Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T05:46:27.413Z Has data issue: false hasContentIssue false

8 - Electric Resistivity

Published online by Cambridge University Press:  19 November 2021

Nikolai Bagdassarov
Affiliation:
Goethe-Universität Frankfurt Am Main
Get access

Summary

Electrical conductivity and resistance obey Ohm’s law. Specific resistance may be measured in two- or four-electrode schemes. Mechanisms of electrical conductivity in rocks are ionic, electronic, anionic and protonic. Some mantle minerals, i.e. olivine, possess polaron conductivity. Conduction bands and density of states are considered for some minerals. Effective conductivity in heterogeneous rocks can be estimated from Wiener or Hashin–Shtrikman bounds, effective medium approximation (EMA) and resistor network models. The electrical conductivity of mineral aggregates can be effectively described by brick and percolation models. Diluted electrolytes and Kohlrausch’s law of independent movement of ions are considered in fluid-bearing rocks, whose electric conductivity obeys Archie’s law. Formation factor and cementation exponent are analyzed for sedimentary rocks. The relationship between rock conductivity and pore saturation is described by the Waxman–Smith model. Focus Box 8.1: Calculations of density of states (Fermi gas model). Focus Box 8.2: Reciprocal lattice and band gaps. Focus Box 8.3: Olivine structure.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature

Anderson, W. G. (1986). Wettability literature survey – Part 3: The effects of wettability on the electrical properties of porous media. Society of Petroleum Engineers 38, 13711378. doi:10.2118/13934-PA.Google Scholar
Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the American Institute of Mining, Metallurgical & Petroleum Engineers 146, 5467.Google Scholar
Braun, A. & Chen, Q. (2017). Experimental neutron scattering evidence for proton polaron in hydrated metal oxide proton conductor. Nature Communication 8, 15830. doi:10.1038/ncomms15830.CrossRefGoogle Scholar
Bryant, S. & Pallatt, N. (1996). Predicting formation factor and resistivity index in simple sandstones. Journal of Petroleum Science and Engineering 15, 169179.CrossRefGoogle Scholar
Carothers, J. E. (1968). A statistical study of the formation factor relation. Log Analyst, 9(5), 1320.Google Scholar
Carter, C. B. & Norton, M. G. (2013). Ceramic Materials Science and Engineering. Springer, New York, Heidelberg, Dordrecht, London, p. 766.CrossRefGoogle Scholar
Debye, P. P. & Conwell, E. M. (1954). Electrical properties of n-type germanium. Physical Review 93, 693706.CrossRefGoogle Scholar
Fleig, J. & Maier, J. (1999). Finite-element calculations on the impedance of electroceramics with highly resistive grain boundaries: I, Laterally inhomogeneous grain boundaries. Journal of the American Ceramic Society 82(12), 34853493.CrossRefGoogle Scholar
Ghanbarian, B. & Berg, C. F. (2017). Formation factor in Bentheimer and Fontainebleau sandstones: Theory compared with pore-scale numerical simulations. Advances in Water Resources 107, 139146.CrossRefGoogle Scholar
Ghanbarian, B., Hunt, A. G., Ewing, R. P. & Skinner, T. E. (2014). Universal scaling of the formation factor in porous media derived by combining percolation and effective medium theories. Geophysical Research Letters 41, 38843890. doi:10.1002/2014GL060180.CrossRefGoogle Scholar
Goddat, A., Peyronneau, J. & Poirier, J. P. (1999). Dependence on pressure of conduction by hopping of small polarons in minerals of the Earth’s lower mantle. Physics and Chemistry of Minerals 27, 8187.CrossRefGoogle Scholar
Gomez-Rivero, O. (1976). A practical method for determining cementation exponents and some other parameters as an aid in well log analysis. Log Analyst 17(5), 139.Google Scholar
Gomez-Rivero, O. (1977). Some considerations about the possible use of the parameters a and m as a formation evaluation tool through well logs. Transactions of the SPWLA 18th Annual Logging Symposium, pp. 124.Google Scholar
Guéguen, Y. & Palciauskas, V. (1994). Introduction to the Physics of Rocks. Princeton University Press, Princeton, p. 295.Google Scholar
Hashin, Z. & Shtrikman, S. (1962). A variational approach to the theory of the effective magnetic permeability of multiphase materials. Journal of Applied Physics 33, 31253131. doi:10.1063/1.1728579.CrossRefGoogle Scholar
Heile, S. M., West, D. L. & Cambell, J. (1998). The role of microstructure and processing on the proton conducting properties of gadolinium-doped barium cerate. Journal of Materials Research 13(6), 15761595.CrossRefGoogle Scholar
Hellwege, K. H. (1988). Einführung in die Festkörperphysik, Springer-Verlag Berlin Heidelberg, DOI: 10.1007/978-3-642-96611-8Google Scholar
Hill, H. J. & Milburn, J. D. (1956). Effect of clay and water salinity on electrochemical behavior of reservoir rocks. Transactions of the AIME 207, 6572.CrossRefGoogle Scholar
Hiramatsu, H., Yusa, H., Igarashi, R., et al. (2017). An exceptionally narrow band-gap (~4 eV) silicate predicted in the cubic perovskite structure: BaSiO3. Inorganic Chemistry 56, 1053510542. doi:10.1021/acs.inorgchem.7b01510.CrossRefGoogle ScholarPubMed
Hirsch, L. M., Shankland, T. J. & Duba, A. G. (1993). Electrical conduction and polaron mobility in Fe-bearing olivine. Geophysical Journal International 114, 3644.CrossRefGoogle Scholar
Hui, K. S., Zhang, H., Li, H. P., et al. (2015). Experimental study on the electrical conductivity of quartz andesite at high temperature and high pressure: Evidence of grain boundary transport. Solid Earth 6: 10371043. www.solid-earth.net/6/1037/2015/. doi:10.5194/se-6-1037–2015.Google Scholar
Jones, R. T. (2006). Electronic structures of the sulfide minerals sphalerite, wurtzite, pyrite, marcasite, and chalcopyrite. PhD, University of South Australia.Google Scholar
Jouniaux, L., Zamora, M. & Reuschlé, T. (2006). Electrical conductivity evolution of non-saturated carbonate rocks during deformation up to failure. Geophysical Journal International 167, 10171026.Google Scholar
Joy, T. & Strieder, W. (1979). Effective medium theory of the conductivity for random-site honeycomb lattice. Journal of Physics C: Solid State Physics 12, L279L281.CrossRefGoogle Scholar
Kahn, A. (2016). Fermi level, work function and vacuum level. Materials Horizons 3, 710.CrossRefGoogle Scholar
Karato, Sh.-i. & Wang, D. (2013). Electrical conductivity of minerals and rocks. In: Karato, Sh.-i. (Ed.) Physics and Chemistry of the Deep Earth. Wiley-Blackwell, Oxford, pp. 145182. https://doi.org/10.1002/9781118529492.ch5.CrossRefGoogle Scholar
Katsura, T., Yokoshi, S., Kawabe, K., et al. (2007). Pressure dependence of electrical conductivity of (Mg,Fe)SiO3 ilmenite. Physics and Chemistry of Minerals 34, 249255. doi: 10.1007/s00269-007-0143-0.CrossRefGoogle Scholar
Keller, G. V. (1959). Electrical properties of sandstones of the Morrison formation. Bulletin. U.S. Geological Survey 1052 -J, 307344.Google Scholar
Kirkpatrick, S. (1973). Percolation and conduction. Reviews of Modern Physics 45(4), 574588.Google Scholar
Koelman, J. M. V. A. & de Kuijper, A. (1997). An effective medium model for the electric conductivity of an N-component anisotropic and percolating mixture. Physica A 247, 1022.CrossRefGoogle Scholar
Kreuer, K. D. (1996). Proton conductivity: Materials and applications. Chemistry of Materials 8(3), 610641. https://doi.org/10.1021/cm950192a.CrossRefGoogle Scholar
Kröger, F. A. & Vink, H. J. (1956). Relations between concentrations of imperfections in crystalline solids. In: Seitz, F. & Turnbull, D. (Eds.) Solid State Physics, Vol. 3. Academic Press, New York, pp. 307435.Google Scholar
Macdonald, J. R. (1987). Impedance Spectroscopy: Emphasizing Solid Materials and Systems. John Wiley & Sons, New York, p. 346.Google Scholar
Mavko, G., Mukerji, T. & Dvorkin, J. (1998). The Rock Physics Handbook. Cambridge University Press, Cambridge, p. 330.Google Scholar
Mehrer, H. (2007). Diffusion in Solids. Springer, Berlin Heidelberg, p. 267.CrossRefGoogle Scholar
Miyake, T. & Rolandi, M. (2016). Grotthuss mechanisms: From proton transport in proton wires to bioprotonic devices. Journal of Physics: Condensed Matter 28, 023001, p. 11. https://doi.org/10.1088/0953-8984/28/2/023001.Google ScholarPubMed
Morin, F. J., Oliver, J. R. & Housley, R. M. (1977). Electrical properties of forsterite, Mg2Si04. Physical Review B 16(10), 44344445.CrossRefGoogle Scholar
Mousavi, M. A. & Bryant, S. L. (2012). Connectivity of pore space as a control on two-phase flow properties of tight-gas sandstones. Transport in Porous Media 94(2), 537554. https://doi.org/10.1007/s11242-012-0017-x.Google Scholar
Müller-Huber, E., Schön, J. & Börner, F. (2015). The effect of a variable pore radius on formation resistivity factor. Journal of Applied Geophysics 116: 173179.CrossRefGoogle Scholar
Norby, T. (1990). Proton conduction in oxides. Solid State Ionics 40, 857862.CrossRefGoogle Scholar
Norby, T., Wideroe, M., Glöckner, R. & Larring, Y. (2004). Hydrogen in oxides. Dalton Transactions 19, 30123018. doi:10.1039/B403011G.CrossRefGoogle Scholar
Omura, K., Kurita, K. & Kumazawa, M. (1989). Experimental study of pressure dependence of electrical conductivity of olivine at high temperatures. Physics of the Earth and Planetary Interiors 57, 291303.Google Scholar
Paneth, H. R. (1950). The mechanism of self-diffusion in alkali metals. Physical Review 80, 708711.Google Scholar
Pearson, G. L. & Bardeen, J. (1949). Electrical properties of pure silicon and silicon alloys containing boron and phosphorus. Physical Review 75, 865883.Google Scholar
Pérez-Rosales, C. (1982). On the relationship between formation resistivity factor and porosity. Society of Petroleum Engineers Journal 22(4), 531536.Google Scholar
Pirson, S. J. (1958). Oil Reservoir Engineering, McGraw-Hill Publishing, NY, 2nd Ed.Google Scholar
Porter, C. R. & Carothers, J. E. (1970). Formation factor porosity relation derived from well log data. Transactions of SPWLA 11th Annual Logging Symposium, pp. 119.Google Scholar
Redfern, S. A. T., Artioli, G., Rinaldi, R., et al. (2000). Octahedral cation ordering in olivine at high temperature. II: An in situ neutron powder diffraction study on synthetic MgFeSiO4 (Fa50). Physics and Chemistry of Minerals 27, 630637.Google Scholar
Rosmann, R. & Shapiro, B. (1977). Renormalization-group approach to a random resistor network. Physical Review B 16(1), 15117–15120.Google Scholar
Sahimi, M. (1994). Applications of Percolation Theory. Taylor & Francis, London, p. 258.Google Scholar
Schlumberger (1979). Log Interpretation Charts. Houston, Texas.Google Scholar
Schön, J. (2011). Physical Properties of Rocks – Fundamentals and Principles of Petrophysics. Elsevier Science, Berlin, p. 405.Google Scholar
Sen, P. N., Goode, P. A. & Sibbit, A. (1988). Electrical conduction in clay bearing sandstones at low and high salinities. Journal of Applied Physics 63(10), 48324840. https://doi.org/10.1063/1.340476.CrossRefGoogle Scholar
Shankland, T. J. (1968). Band gap of forsterite. Science 161(3836), 5153.CrossRefGoogle ScholarPubMed
Shluger, A. L. & Stoneham, A. M. (1993). Small polarons in real crystals: Concepts and problems. Journal of Physics: Condensed Matter 5, 30493086.Google Scholar
Sidebottom, D. L. (2012). Fundamentals of Condensed Matter and Crystalline Physics. Cambridge University Press, Cambridge, p. 398.CrossRefGoogle Scholar
Singleton, J. (2001). Band Theory and Electronic Properties of Solids. Oxford University Press, Oxford, p. 223.CrossRefGoogle Scholar
Stauffer, D. (1979). Scaling theory of percolation clusters. Physics Reports (Review Section of Physics Letters) 54(1), 174.Google Scholar
Stenger, I., Pinault-Thaury, M.-A., Kociniewski, T., et al. (2013). Impurity-to-band activation energy in phosphorus doped diamond. Journal of Applied Physics 114, 073711. doi:10.1063/1.4818946.Google Scholar
Stocker, R. L. (1978). Influence of oxygen pressure on defect concentrations in olivine with fixed cationic ratio. Physics of the Earth and Planetary Interiors 17, 118129.CrossRefGoogle Scholar
Stroud, D. (1998). The effective medium approximations: Some recent developments. Superlattices & Microstructures 23(3/4), 567573.Google Scholar
Tiab, D. & Donaldson, E. C. (2004). Petrophysics. Elsevier, Amsterdam, p. 900.Google Scholar
Timur, A., Hemkins, W. B. & Worthington, A. E. (1972). Porosity and pressure dependence of formation resistivity factor for sandstones. Transactions of the CWLS 4th Formation Evaluation Symposium, p. 30.Google Scholar
Toumelin, E. & Torres-Verdín, C. (2005). Influence of oil saturation and wettability on rock resistivity measurements: A uniform pore scale approach. SPWLA 46th Annual Logging Symposium, pp. 114.Google Scholar
Upadhyay, A., Singh, A. K. & Kumar, A. (2014). Electronic structure and stability of hydrogen defects in diamond and boron doped diamond: A density functional theory study. Computational Materials Science 89, 257263. https://doi.org/10.1016/j.commatsci.2014.03.022.Google Scholar
van Zeghbroeck, B. (2011). Principles of Semiconductor Devices. Chapter 2: Semiconductor fundamentals. University of Colorado. http://ecee.colorado.edu/~bart/book/.Google Scholar
Walker, A. M., Woodley, S. M., Slater, B. & Wright, K. (2009). A computational study of magnesium point defects and diffusion in forsterite. Physics of the Earth and Planetary Interiors 172(1–2), 2027. doi:10.1016/j.pepi.2008.04.001.CrossRefGoogle Scholar
Waxman, M. H. & Smith, L. J. M. (1968). Electrical conductivities in oil-bearing shaly sands. Journal of the Society of Petroleum Engineers 8, 107122. https://doi.org/10.2118/1863-A.Google Scholar
Winsauer, W. O., Shearin, H. M., Masson, P. H. & Williams, M. (1952). Resistivity of brine saturated sands in relation to pore geometry. Bulletin of the American Association of Petroleum Geologists 36, 253277.Google Scholar
Xu, Y. & Schoonen, M. A. A. (2000). The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 85(3–4), 543556. https://doi.org/10.2138/am-2000-0416.CrossRefGoogle Scholar
Yamasaki, A. & Fujiwara, T. (2002). Electronic structure of the MO oxides (M=Mg, Ca, Ti, V) in the GW approximation. Physical Review B: Condensed Matter 66(24), 245108. doi:10.1103/PhysRevB.66.245108.CrossRefGoogle Scholar
Yoshiasa, A., Ohtaka, O., Sakamoto, D., et al. (2009). Pressure and compositional dependence of electric conductivity in the (Mg1−xFex)1−δO (x=0.01–0.40) solid-solution. Solid State Ionics 180, 501505.CrossRefGoogle Scholar
Yoshino, T. (2010). Laboratory electrical conductivity measurement of mantle minerals. Surveys in Geophysics 31, 163206. doi:10.1007/s10712-009-9084-0.CrossRefGoogle Scholar
Yoshino, T., Zhang, B., Rhymer, B., Zhao, C. & Fei, H. (2017). Pressure dependence of electrical conductivity in forsterite. Journal of Geophysical Research: Solid Earth 122, 158171. doi:10.1002/2016JB013555.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Electric Resistivity
  • Nikolai Bagdassarov, Goethe-Universität Frankfurt Am Main
  • Book: Fundamentals of Rock Physics
  • Online publication: 19 November 2021
  • Chapter DOI: https://doi.org/10.1017/9781108380713.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Electric Resistivity
  • Nikolai Bagdassarov, Goethe-Universität Frankfurt Am Main
  • Book: Fundamentals of Rock Physics
  • Online publication: 19 November 2021
  • Chapter DOI: https://doi.org/10.1017/9781108380713.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Electric Resistivity
  • Nikolai Bagdassarov, Goethe-Universität Frankfurt Am Main
  • Book: Fundamentals of Rock Physics
  • Online publication: 19 November 2021
  • Chapter DOI: https://doi.org/10.1017/9781108380713.009
Available formats
×