 65: 239277.CrossRefGoogle Scholar
Molino, J.F. & Sabatier, D. 2001. Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis. Science 294(5547): 17021704.CrossRefGoogle ScholarPubMed
Morvan, J. 1990. Ontogenèse et phylogénie comparées du cône femelle chex Saxegothaea conspicua Lindl. Saxegotheaeacées et Microcachrys tetragonal Hook. Podocarpacées. Comtes Rendys de l’Académie des Sciences, Série III, Sciences de la Vie 310: 651656.Google Scholar
Niklitschek, M.J.C. 2008. Caracterizatión de estructura de crecimiento vegetativo que desarrolla Saxegothaea conspicua en su etapa de senesencia. Valdivia: Facultad de Ciencias Forestales, Unversidad Austral de Chile.Google Scholar
Paull, R. & Hill, R.S. 2008. Oligocene Austrocedrus from Tasmania (Australia): comparisons with Austrocedrus chilensis. International Journal of Plant Sciences 169: 315330.CrossRefGoogle Scholar
Pérez, C.A., Carmona, M.R., Aravena, J.C., Farina, J.M. & Armesto, J.J. 2009. Environmental controls and patterns of cumulative radial increment of evergreen tree species in montane, temperate rainforests of Chiloé Island, southern Chile. Austral Ecology 34: 259271.CrossRefGoogle Scholar
Price, R.A. & Lowenstein, J.M. 1989. An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Systematic Botany 14: 141149.CrossRefGoogle Scholar
Quinn, C.J. 1970. Generic boundaries in the Podocarpaceae. Proceedings of the Linnean Society of New South Wales 94: 166172.Google Scholar
Reymanówna, M. 1987. A Jurassic podocarp from Poland. Review of Palaeobotany and Palynology 51: 133143.CrossRefGoogle Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Stiles, W. 1908. The anatomy of Saxegothaea conspicua Lindl. New Phytologist 7: 207220.CrossRefGoogle Scholar
Thomson, R.B. 1909. The megasporophyll of Saxegothaea and Microcachrys. Botanical Gazette 47: 345354.CrossRefGoogle Scholar
Townrow, J.A. 1967. On Rissikia and Mataia podocarpaceous conifers from the Lower Mesozoic of southern lands. Papers and Proceedings of the Royal Society of Tasmania 101: 103136.CrossRefGoogle Scholar
Veblen, T.T. 1985. Stand dynamics in Chilean Nothofagus forests. Pp 3551 in Pickett, S.T.A. and White, P.S. (eds.), The Ecology of Natural Disturbance and Patch Dynamics. New York: Academic Press.Google Scholar
Veblen, T.T. & Ashton, D.H. 1978. Catastrophic influences on the vegetation of the Valdivian Andes, Chile. Vegetatio 36: 149167.CrossRefGoogle Scholar
Veblen, T.T. & Ashton, D.H. 1982. The regeneration status of Fitzroya cupressoides in the Cordillera Pelada, Chile. Biological Conservation 23: 141161.CrossRefGoogle Scholar
Veblen, T.T., Schlegel, F.M.B. & Escobar, R. 1980. Structure and dynamics of old-growth Nothofagus forests in the Valdivian Andes, Chile. Journal of Ecology 68: 131.CrossRefGoogle Scholar
Veblen, T.T., Donoso, C., Schlegel, F.M. & Escobar, B. 1981. Forest dynamics in south-central Chile. Journal of Biogeography 8: 211247.CrossRefGoogle Scholar
Veblen, T., Kitzberger, T. & Lara, A. 1992. Disturbance and forest dynamics along a transect from Andean rain-forest to Patagonian shrubland. Journal of Vegetation Science 3: 507520.CrossRefGoogle Scholar
Veblen, T.T., Burns, B.R., Kitzberegeerr, A.L. & Villalba, R. 1995. The ecology of the conifers of southern South America. Pp 120155 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Washington, DC: Smithsonian Institution Press.Google Scholar
Veblen, T.T., Donoso, C., Kitzberger, T. & Rebertus, A.J. 1996. Ecology of southern Chilean and Argentinean Nothofagus forests. Pp 293353 in Veblen, T.T., Hill, R.S. & Read, J. (eds.), The Ecology and Biogeography of Nothofagus Forests. New Haven, CT: Yale University Press.Google Scholar
Villagran, C., Leon, A. & Roig, F.A. 2004. Paleodistribution of the alerce and cypress of the Guaitecas during the interstadial stages of the Llanquihue Glaciation, Llanquihue and Chiloé Provinces, Los Lagos region, Chile. Revista Geología de Chile 31: 133151.Google Scholar
Wilf, P. 2012. Rainforest conifers of Eocene Patagonia: attached cones and foliage of the extant Southeast Asian and Australasian genus Dacrycarpus (Podocarpaceae). American Journal of Botany 99: 562584.CrossRefGoogle Scholar
Wilf, P., Little, S.A., Iglesias, A., et al. 2009. Papuacedrus (Cupressaceae) in Eocene Patagonia, a new fossil link to Australasian rainforests. American Journal of Botany 96: 20312047.CrossRefGoogle Scholar
Wilf, P., Escapa, I.H., Cúneo, N.R., et al. 2014. First South American Agathis (Araucariaceae), Eocene of Patagonia. American Journal of Botany 101: 156179.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Saxegothaea
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.036
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Saxegothaea
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.036
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Saxegothaea
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.036
Available formats
×