Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T18:08:17.392Z Has data issue: false hasContentIssue false

10 - Scale A: Modeling and Simulations for Dislocation Substructures

from Part III - Applications I

Published online by Cambridge University Press:  14 December 2023

Tadashi Hasebe
Affiliation:
Kobe University, Japan
Get access

Summary

As we have seen in Chapter 3, much of the microscopic “specificities” are renormalized into a limited number of degrees of freedom at dislocation substructure scale (Scale A), especially into those with “cellular” morphology, essentially extending over 3D crystalline space. Therefore, as a critical step toward the successful multiscale plasticity, we are required to be ready to answer the following questions about the 3D cell structure; “why do they need the 3D ‘cellular’ morphology?,” “what is the substantial role, especially against the mechanical properties?,” why does the well-documented ‘universality’ manifested as a similitude law, hold?, and “how the microscopic degrees of freedom (information) are stored and when will they be released?” The first goal of this chapter is to derive an effective theory governing the dislocation substructure evolutions, particularly, cellular patterning, from a dislocation theory-based microscopic description of Hamiltonian through a rational “coarse-graining” procedure provided by the method of quantum field theory (QFT) (see Chapter 8). Secondly, after presenting some representative simulation results, an extensive series of discussions on the cell formation mechanisms and the mechanical roles are discussed and identified.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×