Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T05:28:53.738Z Has data issue: false hasContentIssue false

1 - The geology of Mars: new insights and outstanding questions

Published online by Cambridge University Press:  18 September 2009

James W. Head
Affiliation:
Department of Geological Sciences, Brown University
Mary Chapman
Affiliation:
United States Geological Survey, Arizona
Get access

Summary

Introduction

The major dynamic forces shaping the surfaces, crusts, and lithospheres of planets are represented by geological processes (Figures 1.1–1.6) which are linked to interaction with the atmosphere (e.g., eolian, polar), with the hydrosphere (e.g., fluvial, lacustrine), with the cryosphere (e.g., glacial and periglacial), or with the crust, lithosphere, and interior (e.g., tectonism and volcanism). Interaction with the planetary external environment also occurs, as in the case of impact cratering processes. Geological processes vary in relative importance in space and time; for example, impact cratering was a key process in forming and shaping planetary crusts in the first one-quarter of Solar System history, but its global influence has waned considerably since that time. Volcanic activity is a reflection of the thermal evolution of the planet, and varies accordingly in abundance and style.

The stratigraphic record of a planet represents the products or deposits of these geological processes and how they are arranged relative to one another. The geological history of a planet can be reconstructed from an understanding of the details of this stratigraphic record. On Mars, the geological history has been reconstructed using the global Viking image data set to delineate geological units (e.g., Greeley and Guest, 1987; Tanaka and Scott, 1987; Tanaka et al., 1992), and superposition and cross-cutting relationships to establish their relative ages, with superposed impact crater abundance tied to an absolute chronology (e.g., Hartmann and Neukum, 2001).

Type
Chapter
Information
The Geology of Mars
Evidence from Earth-Based Analogs
, pp. 1 - 46
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acuna, M. H., Connerney, J. E. P., Wasilewski, P.et al. (2001). Magnetic field of Mars: summary of results from the aerobraking and mapping orbits. Journal of Geophysical Research (Planets), 106 (E10), 23403–17.CrossRefGoogle Scholar
Allen, C. C. (1979). Volcano-ice interactions on Mars. Journal of Geophysical Research, 84, 8048–59.CrossRefGoogle Scholar
Anderson, R. C., Dohm, J. M., Golombek, M. P.et al. (2001). Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars. Journal of Geophysical Research (Planets), 106 (E9), 20563–85.CrossRefGoogle Scholar
Anguita, F., Farelo, A., Lopez, V.et al. (2001). Tharsis dome, Mars: new evidence for Noachian-Hesperian thick-skin and Amazonian thin-skin tectonics. Journal of Geophysical Research (Planets), 106 (E4), 7577–89.CrossRefGoogle Scholar
Arvidson, R. E., Seelos, F. P. IV, Deal, K. S.et al. (2003). Mantled and exhumed terrains in Terra Meridiani, Mars. Journal of Geophysical Research (Planets), 108 (E12), doi: 10.1029/2002JE001982.Google Scholar
Baker, V. R. (1973). Paleohydrology and Sedimentology of Lake Missoula Flooding of Eastern Washington. Geological Society of America SP-144. Boulder: Geological Society of America.CrossRefGoogle Scholar
Baker, V. R. (1982). The channels of Mars. Austin: University of Texas Press.Google Scholar
Baker, V. R. (1990). Spring Sapping and Valley Network Development. Geological Society of America SP-252, 235–265. Boulder: Geological Society of America.Google Scholar
Baker, V. R., Carr, M. H., Gulick, V. C., Williams, C. R., and Marley, M. S. (1992). Channels and valley networks. In Mars, ed. Kieffer, H., Jakosky, B., Snyder, C., and Matthews, M.. Tucson:University of Arizona Press, pp. 493–522.Google Scholar
Baker, V. R., Strom, R. G., Gulick, V. C.et al. (1991). Ancient oceans, ice sheets and hydrological cycle on Mars. Nature, 352, 589–94.CrossRefGoogle Scholar
Banerdt, W. B., Phillips, R. J., Sleep, N. H., and Saunders, R. S. (1982). Thick shell tectonics on one-plate planets: application to Mars. Journal of Geophysical Research, 87, 9723–33.CrossRefGoogle Scholar
Banerdt, W. B., Golombek, M. P., and Tanaka, K. L. (1992). Stress and tectonics on Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson: University of Arizona Press, pp. 249–97.Google Scholar
Barlow, N. G. and Perez, C. B. (2003). Martian impact crater ejecta morphologies as indicators of the distribution of subsurface volatiles. Journal of Geophysical Research (Planets), 108 (E8), doi: 10.1029/2002JE002036.Google Scholar
Barlow, N. G., Boyce, J. M., Costard, F. M.et al. (2000). Standardizing the nomenclature of Martian impact crater ejecta morphologies. Journal of Geophysical Research (Planets), 105 (E11), 26733–8.CrossRefGoogle Scholar
Barsch, D. (1988). Rock glaciers. In Advances in Periglacial Geomorphology, ed. Clark, M. J.. Chichester: Wiley, pp. 69–90.Google Scholar
Benn, D. I. and Evans, D. J. A. (1998). Glaciers and Glaciation. London: Arnold.Google Scholar
Berman, D. C. and Hartman, W. K. (2002). Recent fluvial, volcanic, and tectonic activity on the Cerberus Plains of Mars. Icarus, 159 (1), 1–17.CrossRefGoogle Scholar
Bland, P. A. and Smith, T. B. (2000). Meteorite accumulations on Mars. Icarus, 144 (1), 21–6.CrossRefGoogle Scholar
Bradley, B. A., Sakimoto, S. E., Frey, H., and Zimbelman, J. R. (2002). Medusae Fossae Formation: new perspectives from Mars Global Surveyor. Journal of Geophysical Research (Planets), 107 (E08), doi: 10.1029/2001JE001537.Google Scholar
Brennand, T. A. (2000). Deglacial meltwater drainage and glaciodynamics; inferences from Laurentide eskers, Canada. Geomorphology, 32 (3–4), 263–96.CrossRefGoogle Scholar
Bridges, N. T. and Herkenhoff, K. E. (2002). Topography and geologic characteristics of aeolian grooves in the south polar layered deposits of Mars. Icarus, 156 (2), 387–98.CrossRefGoogle Scholar
Burr, D. M., Grier, J. A., McEwen, A. S., and Keszthelyi, L. P. (2002). Repeated aqueous flooding from the Cerberus Fossae: evidence for very recently extant, deep groundwater on Mars. Icarus, 159 (1), 53–73.CrossRefGoogle Scholar
Byrne, S. and Murray, B. (2002). North polar stratigraphy and the paleo-erg of Mars. Journal of Geophysical Research (Planets), 107 (E06), doi: 10.1029/2001JE001615.Google Scholar
Cabrol, N. A. and Grin, E. A. (2001). The evolution of Lacustrine environments on Mars: is Mars only hydrologically dormant?Icarus, 149 (2), 291–328.CrossRefGoogle Scholar
Cabrol, N. A., Grin, E. A., and Pollard, W. H. (2000). Possible frost mounds in an ancient Martian lake bed. Icarus, 145, 91–107.CrossRefGoogle Scholar
Cailleau, B., Walter, T. R., Janle, P., and Hauber, E. (2003). Modeling volcanic deformation in a regional stress field: implications for the formation of graben structures on Alba Patera, Mars. Journal of Geophysical Research (Planets), 108 (E12), doi: 10.1029/2003JE002135.Google Scholar
Carr, M. H. (1973). Volcanism on Mars. Journal of Geophysical Research, 78, 4049–62.CrossRefGoogle Scholar
Carr, M. H. (1977). Distribution and emplacement of ejecta around Martian impact craters. In Impact and Explosion Cratering, ed. Roddy, D. J., Pepin, R. O., and Merrill, R. B.. New York: Pergamon Press, pp. 593–602.Google Scholar
Carr, M. H. (1979). Formation of Martian flood features by release of water from confined aquifers. Journal of Geophysical Research, 84, 2995–3007.CrossRefGoogle Scholar
Carr, M. H. (1981). The Surface of Mars. New Haven: Yale University Press.Google Scholar
Carr, M. H. (1983). The stability of streams and lakes on Mars. Icarus, 56, 476–95.CrossRefGoogle Scholar
Carr, M. H. (1995). The Martian drainage system and the origin of valley networks and fretted channels. Journal of Geophysical Research, 100, 7479–507.CrossRefGoogle Scholar
Carr, M. H. (1996). Water on Mars. New York: Oxford University Press.Google Scholar
Carr, M. H. (2001). Mars Global Surveyor observations of Martian fretted terrain. Journal of Geophysical Research (Planets), 106 (E10), 23571–94.CrossRefGoogle Scholar
Carr, M. H. (2002). Elevations of water-worn features on Mars: implications for circulation of groundwater. Journal of Geophysical Research (Planets), 107 (E12), doi: 10.1029/2002JE001845.Google Scholar
Carr, M. H. and Clow, G. D. (1981). Martian channels and valleys: their characteristics, distribution and age. Icarus, 48, 91–117.CrossRefGoogle Scholar
Carr, M. H. and Head, J. W. (2003). Oceans on Mars: an assessment of the observational evidence and possible fate. Journal of Geophysical Research (Planets), 108 (E5), doi: 10.1029/2002JE001963.Google Scholar
Carr, M. H. and Schaber, G. G. (1977). Martian permafrost features. Journal of Geophysical Research, 82, 4039–54.CrossRefGoogle Scholar
Carr, M. H., Crumpler, L. S., Cutts, J. A.et al. (1977). Martian impact craters and emplacement of ejecta by surface flow. Journal of Geophysical Research, 82, 4055–65.CrossRefGoogle Scholar
Cattermole, P. (1987). Sequence, rheological properties, and effusion rates of volcanic flows at Alba Patera, Mars. Journal of Geophysical Research, 92, E553–60.CrossRefGoogle Scholar
Chapman, M. G. (1994). Evidence, age, and thickness of a frozen paleolake in Utopia Planitia, Mars. Icarus, 109, 393–406.CrossRefGoogle Scholar
Chapman, M. G. and Tanaka, K. L. (2001). Interior trough deposits on Mars: subice volcanoes?Journal of Geophysical Research (Planets), 106 (E5), 10087–100.CrossRefGoogle Scholar
Chapman, M. G. and Tanaka, K. L. (2002). Related magma-ice interactions: possible origins of chasmata, chaos, and surface materials in Xanthe, Margaritifer, and Meridiani Terrae, Mars. Icarus, 155 (2), 324–39.CrossRefGoogle Scholar
Chapman, M. G., Gudmundsson, M. T., Russell, A. J., and Hare, T. M. (2003). Possible Juventae Chasma subice volcanic eruptions and Maja Valles ice outburst floods on Mars: implications of Mars Global Surveyor crater densities, geomorphology, and topography. Journal of Geophysical Research (Planets), 108 (E10), doi: 10.1029/2002JE002009.Google Scholar
Chicarro, A. F., Schultz, P. H., and Masson, P. (1985). Global and regional ridge patterns on Mars. Icarus, 63, 153–74.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Smith, M. D., Hamilton, V. E., and Clark, R. N. (2000a). Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data. Journal of Geophysical Research (Planets), 105 (E4), 9609–22.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Clark, R. N.et al. (2000b). Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: evidence for near-surface water. Journal of Geophysical Research (Planets), 105 (E4), 9623.CrossRefGoogle Scholar
Christiansen, E. H. (1989). Lahars in the Elysium region of Mars, Geology, 17, 203–6.2.3.CO;2>CrossRefGoogle Scholar
Clifford, S. M. (1980). A model for the removal and subsurface storage of a primitive Martian ice sheet. In Reports of Planetary Geology and Geophysics Program-1990, NASA-TM 82385, Washington, DC, pp. 405–7.Google Scholar
Clifford, S. M. (1993). A model for the hydrologic and climatic behaviour of water on Mars. Journal of Geophysical Research, 98, 10973–1016.CrossRefGoogle Scholar
Clifford, S. M. and Parker, T. J. (2001). The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus, 154 (1), 40–79.CrossRefGoogle Scholar
Clifford, S. M., Crisp, D., Fisher, D. A.et al. (2000). The state and future of Mars polar science and exploration. Icarus, 144 (2), 210–42.CrossRefGoogle ScholarPubMed
Colaprete, A. and Jakosky, B. M. (1998). Ice flow and rock glaciers on Mars. Journal of Geophysical Research, 103, 5897–909.CrossRefGoogle Scholar
Connerney, J. E. P., Acuna, M. H., Wasilewski, P. J.et al. (1999). Magnetic lineations in the ancient crust of Mars. Science, 284, 794–8.CrossRefGoogle ScholarPubMed
Costard, F. M. (1989). The spatial distribution of volatiles in the Martian hydrolithosphere. Earth, Moon, and Planets, 45, 265–90.CrossRefGoogle Scholar
Costard, F. M. and Kargel, J. S. (1995). Outwash plains and thermokarst on Mars. Icarus, 114, 93–112.CrossRefGoogle Scholar
Costard, F. M. and Kargel, J. S. (1999). New evidences for ice rich sediments in the northern plains from MGS data. Fifth Int. Conference on Mars, 972 (CD-ROM), #6088.Google Scholar
Craddock, R. A. and Howard, A. D. (2002). The case for rainfall on a warm wet early Mars. Journal of Geophysical Research (Planets), 107 (E11), doi: 10.1029/2001JE001505.Google Scholar
Crown, D. A. and Greeley, R. (1993). Volcanic geology of Hadriaca Patera and the eastern Hellas region of Mars. Journal of Geophysical Research (Planets), 98 (E2), 3431–51.CrossRefGoogle Scholar
Degenhardt, J. J. and Giardino, J. R. (2003). Subsurface investigation of a rock glacier using ground-penetrating radar: implications for locating stored water on Mars. Journal of Geophysical Research (Planets), 108 (E4), doi: 1029/2002JE001888.Google Scholar
Dohm, J. M., Ferris, J. C., Baker, V. R.et al. (2001). Ancient drainage basin of the Tharsis region, Mars: potential source for outflow channel systems and putative oceans or paleolakes. Journal of Geophysical Research (Planets), 106 (E12), 32943–58.CrossRefGoogle Scholar
Edgett, K. S. and Malin, M. C. (2000). New views of Mars eolian activity, materials, and surface properties: three vignettes from the Mars Global Surveyor Mars Orbiter Camera. Journal of Geophysical Research (Planets), 105 (E1), 1623–50.CrossRefGoogle Scholar
Evans, N. and Rossbacher, L. A. (1980). The last picture show: small-scale patterned ground in Lunae Planum. In Reports of Planetary Geology Program-1980, NASA-TM 82385, NASA, Washington, DC, pp. 376–8.Google Scholar
Feldman, W. C., Boynton, W. V., Tokar, R. L.et al. (2002). Global distribution of neutrons from Mars: results from Mars Odyssey. Science, 297 (5578), 75–8.CrossRefGoogle ScholarPubMed
Fenton, L. K. and Herkenhof, K. E. (2000). Topography and stratigraphy of the northern Martian polar layered deposits using photoclinometry, stereogrammetry, and MOLA altimetry. Icarus, 147 (2), 433–43.CrossRefGoogle Scholar
Fenton, L. K., Bandfield, J. L., and Ward, A. W. (2003). Aeolian processes in Proctor Crater on Mars: sedimentary history as analyzed from multiple data sets. Journal of Geophysical Research (Planets), 108 (E12), doi: 10.1029/2002JE002015.Google Scholar
Fishbaugh, K. E. and Head, J. W. (2000). North polar region of Mars: topography of circumpolar deposits from Mars Orbiter Laser Altimeter (MOLA) data and evidence for asymmetric retreat of the polar cap. Journal of Geophysical Research (Planets), 105 (E9), 22455–86.CrossRefGoogle Scholar
Fishbaugh, K. E. and Head, J. W. (2001). Comparison of the north and south polar caps of Mars: new observations from MOLA data and discussion of some outstanding questions. Icarus, 154 (1), 145–61.CrossRefGoogle Scholar
Fishbaugh, K. E. and Head, J. W. (2002). Chasma Boreale, Mars: topographic characterization from Mars Orbiter Laser Altimeter data and implications for mechanisms of formation. Journal of Geophysical Research (Planets), 107 (E03), doi: 10.1029/2000JE001351.Google Scholar
Forsberg-Taylor, N. K., Howard, A. D., and Craddock, R. A. (2004). Crater degradation in the Martian highlands: morphometric analysis of the Sinus Sabaeus region and simulation modeling suggest fluvial processes. Journal of Geophysical Research (Planets), 109 (E5), doi: 10.1029/2004JE002242.Google Scholar
Francis, P. W. and Wadge, G. (1983). The Olympus-Mons aureole: formation by gravitational spreading. Journal of Geophysical Research, 88, 8333–44.CrossRefGoogle Scholar
Frey, H. and Schultz, R. A. (1988). Large impact basins and the mega-impact origin for the crustal dichotomy on Mars. Geophysical Research Letters, 15, 229–32.CrossRefGoogle Scholar
Frey, H., Lowry, B. L., and Chase, S. A. (1979). Pseudocraters on Mars. Journal of Geophysical Research, 84, 8075–68.CrossRefGoogle Scholar
Frey, H., Roark, V. J. H., Shockey, K. M., Frey, E. L., and Sakimoto, S. E. H. (2002). Ancient lowlands on Mars. Geophysical Research Letters, 29 (10), doi: 10.1029/2001GL013832.CrossRefGoogle Scholar
Fuller, E. R. and Head, J. W. (2002). Amazonis Planitia: the role of geologically recent volcanism and sedimentation in the formation of the smoothest plains on Mars. Journal of Geophysical Research (Planets), 107 (E10), doi: 10.1029/2002JE001842.Google Scholar
Gaidos, E. J. (2001). Cryovolcanism and the recent flow of liquid water on Mars. Icarus, 153 (1), 218–23.CrossRefGoogle Scholar
Garvin, J. B., Sakimoto, S. E. H., Frawley, J. J., Schnetzler, C. C., and Wright, H. M. (2000). Topographic evidence for geologically recent near-polar volcanism on Mars. Icarus, 145 (2), 648–52.CrossRefGoogle Scholar
Gatto, L. W. and Anderson, D. M. (1975). Alaskan thermokarst terrain and possible Martian analogs. Science, 188, 255–7.CrossRefGoogle Scholar
Gerstell, M. F., Aharonson, O., and Schorghofer, N. (2004). A distinct class of avalanche scars on Mars. Icarus, 168 (1), 122–30.CrossRefGoogle Scholar
Ghatan, G. J. and Head, J. W. (2002). Candidate subglacial volcanoes in the south polar region of Mars: morphology, morphometry, and eruption conditions. Journal of Geophysical Research (Planets), 107 (E07), doi: 10.1029/2001JE001519.Google Scholar
Ghatan, G. J., Head, J. W., and Pratt, S. (2003). Cavi Angusti, Mars: characterization and assessment of possible formation mechanisms. Journal of Geophysical Research (Planets), 108 (E5), doi: 10.1029/2002JE001972.Google Scholar
Glaze, L. S., Baloga, S. M., and Stofan, E. R. (2003). A methodology for constraining lava flow rheologies with MOLA. Icarus, 165 (1), 26–33.CrossRefGoogle Scholar
Goldspiel, J. M. and Squyres, S. W. (2000). Groundwater sapping and valley formation on Mars. Icarus, 148 (1), 176–92.CrossRefGoogle Scholar
Golombek, M. P., Anderson, R. C., Barnes, J. R.et al. (1999). Overview of the Mars Pathfinder Mission: launch through landing, surface operations, data sets, and science results. Journal of Geophysical Research, 104 (E4), 8523–54.CrossRefGoogle Scholar
Golombek, M. P., Grant, J. A., Parker, T. J.et al. (2003). Selection of the Mars Exploraiton Rover landing sites. Journal of Geophysical Research (Planets), 108 (E12), doi: 10.1029/2003JE002074.Google Scholar
Grant, J. A. and Parker, T. J. (2002). Drainage evolution in the Margaritifer Sinus region, Mars. Journal of Geophysical Research (Planets), 107 (E9), doi: 10.1029/2001JE001678.Google Scholar
Greeley, R. (1973). Mariner 9 photographs of small volcanic structures on Mars. Geology, 1, 175–80.2.0.CO;2>CrossRefGoogle Scholar
Greeley, R. and Guest, J. E. (1987). Geologic map of the eastern equatorial region of Mars, scale 1:15,000,000. US Geological Survey Miscellaneous Investigation Series Map. I-1802-B.Google Scholar
Greeley, R. and Fagents, S. A. (2001). Icelandic pseudocraters as analogs to some volcanic cones on Mars. Journal of Geophysical Research (Planets), 106 (E9), 20527–46.CrossRefGoogle Scholar
Greeley, R. and Spudis, P. D. (1978). Volcanism in the cratered terrain hemisphere of Mars. Journal of Geophysical Research, 5, 453–5.CrossRefGoogle Scholar
Greeley, R., Lancaster, N., Lee, S., and Thomas, P. (1992). Martian aeolian processes, sediments, and features. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Mathews, M. S.. Tucson: University of Arizona Press, pp. 730–66.Google Scholar
Greeley, R., Skypeck, A., and Pollack, J. B. (1993). Martian aeolian features and deposits: comparisons with general circulation model results. Journal of Geophysical Research, 98, 3183–93.CrossRefGoogle Scholar
Greeley, R., Fagents, S. A., Bridges, N. et al. (2000a). Volcanism on the Red Planet: Mars. In Environmental Effects on Volcanic Eruptions: From Deep Oceans to Deep Space, ed. Zimbelman, J. R. and Gregg, T. K. P.. New York: Kluwer Academic/Plenum, pp. 75–112.CrossRefGoogle Scholar
Greeley, R., Kraft, M. D., Kuzmin, R. O., and Bridges, N. T. (2000b). Mars Pathfinder landing site: evidence for a change in wind regime from lander and orbiter data. Journal of Geophysical Research (Planets), 105 (E1), 1829–40.CrossRefGoogle Scholar
Greeley, R., Kuzmin, R. O., and Haberle, R. M. (2001). Aeolian processes and their effects on understanding the chronology of Mars. In Chronology and Evolution of Mars, ed. Kallenbach, R., Giess, J., and Hartmann, W. K.. Dordrecht: Kluwer Academic, pp. 393–404.CrossRefGoogle Scholar
Greeley, R., Bridges, N. T., Kuzmin, R. O., and Laity, J. E. (2002). Terrestrial analogs to wind-related features at the Viking and Pathfinder landing sties on Mars. Journal of Geophysical Research (Planets), 107 (E01), doi: 10.1029/2000JE001481.Google Scholar
Gulick, V. C. and Baker, V. R. (1990). Origin and evolution of valleys on Martian volcanoes. Journal of Geophysical Research, 95, 14325–44.CrossRefGoogle Scholar
Haberle, R. M., Murphy, J. R., and Schaeffer, J. (2003). Orbital change experiments with a Mars general circulation model. Icarus, 161 (1), 66–89.CrossRefGoogle Scholar
Harrison, K. P. and Grimm, R. E. (2003). Rheological constraints on Martian landslides. Icarus, 163 (2), 347–62.CrossRefGoogle Scholar
Hartmann, W. K. (1973) Martian surface and crust: review and synthesis. Icarus, 19, 550–75.CrossRefGoogle Scholar
Hartmann, W. K. and Berman, D. C. (2000). Elysium Planitia lava flows: crater count chronology and geological implications. Journal of Geophysical Research (Planets), 105 (E6), 15011–25.CrossRefGoogle Scholar
Hartmann, W. K. and Neukum, G. (2001). Cratering chronology and the evolution of Mars. Space Science Reviews, 96, 165–94.CrossRefGoogle Scholar
Hauber, E. and Kronberg, P. (2001). Tempe Fossae, Mars: a planetary analog to a terrestrial continental rift?Journal of Geophysical Research (Planets), 106 (E9), 20587–602.CrossRefGoogle Scholar
Head, J. W. (2001). Mars: evidence for geologically recent advance of the south polar cap. Journal of Geophysical Research (Planets), 106 (E5), 10075.CrossRefGoogle Scholar
Head, J. W. and Marchant, D. R. (2003). Cold-based mountain glaciers on Mars: western Arsia Mons. Geology, 31 (7), 641–4.2.0.CO;2>CrossRefGoogle Scholar
Head, J. W. and Pratt, S. (2001). Extensive Hesperian-aged south polar ice sheet on Mars: evidence for massive melting and retreat, and lateral flow and ponding of meltwater. Journal of Geophysical Research (Planets), 106 (E6), 12275.CrossRefGoogle Scholar
Head, J. W. and Wilson, L. (2002). Mars: A Review and Synthesis of General Environments and Geological Settings of Magma–H20 Interactions. Geological Society Special Publication 202, pp. 27–57.Google Scholar
Head, J. W. III, Hiesinger, H., Ivanov, M. A.et al. (1999). Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data. Science, 286, 2134–7.CrossRefGoogle ScholarPubMed
Head, J. W., Kreslavsky, M. A., and Pratt, S. (2002). Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian Period. Journal of Geophysical Research (Planets), 107 (E01), doi: 10.1029/2000JE001445.Google Scholar
Head, J. W., Wilson, L., and Mitchell, K. L. (2003). Generation of recent massive water floods at Cerberus Fossae, Mars by dike emplacement, cryosphere cracking, and confined aquifer groundwater release. Geophysical Research Letters, 30 (11), 31.CrossRefGoogle Scholar
Hecht, M. H. (2002). Metastability of liquid water on Mars. Icarus, 156 (2), 373–86.CrossRefGoogle Scholar
Hiesinger, H. and Head, J. W. (2000). Characteristics and origin of polygonal terrain in southern Utopia Planitia, Mars: results from Mars Orbiter Laser Altimeter and Mars Orbiter Camera data. Journal of Geophysical Research (Planets), 105 (E5), 11999.CrossRefGoogle Scholar
Hiesinger, H. and Head, J. W. (2004). The Syrtis Major volcanic province, Mars: synthesis from Mars Global Surveyor data. Journal of Geophysical Research (Planets), 109 (E1), doi: 10.1029/2003JE002143.Google Scholar
Hoffman, N. (2000). White Mars: a new model for Mars' surface and atmosphere based on CO2. Icarus, 146 (2), 326–42.CrossRefGoogle Scholar
Howard, A. D. (2000). The role of eolian processes in forming surface features of the Martian polar layered deposits. Icarus, 144 (2), 267–88.CrossRefGoogle Scholar
Hynek, B. M., Phillips, R. J., and Arvidson, R. E. (2003). Explosive volcanism in the Tharsis region: global evidence in the Martian geologic record. Journal of Geophysical Research (Planets), 108 (E9), doi: 10.1029/2003JE002062.Google Scholar
Irwin, R. P. and Howard, A. D. (2002). Drainage basin evolution in Noachian Terra Cimmeria, Mars. Journal of Geophysical Research (Planets), 107 (E7), doi: 10.1029/2001JE001818.Google Scholar
Ivanov, M. A. and Head, J. W. (2001). Chryse Planitia, Mars: topographic configuration, outflow channel continuity and sequence, and tests for hypothesized ancient bodies of water using Mars Orbiter Laser Altimeter (MOLA) data. Journal of Geophysical Research (Planets), 106 (E2), 3275.CrossRefGoogle Scholar
Ivanov, M. A. and Head, J. W. (2003). Syrtis Major and Isidis Basin contact: morphological and topographic characteristics of Syrtis Major lava flows and material of the Vastitas Borealis Formation. Journal of Geophysical Research (Planets), 108 (E6), doi: 10.1029/2002JE001994.Google Scholar
Jankowski, D. G. and Squyres, S. W. (1992). The topography of impact craters in “softened” terrain on Mars. Icarus, 100, 26–39.CrossRefGoogle Scholar
Jankowski, D. G. and Squyres, S. W. (1993). “Softened” impact craters on Mars: implications for ground ice and the structure of the Martian megaregolith. Icarus, 106, 365–79.CrossRefGoogle Scholar
Kargel, J. S. and Strom, R. G. (1992). Ancient glaciation on Mars. Geology, 20, 3–7.2.3.CO;2>CrossRefGoogle Scholar
Keszthelyi, L. P., McEwen, A. S., and Thordarson, T. (2000). Terrestrial analogs and thermal models for Martian flood lavas. Journal of Geophysical Research (Planets), 105 (E6), 15027–50.CrossRefGoogle Scholar
Kolb, E. J. and Tanaka, K. L. (2001). Geologic history of the polar regions of Mars based on Mars Global Surveyor data: II. Amazonian period. Icarus, 154 (1), 22–39.CrossRefGoogle Scholar
Komar, P. D. (1979). Comparison of the hydraulics of water flows in Martian outflow channels with flows of similar scale on Earth. Icarus, 37, 156–81.CrossRefGoogle Scholar
Koutnik, M., Byrne, S., and Murray, B. (2002). South polar layered deposits of Mars: the cratering record. Journal of Geophysical Research (Planets), 107 (E11), doi: 10.1029/2001JE001805.Google Scholar
Kreslavsky, M. A. and Head, J. W. (2000). Kilometer-scale roughness on Mars: results from MOLA data analysis. Journal of Geophysical Research (Planets), 105 (E11), 26695–712.CrossRefGoogle Scholar
Kreslavsky, M. A. and Head, J. W. (2002). Fate of outflow channel effluents in the northern lowlands of Mars: the Vastitas Borealis Formation as a sublimation residue from frozen ponded bodies of water. Journal of Geophysical Research (Planets), 107 (E12), doi: 10.1029/2001JE001831.Google Scholar
Kuzmin, R. O., Greeley, R., Rafkin, S. C. R., and Haberle, R. (2001). Wind-related modification of some small impact craters on Mars. Icarus, 153 (1), 61–70.CrossRefGoogle Scholar
Laity, J. E. and Malin, M. C. (1985). Sapping processes and the development of theater-headed valley networks on the Colorado Plateau. Geological Society of American Bulletin, 96, 203–17.2.0.CO;2>CrossRefGoogle Scholar
Lane, M. D. and Christensen, P. R. (2000). Convection in a catastrophic flood deposit as the mechanism for the giant polygons on Mars. Journal of Geophysical Research (Planets), 105 (E7), 17617–28.CrossRefGoogle Scholar
Leverington, D. W. and Ghent, R. R. (2004). Differential subsidence and rebound in response to changes in water loading on Mars: possible effects on the geometry of ancient shorelines. Journal of Geophysical Research (Planets), 109 (E1), doi: 10.1029/2003JE002141.Google Scholar
Lowry, A. R. and Zhong, S. (2003). Surface versus internal loading of the Tharsis rise, Mars. Journal of Geophysical Research (Planets), 108 (E9), doi: 10.1029/2003JE002111.Google Scholar
Lucchitta, B. K. (1981). Mars and Earth: comparison of cold-climate features. Icarus, 45, 264–303.CrossRefGoogle Scholar
Lucchitta, B. K. (2001). Antarctic ice streams and outflow channels on Mars. Geophysical Research Letters, 28 (3), 403–6.CrossRefGoogle Scholar
Lucchitta, B. K. (1982). Ice sculpture in the Martian outflow channels. Journal of Geophysical Research (Planets), 87, 9951–73.CrossRefGoogle Scholar
Lucchitta, B. K. (1985). Geomorphologic evidence for ground ice on Mars. In Ices in the Solar System, ed. Klinger, J., Benest, D., Dollfus, A., and Smoluchowski, R.. Dorcrecht: D. Reidel, pp. 583–604.CrossRefGoogle Scholar
Lucchitta, B. K. and Anderson, D. M. (1980). Martian outflow channels sculptured by glaciers. InReports of Planetary Geology Program, NASA TM-81776, pp. 271–3.Google Scholar
Lucchitta, B. K., Clow, G. D., Geissler, P. E. et al. (1992). The canyon system on Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson: University of Arizona Press, pp. 453–92.Google Scholar
Malin, M. C. and Carr, M. H. (1999). Groundwater formation of Martian valleys. Nature, 397, 589–91.CrossRefGoogle ScholarPubMed
Malin, M. C. and Edgett, K. S. (2000). Evidence for recent groundwater seepage and surface runoff on Mars. Science, 288, 2330–5.CrossRefGoogle ScholarPubMed
Malin, M. C. and Edgett, K. S. (2001). Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission. Journal of Geophysical Research (Planets), 106 (E10), 23429–570.CrossRefGoogle Scholar
Malin, M. C.et al. (1998). Early views of the Martian surface from the Mars Orbiter Camera of Mars Global Surveyor. Science, 279, 1681–5.CrossRefGoogle ScholarPubMed
Mangold, N., Costard, F., and Peulvast, J. -P., (2000a). Thermokarstic degradation of lobate debris aprons and fretted channels. 2nd Mars Polar Science Conference, Abstract 4032.
Mangold, N., Costard, F., and Peulvast, J.-P. (2000b). Thermokarstic degradation of the Martian surface. 2nd Mars Polar Science Conference, Abstract 4052.
Mangold, N., Costard, F., and Forget, F. (2003). Debris flows over sand dunes on Mars: evidence for liquid water. Journal of Geophysical Research (Planets), 108 (E4), doi:10.1029/2002JE001958.Google Scholar
Mars Channel Working Group (1983). Channels and valleys on Mars. Geological Society of American Bulletin, 94, 1035–54.2.0.CO;2>CrossRef
Masson, P., Carr, M. H., Costard, F. et al. (2001). Geomorphologic evidence for liquid water. In Chronology and Evolution of Mars, ed. Kallenbach, R., Giess, J., and Hartmann, W. K.. Dordrecht: Kluwer Academic, pp. 333–64.CrossRefGoogle Scholar
Masursky, H., Boyce, J. V., Dial, A. L. Jr., Schaber, G. G., and Strobell, M. E. (1977). Classification and time of formation of Martian channels based on Viking data. Journal of Geophysical Research, 82, 4016–37.CrossRefGoogle Scholar
Maxwell, T. A. (1982). Orientation and origin of ridges in the Lunae Palus-Coprates region of Mars. Journal of Geophysical Research, 87, A97–108.CrossRefGoogle Scholar
McEwen, A. S., Malin, M. C., Carr, M. H., and Hartmann, W. K. (1999). Voluminous volcanism on early Mars revealed in Valles Marineris. Nature, 397, 584–6.CrossRefGoogle Scholar
McGill, G. E. (1986a). The giant polygons of Utopia, Northern Martian Plains. Geophysical Research Letters, 13, 705–8.CrossRefGoogle Scholar
McGill, G. E. (1986b). The giant polygons of Utopia, Northern Martian Plains. Journal of Geophysical Research (Planets), 108 (E5), doi: 10.1029/2002JE001852.Google Scholar
McGill, G. E. (1989). Buried topography of Utopia, Mars: persistence of a giant impact depression. Journal of Geophysical Research, 94, 2753–9.CrossRefGoogle Scholar
McSween, H. Y. Jr., Murchie, S. L. III, and Britt, D. T. (1999). Chemical, multipectral, and textural constrains on the composition and origin of rocks at the Mars Pathfinder landing site. Journal of Geophysical Research, 104, 8679–716.CrossRefGoogle Scholar
Mège, D. and Masson, P. (1996). Stress models for Tharsis formation, Mars. Planetary Space Science, 44, 1471–97.CrossRefGoogle Scholar
Mege, D., Cook, A. C., Garel, E., Lagabrielle, Y., and Cormier, M. -H. (2003). Volcanic rifting at Martian grabens. Journal of Geophysical Research (planets), 108 (ES), 5044.CrossRefGoogle Scholar
Mest, S. C. and Crown, D. A. (2001). Geology of the Reull Vallis region, Mars. Icarus, 153 (1), 89–110.CrossRefGoogle Scholar
Mellon, M. T. and Phillips, R. J. (2001). Recent gullies on Mars and the source of liquid water. Journal of Geophysical Research (Planets), 106 (E10), 23165–80.CrossRefGoogle Scholar
Mellon, M. T., Feldman, W. C., and Prettyman, T. H. (2004). The presence and stability of ground ice in the southern hemisphere of Mars. Icarus, 169 (2), 324–40.CrossRefGoogle Scholar
Milkovich, S. M., Head, J. W., and Pratt, S. (2002). Meltback of Hesperian-aged ice-rich deposits near the south pole of Mars: evidence for drainage channels and lakes. Journal of Geophysical Research (Planets), 107 (E06), doi: 10.1029/2001JE001802.Google Scholar
Milliken, R. E., Mustard, J. F., and Goldsby, D. L. (2003). Viscous flow features on the surface of Mars: observations from high-resolution Mars Orbiter Camera (MOC) images. Journal of Geophysical Research (Planets), 108 (E6), doi: 10.1029/2002JE002005.Google Scholar
Moore, J. M. and Wilhelms, D. E. (2001). Hellas as a possible site of ancient ice-covered lakes. Abstracts of papers submitted to the 32nd Lunar and Planetary Science Conference, CD #32, abstract 1446.CrossRef
Mouginis-Mark, P. J., Wilson, L., and Head, J. W. (1982). Explosive volcanism on Hecates Tholus, Mars: investigation of eruption conditions. Journal of Geophysical Research, 87, 9890–904.CrossRefGoogle Scholar
Mouginis-Mark, P. J., Wilson, L., and Zuber, M. T. (1992). The physical volcanology of Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson: University of Arizona Press, pp. 424–52.Google Scholar
Mouginis-Mark, P. J., Wilson, L., and Zimbelman, R. J. (1988). Polygenic eruptions on Alba Patera, Mars: evidence of channel erosion on pyroclastic flows. Bulletin of Volcanology, 50, 361–79.CrossRefGoogle Scholar
Murray, B., Koutnik, M., Byrne, S.et al. (2001). Preliminary geological assessment of the northern edge of Ultimi Lobe, Mars south polar layered deposits. Icarus, 154 (1), 80–97.CrossRefGoogle Scholar
Mustard, J. F., Cooper, C. D., and Rifkin, M. K. (2001). Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature, 412, 411–14.CrossRefGoogle ScholarPubMed
Mutch, T. A., Arvidson, R. E., Head, J. W., Jones, K. L., and Saunders, R. S. (1976). Geology of Mars. Princeton: Princeton University Press.Google Scholar
Mutch, T. A., Arvidson, R. E., Binder, A. B., Guiness, E. A., and Morris, E. C. (1977). The geology of the Viking Lander 2 site. Journal of Geophysical Research, 82, 4452–67.CrossRefGoogle Scholar
Newsom, H. E., Barber, C. A., Hare, T. M.et al. (2003). Paleolakes and impact basins in southern Arabia Terra, including Meridiani Planum: implications for the formation of hematite deposits on Mars. Journal of Geophysical Research (Planets), 108 (E12), doi: 10.1029/2002JE001993.Google Scholar
Ori, , Marinangeli, G. G. L., and Baliva, A. (2000). Terraces and Gilbert-type deltas in crater lakes in Ismenius Lacus and Memnonia (Mars). Journal of Geophysical Research (Planets), 105 (E7), 17629–42.CrossRefGoogle Scholar
Parker, T. J., Saunders, R. S., and Schneeberger, D. M. (1989). Transitional morphology in the west Deuteronilus Mensae region of Mars: implications for modification of the lowland/upland boundary. Icarus, 82, 111–45.CrossRefGoogle Scholar
Parker, T. J., Gorsline, D. S., Saunders, R. S., Pieri, D. C., and Schneeberger, D. M. (1993). Coastal geomorphology of the Martian northern plains. Journal of Geophysical Research, 98, 11061–78.CrossRefGoogle Scholar
Pechmann, J. C. (1980). The origin of polygonal troughs in the Northern Plains of Mars. Icarus, 42, 185–210.CrossRefGoogle Scholar
Peitersen, M. N. and Crown, D. A. (2000). Correlations between topography and intraflow width behavior in Martian and terrestrial lava flows. Journal of Geophysical Research (Planets), 105 (E2), 4123–34.CrossRefGoogle Scholar
Pelkey, S. M. and Jakosky, B. M. (2002). Surficial geologic surveys of Gale Crater and Melas Chasma, Mars: integration of remote-sensing data. Icarus, 160 (2), 228–57.CrossRefGoogle Scholar
Pelkey, S. M., Jakosky, B. M., and Christensen, P. R. (2003). Surficial properties in Melas Chasma, Mars, from Mars Odyssey THEMIS data. Icarus, 165 (1), 68–89.CrossRefGoogle Scholar
Phillips, R. J., Saunders, R. S., and Conel, J. E. (1973). Mars: crustal structure inferred from Bouguer gravity anomalies. Journal of Geophysical Research, 78, 4815–20.CrossRefGoogle Scholar
Pierce, T. L. and Crown, D. A. (2003). Morphologic and topographic analyses of debris aprons in the eastern Hellas region, Mars. Icarus, 163 (1), 46–65.CrossRefGoogle Scholar
Pieri, D. C. (1976). Martian channels: distribution of small channels on the Martian surface. Icarus, 27, 25–50.CrossRefGoogle Scholar
Pieri, D. C. (1980). Martian valleys: morphology, distribution, age and origin. Science, 210, 895–7.CrossRefGoogle ScholarPubMed
Plescia, J. B. (2000). Geology of the Uranius group volcanic constructs: Uranius Patera, Ceraunius Tholus, and Uranius Tholus. Icarus, 143 (2), 376–96.CrossRefGoogle Scholar
Plescia, J. B. (2003). Cerberus Fossae, Elysium, Mars: a source for lava and water. Icarus, 164 (1), 79–95.CrossRefGoogle Scholar
Plescia, J. B. and Golombek, M. P. (1986). Origin of planetary wrinkle ridges based on the study of terrestrial analogs. Geological Society of American Bulletin, 97, 1289–99.2.0.CO;2>CrossRefGoogle Scholar
Rathbun, J. A. and Squyres, S. W. (2002). Hydrothermal systems associated with Martian impact craters. Icarus, 157 (2), 362–72.CrossRefGoogle Scholar
Reiss, D., Gasselt, S., Neukum, G., and Jaumann, R. (2004). Absolute dune ages and implications for the time of formation of gullies in Nirgal Vallis, Mars. Journal of Geophysical Research (Planets), 109 (E6), doi: 10.1029/2004JE002251.Google Scholar
Richardson, M. I. and Wilson, R. J. (2002). Investigation of the nature and stability of the Martian seasonal water cycle with a general circulation model. Journal of Geophysical Research (Planets), 107 (E5), doi: 10.1029/2001JE001536.Google Scholar
Robinson, M. S. and Tanaka, K. L. (1990). Magnitude of a catastrophic flood event at Kasei Valles, Mars. Geology, 18, 902–5.2.3.CO;2>CrossRefGoogle Scholar
Rossbacher, L. A. and Judson, S. (1981). Ground ice on Mars: inventory, distribution, and resulting landforms. Icarus, 45, 39–59.CrossRefGoogle Scholar
Rotto, S. and Tanaka, K. L. (1995). Geologic/geomorphic map of the Chryse Planitia Region of Mars. US Geological Survey Miscellaneous Investigation Series Map. I-2441-A.Google Scholar
Russell, P. S. and Head, J. W. (2003). Elysium-Utopia flows as mega-lahars: a model of dike intrusion, cryosphere cracking, and water-sediment release. Journal of Geophysical Research (Planets), 108 (E6), doi: 10.1029/2002JE001995.Google Scholar
Schenk, P. M. and Moore, J. M. (2000). Stereo topography of the south polar region of Mars: volatile inventory and Mars Polar Lander site. Journal of Geophysical Research (Planets), 105 (E10), 24529–44.CrossRefGoogle Scholar
Schultz, P. H. and Gault, D. E. (1979). Atmospheric effects on Martian ejecta emplacement. Journal of Geophysical Research, 84, 7669–87.CrossRefGoogle Scholar
Schultz, P. H. and Mustard, J. F. (2004). Impact melts and glasses on Mars. Journal of Geophysical Research (Planets), 109 (E1), doi: 10.1029/2002JE002025.Google Scholar
Schultz, R. A. and Tanaka, K. L. (1994). Lithospheric-scale buckling and thrust structures on Mars: the Coprates rise and south Tharsis ridge belt. Journal of Geophysical Research, 99, 8371–85.CrossRefGoogle Scholar
Scott, D. H. and Tanaka, K. L. (1986). Geologic map of the western hemisphere of Mars; scale 1:15M. US Geological Survey Miscellaneous Investigation Series Map. I-1802-A.Google Scholar
Scott, E. D. and Wilson, L. (2002). Plinian eruptions and passive collapse events as mechanisms of formation for Martian pit chain craters. Journal of Geophysical Research (Planets), 107 (E04), doi: 10.1029/2000JE001432.Google Scholar
Sharp, R. P. (1973). Mars: fretted and chaotic terrain. Journal of Geophysical Research, 78, 4073–83.CrossRefGoogle Scholar
Sharp, R. P. and Malin, M. C. (1975). Channels on Mars. Geological Society of American Bulletin, 86, 593–609.2.0.CO;2>CrossRefGoogle Scholar
Sleep, N. H. (1994). Martian plate tectonics. Journal of Geophysical Research, 99, 5639–55.CrossRefGoogle Scholar
Sleep, N. H. and Phillips, R. J. (1979). An isostatic model for the Tharsis Province, Mars. Geophysical Research Letters, 6, 803–6.CrossRefGoogle Scholar
Sleep, N. H. and Phillips, R. J. (1985). Gravity and lithospheric stress on the terrestrial planets with reference to the Tharsis Region of Mars. Journal of Geophysical Research, 90, 4469–89.CrossRefGoogle Scholar
Smith, D. E., Zuber, M. T., Frey, H. V.et al. (1998). Topography of the northern hemisphere of Mars from the Mars Orbiter Laser Altimeter. Science, 279, 1686–92.CrossRefGoogle ScholarPubMed
Smith, D. E., Zuber, M. T., Solomon, S. C.et al. (1999). The global topography of Mars and implication for surface evolution. Science, 284, 1495–503.CrossRefGoogle Scholar
Smith, D. E., Zuber, M. T., Frey, H. V.et al. (2001). Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. Journal of Geophysical Research (Planets), 106 (E10), 23689–722.CrossRefGoogle Scholar
Solomon, S. C. and Head, J. W. (1982). Evolution of the Tharsis Province of Mars: the importance of heterogeneous lithospheric thickness and volcanic construction. Journal of Geophysical Research, 87, 9755–74.CrossRefGoogle Scholar
Squyres, S. W. (1978). Martian fretted terrain: flow of erosional debris. Icarus, 34, 600–13.CrossRefGoogle Scholar
Squyres, S. W. (1979). The distribution of lobate debris aprons and similar flows on Mars. Journal of Geophysical Research, 84, 8087–96.CrossRefGoogle Scholar
Squyres, S. W. (1989). Water on Mars. Icarus, 79, 229–88.CrossRefGoogle Scholar
Squyres, S. W. and Carr, M. H. (1986). Geomorphic evidence for the distribution of ground ice on Mars. Science, 231, 249–52.CrossRefGoogle ScholarPubMed
Squyres, S. W. and Kasting, K. F. (1994). Early Mars: how warm and how wet?Science, 265, 744–8.CrossRefGoogle ScholarPubMed
Squyres, S. W., Clifford, S. M., Kuzmin, R. O., Zimbelman, J. R., and Costard, F. M. (1992). Ice in the Martian regolith. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson: University of Arizona Press, pp. 523–54.Google Scholar
Stepinski, T. J., Collier, M. L., McGovern, P. J., and Clifford, S. M. (2004). Martian geomorphology from fractal analysis of drainage networks. Journal of Geophysical Research (Planets), 109 (E2), doi: 10.1029/2003JE002193.Google Scholar
Stewart, E. M. and Head, J. W. (2001). Ancient Martian volcanoes in the Aeolis region: new evidence from MOLA data. Journal of Geophysical Research (Planets), 106 (E8), 17505–14.CrossRefGoogle Scholar
Sullivan, R., Thomas, P., Veverka, J., Malin, M., and Edgett, K. S. (2001). Mass movement slope streaks imaged by the Mars Orbiter Camera. Journal of Geophysical Research (Planets), 106 (E10), 23607–34.CrossRefGoogle Scholar
Tanaka, K. L. (1985). Ice-lubricated gravity spreading of the Olympus Mons aureole deposits. Icarus, 62, 191–206.CrossRefGoogle Scholar
Tanaka, K. L. (1986). The stratigraphy of Mars. Lunar and Planetary Science XVII (CD-ROM), #E139–58.Google Scholar
Tanaka, K. L. (1995). Did Mars have plate tectonics?Mercury, 24, 11.Google Scholar
Tanaka, K. L. (2000). Dust and ice deposition in the Martian geologic record. Icarus, 144 (2), 254–66.CrossRefGoogle Scholar
Tanaka, K. L. and Kolb, E. J. (2001). Geologic history of the polar regions of Mars based on Mars Global Surveyor data: I. Noachian and Hesperian Periods. Icarus, 154 (1), 3–21.CrossRefGoogle Scholar
Tanaka, K. L. and Scott, D. H. (1987). Geologic map of the polar region of Mars, scale 1:15,000,000. US Geological Survey Miscellaneous Investigation Series Map. I-1802-C.Google Scholar
Tanaka, K. L., Isbell, N. K., Scott, D. H., Greeley, R., and Guest, J. E. (1987). The resurfacing history of Mars: a synthesis of digitized Viking-based geology. Lunar and Planetary Science XVIII (CD-ROM), 665–78.Google Scholar
Tanaka, K. L., Scott, D. H., and Greeley, R. (1992). Global stratigraphy. In Mars, Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson: University of Arizona Press, pp. 354–82.Google Scholar
Theilig, E. and Greeley, R. (1979). Plains and channels in the Lunae Planum-Chryse Planitia region of Mars. Journal of Geophysical Research, 84, 7994–8010.CrossRefGoogle Scholar
Thomas, P. C., Malin, M. C., and Edgett, K. S. (2000). North–south geological differences between the residual polar caps on Mars. Nature, 404, 161–4.CrossRefGoogle ScholarPubMed
Thomas, P. C., Gierasch, P., Sullivan, R.et al. (2003). Mesoscale linear streaks on Mars: environments of dust entrainment. Icarus, 162 (2), 242–58.CrossRefGoogle Scholar
Travis, B. J., Rosenberg, N. D., and Cuzzi, J. N. (2003). On the role of widespread subsurface convection in bringing liquid water close to Mars' surface. Journal of Geophysical Research (Planets), 108 (E4), doi: 10.1029/2002JE001877.Google Scholar
Tricart, J. (1968). Periglacial landscapes. In Encyclopedia of Geomorphology, ed. Fairbridge, R. W.. New York, NY: Reinhold, pp. 829–33.Google Scholar
Tricart, J. (1969). Geomorphology of Cold Environments. London: Macmillan.Google Scholar
Tricart, J. L. F. (1988). Environmental change of planet Mars demonstrated by landforms. Zeitschrift fur Geomorphologie, 32, 385–407.Google Scholar
Vasavada, A. R., Paige, D. A., and Wood, S. E. (1999). Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits. Icarus, 141, 179–93.CrossRefGoogle Scholar
Wahrhaftig, C. and Cox, A. (1959). Rock glaciers in the Alaska Range. Bulletin of the Geology Society of America, 70, 383–436.CrossRefGoogle Scholar
Warner, N. H. and Gregg, T. K. P. (2003). Evolved lavas on Mars? Observations from southwest Arsia Mons and Sabancaya volcano, Peru. Journal of Geophysical Research (Planets), 108 (E10), doi: 10.1029/2002JE001969.Google Scholar
Watters, T. R. (1988). Wrinkle ridge assemblages on the terrestrial planets. Journal of Geophysical Research, 93, 15599–616.CrossRefGoogle Scholar
Watters, T. R. (1993). Compressional tectonism on Mars. Journal of Geophysical Research, 98 (E9), 17049.CrossRefGoogle Scholar
Watters, T. R. and Maxwell, T. A. (1986). Orientation, relative age, and extent of the Tharsis plateau ridge system. Journal of Geophysical Research, 91, 8113–25.CrossRefGoogle Scholar
Werner, S. C., Gasselt, S., and Neukum, G. (2003). Continual geological activity in Athabasca Valles, Mars. Journal of Geophysical Research (Planets), 108 (E12), doi: 10.1029/2002JE002020.Google Scholar
Whalley, W. B. and Azizi, F. (2003). Rock glaciers and protalus landforms: analogous forms and ice sources on Earth and Mars. Journal of Geophysical Research (Planets), 108 (E4), doi: 10.1029/2002JE001864.Google Scholar
Wilhelms, D. E. and Squyres, S. W. (1984.) The Martian hemispheric dichotomy may be due to a giant impact. Nature, 309, 138–40.CrossRefGoogle Scholar
Wilkins, S. J. and Schultz, R. A. (2003). Cross faults in extensional settings: stress triggering, displacement localization, and implications for the origin of blunt troughs at Valles Marineris, Mars. Journal of Geophysical Research (Planets), 108 (E6), doi: 10.1029/2002JE001968.Google Scholar
Willeman, R. J. and Turcotte, D. L. (1982). The role of lithospheric stress in the support of the Tharsis Rise. Journal of Geophysical Research, 82, 9793–801.CrossRefGoogle Scholar
Williams, R. M. E. and Malin, M. C. (2004). Evidence for late stage fluvial activity in Kasei Valles, Mars. Journal of Geophysical Research (Planets), 109 (E6), doi: 1029/2003JE002178.Google Scholar
Williams, R. M. E. and Phillips, R. J. (2001). Morphometric measurements of Martian valley networks from Mars Orbiter Laser Altimeter (MOLA) data. Journal of Geophysical Research (Planets), 106 (E10), 23737–52.CrossRefGoogle Scholar
Wilson, L. and Head, J. W. (1994). Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. Reviews of Geophysics, 32, 221–63.CrossRefGoogle Scholar
Wilson, L. and Head, J. W. (2002). Tharsis-radial graben systems as the surface manifestation of plume-related dike intrusion complexes: models and implications. Journal of Geophysical Research (Planets), 107 (E08), doi: 10.1029/2001JE001593.Google Scholar
Wilson, L. and Mouginis-Mark, P. J. (1987). Volcanic input to the atmosphere from Alba Patera on Mars. Nature, 330, 354–7.CrossRefGoogle Scholar
Wilson, L. and Mouginis-Mark, P. J. (2001). Estimation of volcanic eruption conditions for a large flank event on Elysium Mons, Mars. Journal of Geophysical Research (Planets), 106 (E9), 20621–28.CrossRefGoogle Scholar
Wilson, L. and Mouginis-Mark, P. J. (2003a). Phreatomagmatic dike–cryosphere interactions as the origin of small ridges north of Olympus Mons, Mars. Icarus, 165 (2), 242–52.CrossRefGoogle Scholar
Wilson, L. and Mouginis-Mark, P. J. (2003b). Phreatomagmatic explosive origin of Hrad Vallis, Mars. Journal of Geophysical Research (Planets), 108 (E8), doi: 10.1029/2002JE001927.Google Scholar
Wilson, L.Scott E. D, ., and Head, J. W. III (2001). Evidence for episodicity in the magma supply to the large Tharsis volcanoes. Journal of Geophysical Research (Planets), 106 (E1), 1423–34.CrossRefGoogle Scholar
Wohletz, K. H. and Sheridan, M. F. (1983). Martian rampart crater ejecta: experiments and analysis of melt water interaction. Icarus, 56, 15–37.CrossRefGoogle Scholar
Zimbelman, J. R. and Edgett, K. S. (1992). The Tharsis Montes, Mars; comparison of volcanic and modified landforms. Proceedings of the Lunar and Planetary Science Conference, 22, 31–44.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×