Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T17:26:38.737Z Has data issue: false hasContentIssue false

A local characterization of the graphs of alternating forms

Published online by Cambridge University Press:  07 September 2010

A. Munemasa
Affiliation:
This research was completed during this author's visit at the Institute for System Analysis, Moscow, as a Heizaemon Honda fellow of the Japan Association for Mathematical Sciences.
S. V. Shpectorov
Affiliation:
A part of this research was completed during the visit at University of Technology, Eindhoven.
F. de Clerck
Affiliation:
Universiteit Gent, Belgium
J. Hirschfeld
Affiliation:
University of Sussex
Get access

Summary

Abstract

Let Δ be the line graph of PG(n – 1, q), q > 2, Alt(n, q) be the graph of the n-dimensional alternating forms over GF(q), n ≥ 4. It is shown that every connected locally Δ graph, such that the number of common neighbours of any pair of vertices at distance two is the same as in Alt(n, q), is covered by Alt(n, q).

Introduction

There have been extensive studies in local characterization of graphs. Certain strongly regular graphs are characterized by their local structure. In this paper we shall investigate graphs which are locally a (q – l)-clique extension of the Grassmann graph over GF(q), q > 2. The Grassmann graph has as vertices all 2-spaces of an n-dimensional vector space V over GF(q). Two vertices are adjacent whenever they intersect nontrivially. The alternating forms graph Alt(n, q) is locally a (q – l)-clique extension of. In this paper, we restrict ourselves to the case μ = q2(q2 + 1), i.e., the number of common neighbours of two vertices at distance 2 is always q2(q2 + 1). Under the assumption μ = q2(q2 + 1), Alt(4, q) is the only graph which is locally (q – l)-clique extension of with n = 4. This result follows from the classification of affine polar spaces due to Cohen and Shult [2].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • A local characterization of the graphs of alternating forms
    • By A. Munemasa, This research was completed during this author's visit at the Institute for System Analysis, Moscow, as a Heizaemon Honda fellow of the Japan Association for Mathematical Sciences., S. V. Shpectorov, A part of this research was completed during the visit at University of Technology, Eindhoven.
  • Edited by F. de Clerck, Universiteit Gent, Belgium, J. Hirschfeld, University of Sussex
  • Book: Finite Geometries and Combinatorics
  • Online publication: 07 September 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511526336.028
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • A local characterization of the graphs of alternating forms
    • By A. Munemasa, This research was completed during this author's visit at the Institute for System Analysis, Moscow, as a Heizaemon Honda fellow of the Japan Association for Mathematical Sciences., S. V. Shpectorov, A part of this research was completed during the visit at University of Technology, Eindhoven.
  • Edited by F. de Clerck, Universiteit Gent, Belgium, J. Hirschfeld, University of Sussex
  • Book: Finite Geometries and Combinatorics
  • Online publication: 07 September 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511526336.028
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • A local characterization of the graphs of alternating forms
    • By A. Munemasa, This research was completed during this author's visit at the Institute for System Analysis, Moscow, as a Heizaemon Honda fellow of the Japan Association for Mathematical Sciences., S. V. Shpectorov, A part of this research was completed during the visit at University of Technology, Eindhoven.
  • Edited by F. de Clerck, Universiteit Gent, Belgium, J. Hirschfeld, University of Sussex
  • Book: Finite Geometries and Combinatorics
  • Online publication: 07 September 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511526336.028
Available formats
×