Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T21:55:40.108Z Has data issue: false hasContentIssue false

11 - The Ionospheric Field

from Part III - Spatial and Temporal Variations of the Geomagnetic Field

Published online by Cambridge University Press:  25 October 2019

Mioara Mandea
Affiliation:
Centre National d'études Spatiales, France
Monika Korte
Affiliation:
GeoforschungsZentrum, Helmholtz-Zentrum, Potsdam
Andrew Yau
Affiliation:
University of Calgary
Eduard Petrovsky
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

The ionosphere boundary between the magnetosphere and atmosphere is often considered thin in the magnetosphere-ionosphere-thermosphere system. This approximation is not valid at the inner boundary, where height variation is important in ionosphere-thermosphere (I-T) coupling, particularly with respect to momentum/energy transfer. Here the Cowling channel and energy coupling between regions are better modelled including altitude variations. In the equatorial region the equatorial plasma fountain results from a field perpendicular ExB drift and field aligned plasma diffusion, while the equatorial ionisation anomaly is formed by removal of equatorial plasma by upward ExB drift. Under magnetic storm conditions an eastward prompt penetration electric field and neutral winds contribute. The polar cap ionosphere and auroral zones transfer solar wind energy into the magnetosphere. In the polar cap key indicators for energy/momentum transfer to the solar wind I-T system are the cross-polar cap potential/electric field, and the relationship to the interplanetary magnetic field where linear and non-linear relationships may occur. Models have been produced to describe various aspects of the coupled system. In the auroral zones aurora are associated with different regions and processes; substorm-associated aurora, shock associated aurora, pulsation aurora, cusp aurora and mid-latitude aurora. These categories and recent models are referenced.

Type
Chapter
Information
Geomagnetism, Aeronomy and Space Weather
A Journey from the Earth's Core to the Sun
, pp. 141 - 159
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdu, M. A., et al. (2008), ‘Abnormal evening vertical plasma drift and effects on ESF and EIA over Brazil-South Atlantic sector during the 30 October 2003 superstorm’, J. Geophys. Res., 113, A07313, doi: 10.1029/2007JA012844.Google Scholar
Anderson, B. J., Korth, H., Waters, C. L., Green, D. L., Merkin, V. G., Barnes, R. J. and Dyrud, L. P. (2014), ‘Development of large-scale Birkeland currents determined from the Active Magnetosphere and Planetary Electrodynamics Response Experiment’, Geophys Res. Lett., 41, 3017–25, doi: 10.1002/2014GL059941.CrossRefGoogle Scholar
Anderson, D. N. (1973), ‘A theoretical study of ionospheric F region equatorial anomaly – I. Theory’, Planet. Space Sci., 21, 409.Google Scholar
Anderson, D. N. (1981), ‘Modelling the ambient low latitude F region ionosphere – A review’, J. Atmos. Terr. Phys., 43, 753.Google Scholar
Appleton, E. V. (1946), ‘Two anomalies in the ionosphere’, Nature, 157, 691.CrossRefGoogle Scholar
Astafyeva, Elvira, Zakharenkova, Irina and Matthias, Forster (2015), ‘Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrument overview’, J. Geophys. Res., 120, 9023–37, doi: 10.1002/2015JA021629.Google Scholar
Bahair, Siti Aminah, Abdullah, Mardina and Yatim, Baharuding (2011), ‘The response of TEC at quasi-conjugate point GPS stations during solar flares’, Acta Geophys., 59, 407–27, doi: 10.2478/s11600-010-0054-1.Google Scholar
Bailey, G. J. and Balan, N. (1996), ‘A low latitude Ionosphere-plasmasphere model’, in STEP Hand Book of Ionospheric Models, ed. R. W. Schunk, Utah State University, Logan.Google Scholar
Bailey, G. J., Balan, N. and Su, Y. Z. (1997), ‘The Sheffield University plasmasphere-ionosphere model – a review’, J. Atmos. Terr. Phys., 59, 1541.Google Scholar
Balan, N, Bailey, G. J., Abdu, M. A., Oyama, K. I., Richards, P. G., MacDougall, J. and Batista, I. S. (1997), ‘Equatorial plasma fountain and its effects over three locations: Evidence for an additional layer, the F3 layer’, J. Geophys. Res., 102, 2047–56.Google Scholar
Balan, N., Shiokawa, K., Otsuka, Y., Watanabe, S. and Bailey, G. J. (2009), ‘Super plasma fountain and equatorial ionization anomaly during penetration electric field’, J. Geophys. Res., 114, A03310, doi: 10.1029/2008JA013768.CrossRefGoogle Scholar
Balan, N. and Bailey, G. J. (1995), ‘Equatorial plasma fountain and its effects – possibility of an additional layer’, J. Geophys. Res., 100, 21421.CrossRefGoogle Scholar
Balan, N., Shiokawa, K., Otsuka, Y., Kikuchi, T., Vijaya Lekshmi, D., Kawamura, S., Yamamoto, M. and Bailey, G. J. (2010), ‘A physical mechanism of positive ionospheric storms at low and mid latitudes through observations and modeling’, J. Geophys. Res., 115, A02304, doi: 10.1029/2009JA014515.Google Scholar
Balan, N., Yamamoto, M., Liu, J. Y., Otsuak, Y., Liu, H. and Lühr, H. (2011), ‘New aspects of thermospheric and ionospheric storms revealed by CHAMP’, J. Geophys. Res., 116, A07305, doi: 10.1029/2010JA0160399.Google Scholar
Balan, N., Otsuka, Y., Nishioka, M., Liu, J. Y. and Bailey, G. (2013), ‘Physical mechanisms of the ionospheric storms at equatorial and higher latitudes during MP and RP of geomagnetic storms’, J. Geophys. Res., 118, 2660–69, 2012JA018557.Google Scholar
Banks, P. M. and Kockarts, G. (1973), Aeronomy, Part B, Academic Press, New York.Google Scholar
Brambles, O. J., Lotko, W., Zhang, B., Wiltberger, M., Lyon, J. and Strangeway, R. J. (2011), ‘Magnetosphere sawtooth oscillations induced by ionospheric outflow’, Science, 332, 1183–6, doi: 10.1126/science.1202869.Google Scholar
Burke, W. J., Kilcommons, L. M. and Hairston, M. R. (2017), ‘Storm time coupling between the magnetosheath and the polar ionosphere’, J. Geophys. Res., 122, doi: 10.1002/2017JA024101.Google Scholar
Carlson, H. C., Oksavik, K. and Moen, J. I. (2013), ‘Thermally excited 630.0 nm O(1D) emission in the cusp: A frequent high-altitude transient signature’, J. Geopphys. Res., 118(9), 5842–52.Google Scholar
Chaston, C. C., Bonnell, J. W., Carlson, C. W., McFadden, J. P., Ergun, R. E. and Strangeway, R. J. (2003), ‘Properties of small-scale Alfvén waves and accelerated electrons from FAST’, J. Geophys. Res., 108, 8003, doi: 10.1029/2002JA009420.Google Scholar
Chen, C. H, Lin, C. H., Matsuo, T. and Chen, W. H. (2016b), ‘Ionospheric data assimilation modeling of the 2015 St. Patrick’s Day geomagnetic storm’, J. Geophys. Res., 121, 11549–59, doi: 10.1002/2016JA023346.Google Scholar
Chen, C. H., Lin, C. H., Matsuo, T., Chen, W. H., Lee, I. T., Liu, J. Y., Lin, J. T. and Hsu, C. T. (2016a), ‘Ionospheric data assimilation with thermosphere-ionosphere-electrodynamics general circulation model and GPS-TEC during geomagnetic storm conditions’, J. Geophys. Res., 121, 5708–22, doi: 10.1002/2015JA021787.Google Scholar
Cherniak, Lurii and Zakharenkova, Irina (2017), ‘New advantages of the combined GPS and GLONASS observations for high-latitude ionospheric irregularities monitoring: case study of June 2015 geomagnetic storm’, Earth Planets Space, 69, doi: 10.1186/s40623-017-0652-0.CrossRefGoogle Scholar
Cherniak, Luril and Zakharenkova, Irina (2016), ‘High-latitude ionospheric irregularities: differences between ground- and space-based GPS measurements during the 2015 St. Patrick’s Day storm’, Earth Planets Space, 68, doi: 10.1186/s40623-016-0506-1.Google Scholar
Chisham, G. (2017), ‘A new methodology for the development of high-latitude ionospheric climatologies and empirical models’, J. Geophys. Res., 122, 932–47, doi: 10.1002/2016JA023235.CrossRefGoogle Scholar
Clauer, C. Robert, Xu, Zhonghua, Maimaiti, M, Ruohoneimi, J. Michael, Scales, Wayne, Hartinger, Michael D., Nicolls, Michael J., Kaeppler, Stephen, Wilder, Frederick D. and Lopez, Ramon E. (2016), ‘Investigation of a rare event where the polar ionospheric reverse convection potential does not saturate during a period of extreme northward IMF solar wind driving’, J. Geophys. Res., 121, 5422–35, doi: 10.1002/2016JA022557.Google Scholar
Cnossen, Ingrid and Förster, Matthias (2016), ‘North-south asymmetries in the polar thermosphere-ionosphere system: Solar cycle and seasonal influences’, J. Geophys. Res., 121, 612–27, doi: 10.1002/2015JA021750.Google Scholar
Connor, H. K., Zesta, E., Ober, D. M. and Raeder, J. (2014), ‘The relation between transpolar potential and reconnection rates during sudden enhancement of solar wind dynamic pressure: OpenGGCM-CTIM results’, J. Geophys. Res., 119, 3411–29, doi: 10.1002/2013JA019728.Google Scholar
Cosgrove, R. B., Bahcivan, H., Chen, S., Strangeway, R. J., Ortega, J., Alhassan, M., Xu, Y., Van Welie, M., Rehberger, J., Musielak, S. and Cahill, N. (2014), ‘Empirical model of Poynting flux derived from FAST data and a cusp signature’, J. Geophys. Res., 119, 411–30, doi: 10.1002/2013JA019105.Google Scholar
Cousins, E. D. P., Matsuo, Tomoko and Richmond, A. D. (2015), ‘Mapping high-latitude ionospheric electrodynamics with SuperDARN and AMPERE’, J. Geophys. Res., 120, 5854–70, doi: 10.1002/2014JA020463.Google Scholar
Coxon, J. C., Milan, S. E., Carter, J. A., Clausen, L. B. N., Anderson, B. J. and Korth, H. (2016), ‘Seasonal and diurnal variations in AMPERE observations of the Birkeland currents compared to modeled results’, J. Geophys. Res., 121, 4027–40, doi: 10.1002/2015JA022050.Google Scholar
Crowley, G., Knipp, D. J., Drake, K. A., Lei, J., Sutton, E. and Lühr, H. (2010), ‘Thermospheric density enhancements in the dayside cusp region during strong BY conditions’, Geophys. Res. Lett., 37, L07110, doi: 10.1029/2009GL042143.Google Scholar
Datta-Barua, S., Su, Y., Deshpande, K., Maladinovich, D., Bust, G. S., Hampton, D. and Crowley, G. (2015), ‘First light from a kilometer-baseline scintillation auroral GPS array’, Geophys. Res. Lett., 42, 3639–46, doi: 10.1002/2015GL063556.Google Scholar
Deshpande, K., Bust, G. S., Clauer, C. R., Rino, C. L. and Carrano, C. S. (2014), ‘Satellite-beacon Ionospheric scintillation Global Model of the upper Atmosphere (SIGMA) I: High latitude sensitivity study of the model parameters’, J. Geophys. Res., 119, 4026–43, doi: 10.1002/2013JA019699.CrossRefGoogle Scholar
Deshpande, K., Bust, G. S., Clauer, C. R., Scales, W. A., Frissell, N. A., Ruohoniemi, J. M., Spogli, L., Mitchell, C. and Weatherwax, A. T. (2016), ‘Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere (SIGMA)II: Inverse modeling with high-latitude observations to deduce irregularity physics’, J. Geophys. Res., 121, 91889203, doi: 10.1002/2016JA022943.Google Scholar
Durgonics, Tibor, Komjathy, Attila, Verkhoglyadova, Olga, Shume, Esayas B., Benzon, Hans-Henrik, Mannucci, Anthony J., Butala, Mark D., Høeg, Per and Langley, Richard B. (2017), ‘Multi-instrument observations of a geomagnetic storm and its effects on the Arctic ionosphere: A case study of the 19 February 2014 storm’, Radio Sci., 52, 146–65, doi: 10.1002/2016RS006106.CrossRefGoogle Scholar
Ebihara, Y. and Tanaka, T. (2015a), ’Substorm simulation: Insight into the mechanisms of initial brightening’, J. Geophys. Res., 120(9), 7270–88, doi: 10.1002/2015JA021516.Google Scholar
Ebihara, Y. and Tanaka, T. (2015b), ‘Substorm simulation: Formation of westward traveling surge’, J. Geophys. Res., 120(12), 10,46684, doi: 10.1002/2015JA021697.CrossRefGoogle Scholar
Ebihara, Y. and Tanaka, T. (2016), ‘Substorm simulation: Quiet and N-S arcs preceding auroral breakup’, J. Geophys. Res., 121(2), 1201–18, doi: 10.1002/2015JA021831.CrossRefGoogle Scholar
Fejer, B. G., Depaula, E. R., Gonzales, S. A. and Woodman, R. F. (1991), ‘Average vertical and zonal F region plasma drifts over Jicamarca’, J. Geophys. Res., 96, 13901.Google Scholar
Förster, M. and Haaland, S. (2015), ‘Interhemispheric differences in ionospheric convection: Cluster EDI observations revisited’, J. Geophys. Res., 120, 5805–23, doi: 10.1002/2014JA020774.Google Scholar
Fujii, R., Amm, O., Vanhamäki, H., Yoshikawa, A. and Ieda, A. (2012), ‘An application of the finite length Cowling channel model to auroral arcs with longitudinal variations’, J. Geophys. Res., 117, A11217, doi: 10.1029/2012JA017953.Google Scholar
Fujii, R., Amm, O., Yoshikawa, A., Ieda, A. and Vanhamäki, H. (2011), ‘Reformulation and energy flow of the Cowling channel’, J. Geophys. Res., 116, A02305, doi: 10.1029/2010JA015989.Google Scholar
Fukuda, Y., Kataoka, R., Uchida, H. A., Miyoshi, Y, Hampton, D., Shiokawa, K., Ebihara, Y., Whiter, D., Iwagami, N. and Seki, K. (2017), ‘First evidence of patchy flickering aurora modulated by multi-ion electromagnetic ion cyclotron waves’, Geophys. Res. Lett., 44(9), 3963–70, doi: 10.1002/2017GL072956.Google Scholar
Grandin, M., Aikio, A. T., Kozlovsky, A., Ulich, T. and Raita, T. (2017), ‘Cosmic radio noise absorption in the high latitude ionosphere during solar wind high-speed streams’, J. Geophys. Res., 122, 5203–23, doi: 10.1002/2017JA023923.Google Scholar
Han, D. S., Chen, X. C., Liu, J. J., Qiu, Q., Keika, K., Hu, Z. J., Liu, J. M., Hu, H. Q. and Yang, H. G. (2015), ‘An extensive survey of dayside diffuse aurora based on optical observations at Yellow River Station’, J. Geophys. Res., 120(9), 7447–65, doi: 10.1002/2015JA021699.Google Scholar
Hanson, W. B. and Moffett, R. J. (1966), ‘Ionization transport effects in the equatorial F region’, J. Geophys. Res., 71, 5559.Google Scholar
Hartinger, M. D., Xu, Z., Clauer, C. R., Yu, Y., Weimer, D., Kim, H., Pilipenko, V., Welling, D. T., Behlke, R. and Willer, A. N. (2017), ‘Associating ground magnetometer observations with current or voltage generators’, J. Geophys. Res., doi: 10.1002/2017JA0241402016.Google Scholar
Hedin, A. E., Fleming, E. L., Manson, A. H., Schmidlin, F. L., Avery, S. K., Clark, R. R., Fraser, G. J., Tsuda, T., Vial, F. and Vincent, R. (1995), ‘Empirical wind model for the upper, middle and lower atmosphere’, J. Atmos. Terr. Phys., 58, 1421–47.Google Scholar
Huba, J. D., Joice, G., Sazykin, S., Wolf, R. and Spiro, R. (2005), ‘Simulation study of penetration electric field effects on the low- to mid-latitude ionosphere’, Geophys. Res. Lett., 32, 123101, doi: 10.1029/2005GL024162.Google Scholar
Jaynes, A. N., Lessard, M. R., Rodriguez, J. V., Donovan, E., Loto’Aniu, T. M. and Rychert, K. (2013), ‘Pulsating auroral electron flux modulations in the equatorial magnetosphere’, J. Geophys. Res., 118(8), 4884–94, doi: 10.1002/jgra.50434.Google Scholar
Jaynes, A. N., Lessard, M. R., Takahashi, K., Ali, A. F., Malaspina, D. M., Michell, R. G., Spanswick, E. L. et al. (2015), ‘Correlated Pc4-5 ULF waves, whistler-mode chorus, and pulsating aurora observed by the Van Allen Probes and ground-based systems’, J. Geophys. Res., 120(10), 8749–61, doi: 10.1002/2015JA021380.CrossRefGoogle Scholar
Kataoka, R., Miyoshi, Y., Hampton, D., Ishii, T. and Kozako, Y. (2012), ‘Pulsating aurora beyond the ultra-low-frequency range’, J. Geophys. Res., 117(A8), A08336, doi: 10.1029/2012JA017987.Google Scholar
Kelley, M. C., Vlasov, M. N., Foster, J. C. and Coster, A. J. (2004), ‘A quantitative explanation for the phenomenon known as storm-enhanced density’, Geophys. Res. Lett., 31, L19809, doi: 10.1029/2004GL020875.CrossRefGoogle Scholar
Kepko, L., McPherron, R. L., Amm, O., Apatenkov, S., Baumjohann, W., Birn, W., Lester, M., Nakamura, R., Pulkkinen, T. I. and Sergeev, V. (2015), ‘Substorm current wedge revisited’, Space Sci. Rev., 190(1–4), 146, doi: 10.1007/s11214-014-0124-9.Google Scholar
Kikuchi, T. (2014), ‘Transmission line model for the near-instantaneous transmission of the ionospheric electric field and currents to the equator’, J. Geophys. Res., 119, 1131–56, doi: 10.1002/2013JA019515.Google Scholar
Kim, H., Clauer, C. R., Gerrard, A. J., Engebretson, M. J., Hartinger, M. D., Lessard, M. R., Matzka, J., Sibeck, D. G., Singer, H. J., Stolle, C., Weimer, D. R. and Xu, Z. (2017), ‘Conjugate observations of electromagnetic iono-cyclotron waves associated with traveling convection vortex events’, J. Geophys. Res., 122, 7336–52, doi: 10.1002/2017JA024108.CrossRefGoogle Scholar
Kim, H., Clauer, C. R., Deshpande, K., Lessard, M. R., Weatherwax, A. T., Bust, G. S., Crowley, G. and Humphreys, T. E. (2014), ‘Ionospheric irregularities during a substorm event: Observations of ULF pulsations and GPS scintillations’, J. Atmos. Sol. Terr. Phys., 114, 18, doi: 10.1016/j.jastp.2014.03.006.Google Scholar
Kim, H., Clauer, C. R., Engebretson, M. J., Matzka, J., Sibeck, D. G., Singer, H. J., Stolle, C., Weimer, D. R. and Xu, Z. (2015), ‘Conjugate observations of traveling convection vortices associated with transient events at the magnetopause’, J. Geophys. Res., 120, 2015–35, doi: 10.1002/2014JA020743.Google Scholar
Kim, H., Cai, X., Clauer, C. R., Kunduri, B. S. R., Matzka, J., Stolle, C. and Weimer, D. R. (2013), ‘Geomagnetic response to solar wind dynamic pressure impulse events at high-latitude conjugate points’, J. Geophys. Res., 118, 6055–71, doi: 10.1002/jgra50555.Google Scholar
Kivelson, M. G. and Ridley, A. J. (2008), ‘Saturation of the polar cap potential: Inference from Alfvén wing arguments’, J. Geophys. Res., 113, doi: 10.1029/2007JA012,302.Google Scholar
Knipp, D., Eriksson, S., Kilcommons, L., Crowley, G., Lei, J., Hairston, M. and Drake, K. (2011), ‘Extreme Poynting flux in the dayside thermosphere: Examples and statistics’, Geophys. Res. Lett., 38, L16102, doi: 10.1029/2011GL048302.Google Scholar
Korte, M. and Stolze, S. (2016), ‘Variations in mid-latitude auroral activity during the Holocene’, Archaeometry, 58 (1), 159–76, doi: 10.1111/arcm.12152.Google Scholar
Kubota, Y., Nagatsuma, T., Den, M., Tanaka, T. and Fujita, S. (2017), ‘Polar cap potential saturation during the Bastille Day storm event using global MHD simulation’, J. Geophys. Res., 122, 43984409, doi: 10.1002/2016JA023851.Google Scholar
Laundal, K. M., Cnossen, I., Milan, S. E., Haaland, S. E., Coxon, J., Pedatella, N. M., Förster, M. and Reistad, J. P. (2017), ‘North-South asymmetries in Earth’s magnetic field. Effects on high-latitude geospace’, Space Sci. Rev., 206, 225–57, doi: 10.1007/s11214-016-0273-0.Google Scholar
Li, W., Bortnik, J., Thorne, R. M., Nishimura, Y., Angelopoulos, V. and Chen, L. (2011b), ‘Modulation of whistler mode chorus waves: 2. Role of density variations’, J. Geophys. Res., 116(A6), A06206, doi: 10.1029/2010JA016313.Google Scholar
Li, W., Thorne, R. M., Bortnik, J., Nishimura, Y. and Angelopoulos, V. (2011a), ‘Modulation of whistler mode chorus waves: 1. Role of compressional Pc4-5 pulsations’, J. Geophys. Res., 116(A6), A06205, doi: 10.1029/2010JA016312.Google Scholar
Liang, J., Donovan, E., Jackel, B., Spanswick, E. and Gillies, M. (2016), ‘On the 630 nm red-line pulsating aurora: Red-line emission geospace observatory observations and model simulations’, J. Geophys. Res., 121(8), 79888012, doi: 10.1002/2016JA022901.Google Scholar
Lin, C. H., Richmond, A. D., Heelis, R. A., Bailey, G. J., Lu, G., Liu, J. Y., Yeh, H. C. and Su, S. Y. (2005), ‘Theoretical study of the low and mid latitude ionospheric electron density enhancement during the October 2003 storm: Relative importance of the neutral wind and the electric field’, J. Geophys. Res., 110, A12312, doi: 10.1029/2005JA011304.Google Scholar
Lin, D., Zhang, B., Scales, W. A., Wiltberger, M., Clauer, C. R. and Xu, Z. (2017), ‘The role of solar wind density in cross polar cap potential saturation under northward interplanetary magnetic field’, Geophys. Res. Lett., doi: 10.1002/2017GL075275.CrossRefGoogle Scholar
Liu, J., Hu, H., Han, D., Yang, H. and Lester, M. (2015), ‘Simultaneous ground-based optical and SuperDARN observations of the shock aurora at MLT noon’, Earth Planet. Space, 67, 120, doi: 10.1186/s40623-015-0291-2.Google Scholar
Lopez, R. E., Bruntz, R., Mitchell, E. J., Wiltberger, M., Lyon, J. G and Merkin, V. G. (2010), ‘Role of magnetosheath force balance in regulating the dayside reconnection potential’, J. Geophys. Res., 115, doi: 10.1029/2009JA014597.Google Scholar
Loucks, D., Palo, S., Pilinski, M., Crowley, G., Azeem, I. and Hampton, D. (2017), ‘High-latitude GPS phase scintillation from E region electron density gradients during the 20–21 December 2015 geomagnetic storm’, J. Geophys. Res. Space Phys., 122(7), 7473–90, doi: 10.1002/2016JA023839.Google Scholar
Lu, G., Goncharenko, L. P., Nicolls, M. J., Maute, A. I., Coster, A. J. and Paxton, L. J. (2012), ‘Ionospheric and thermospheric variations associated with prompt penetration electric fields’, J. Geophys. Res., 117, A08312, doi: 10.1029/2012JA017769.Google Scholar
Lühr, H., Rother, M., Köhler, W., Ritter, P. and Grunwaldt, L. (2004), ‘Thermospheric up-welling in the cusp region: Evidence from CHAMP observations’, Geophys. Res. Lett., 31, L06805, doi: 10.1029/2003GL019314.Google Scholar
Lysak, R. L. (1999), ‘Propagation of Alfvén waves through the ionosphere: Dependence on ionospheric parameters’, J. Geophys. Res., 104(10), 10017–30.Google Scholar
Lysak, R. L. (2004), ‘Magnetosphere–ionosphere coupling by Alfvén waves at midlatitudes’, J. Geophys. Res., 109, A07201, doi: 10.1029/2004JA010454.Google Scholar
Lysak, R. L. and Yoshikawa, A. (2006), ‘Resonant cavities and waveguides in the ionosphere and atmosphere’, in Magnetospheric ULF Waves: Synthesis and New Directions, ed. Takahashi, K., Chi, P. J., Denton, R. E. and Lysak, R. L., American Geophysical Union, Washington, DC, doi: 10.1029/169GM19.Google Scholar
Lysak, R. L., Waters, C. L. and Sciffer, M. D. (2013), ‘Modeling of the ionospheric Alfvén resonator in dipolar geometry’, J. Geophys. Res., 118, 1514–28, doi: 10.1002/jgra.50090.Google Scholar
Maimaiti, Maimaitirebike, Ruohoniemi, John Michael, Baker, J. B H., Clauer, Robert, Nicolls, Michael J. and Hairston, Marc R. (2017), ‘RISR-N observations of the IMF By influence on reverse convection during extreme northward IMF’, J. Geophys. Res., 122, doi: 10.1002/2016JA023612.Google Scholar
Mannucci, A. J., Tsurutani, B. T., Iijima, B. A., Komjathy, A., Saito, A., Gonzalez, W. D., Guarnieri, F. L., Kozyra, J. U. and Skoug, R. (2005), ‘Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 Halloween Storms’, Geophys. Res. Lett., 32, L12S02, doi: 10.1029/2004GL021467.Google Scholar
Marklund, G. T., Sadeghi, S., Li, B., Amm, O., Cumnock, J. A., Zhang, Y., Nilsson, H. et al. (2012), ‘Cluster multipoint study of the acceleration potential pattern and electrodynamics of an auroral surge and its associated horn arc’, J. Geophys. Res., 117(10), A10223, doi: 10.1029/2012JA018046.Google Scholar
Martyn, D. F. (1955), ‘Theory of height and ionization density changes at the maximum of a Chapman-like region, taking account of ion production, decay, diffusion and total drift’, in Proceedings, Cambridge Conference, p. 254, Physical Society, London.Google Scholar
McGranaghan, Ryan, Knipp, Delores J. and Matsuo, Tomoko (2016a), ‘High-latitude ionospheric conductivity variability in three dimensions’, Geophys. Res. Lett., 43, 7867–77, doi: 10.1002/2016GL070253.Google Scholar
McGranaghan, Ryan, Knipp, Delores J., Tomoko, Matsuo and Cousins, Ellen (2016b), ‘Optimal interpolation analysis of high-latitude ionospheric Hall and Pedersen conductivities: Application to assimilative ionospheric electrodynamics reconstruction’, J. Geophys. Res., 121, 48984923, doi: 10.1002/2016JA022486.Google Scholar
McGranaghan, Ryan, Knipp, Delores J., Tomoko, Matsuo, Godinez, Humberto, Redmon, Robert J., Solomon, Stanley C. and Morley, Steven K. (2015), ‘Modes of high-latitude auroral conductance variability derived from DMSP energetic electron precipitation observations: Empirical orthogonal function analysis’, J. Geophys. Res., 120, 11013–31, doi: 10.1002/2015JA021828.Google Scholar
Mende, S. B., Frey, H. U. and Angelopoulos, V. (2016), ‘Source of the dayside cusp aurora’, J. Geophys. Res., 121(8), 7728–38, doi: 10.1002/2016JA022657.Google Scholar
Mitra, S. K. (1946), ‘Geomagnetic control of region F2 of the ionosphere’, Nature, 158 , 668.Google Scholar
Miyoshi, Y., Oyama, S., Saito, S., Kurita, S., Fujiwara, H., Kataoka, R., Ebihara, Y. et al. (2015), ‘Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations’, J. Geophys. Res., 120(4), 2754–66, doi: 10.1002/2014JA020690.Google Scholar
Moffett, R. J. (1979), ‘The equatorial anomaly in the electron distribution of the terrestrial F region’, Fund. Cosmic Phys., 4, 313.Google Scholar
Moffett, R. J. and Hanson, W. B. (1965), ‘Effect of ionization transport on the equatorial F region’, Nature, 206, 705.Google Scholar
Motoba, T., Ebihara, Y., Kadokura, A. and Weatherwax, A. T. (2014), ‘Fine-scale transient arcs seen in a shock aurora’, J. Geophys. Res., 119(8), 6249–55, doi: 10.1002/2014JA020229.Google Scholar
Myllys, M., Kilpua, E. K. J., Lavraud, B. and Pulkkinen, J. I. (2016), ‘Solar wind–magnetosphere coupling efficiency during ejecta and sheath-driven geomagnetic storms’, J. Geophys. Res., 121, 4378–96, doi: 10.1002/2016JA022407.Google Scholar
Myllys, M., Kipua, E. K. J. and Lavraud, B. (2017), ‘Interplay of solar wind parameters and physical mechanisms producing the saturation of the cross polar cap potential’, Geophys. Res. Lett., 44, 3019–27, doi: 10.1002/2017GL072676.Google Scholar
Namba, S. and Maeda, K.-I. (1939), Radio Wave Propagation, report, Corona, Tokyo.Google Scholar
Newell, P. T., Liou, K., Zhang, Y., Sotirelis, T., Paxton, L. J. and Mitchell, E. J. (2014), ‘OVATION Prime-2013: Extension of auroral precipitation model to higher disturbance levels’, Space Weather, 12(6), 368–79, doi: 10.1002/2014SW001056.Google Scholar
Nishimura, Y., Bortnik, J., Li, W., Thorne, R. M., Chen, L., Lyons, L. R., Angelopoulos, V. et al. (2011), ‘Multievent study of the correlation between pulsating aurora and whistler mode chorus emissions’, J. Geophys. Res, 116(A11), A11221, doi: 10.1029/2011JA016876.CrossRefGoogle Scholar
Nishimura, Y., Lyons, L. R., Angelopoulos, V., Kikuchi, T., Zou, S. and Mende, S. B. (2011), ‘Relations between multiple auroral streamers, pre-onset thin arc formation, and substorm auroral onset’, J. Geophys. Res., 116(A9), A09214, doi: 10.1029/2011JA016768.Google Scholar
Nishiyama, T., Sakanoi, T., Miyoshi, Y., Katoh, Y., Asamura, K., Okano, S. and Hirahara, M. (2011), ‘The source region and its characteristic of pulsating aurora based on the Reimei observations’, J. Geophys. Res., 116(3), A03226, doi: 10.1029/2010JA015507.Google Scholar
Nomura, R., Shiokawa, K., Omura, Y., Ebihara, Y., Miyoshi, Y., Sakaguchi, K., Otsuka, Y. and Connors, M. (2016), ‘Pulsating proton aurora caused by rising tone Pc1 waves’, J. Geophys. Res., 121(2), 1608–18, doi: 10.1002/2015JA021681.Google Scholar
Ozaki, M., Shiokawa, K., Miyoshi, Y., Kataoka, R., Yagitani, S., Inoue, T., Ebihara, Y. et al. (2016), ‘Fast modulations of pulsating proton aurora related to subpacket structures of Pc1 geomagnetic pulsations at subauroral latitudes’, Geophys. Res. Lett., 43(15), 7859–66, doi: 10.1002/2016GL070008.Google Scholar
Park, Jaeheung, Lühr, Hermann, Kervalishvili, Gurarn, Rauberg, Jan, Stolle, Claudia, Kwak, Young-Sil, and Lee, Woo Kyoung (2017), ‘Morphology of high-latitude plasma density perturbations as deduced from the total electron content measurements onboard the Swarm constellation’, J. Geophys. Res., 122, 1338–59, doi: 10.1002/2016JA023086.CrossRefGoogle Scholar
Parker, E. N. (1996), ‘The alternative paradigm for magnetospheric physics’, J. Geophys. Res., 101(10), 10587–625.Google Scholar
Picone, J. M., Hedin, A. E., Drob, D. and Aikin, A. C. (2002), ‘NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues’, J. Geophys. Res., 107(A12), A1468, doi: 10.1029/2002JA009430.Google Scholar
Prikryl, P., Ghoddousi-Fard, R., Weygand, J. M., Viljanen, A., Connors, M., Danskin, D. W., Jayachandran, P. T., Jacobsen, K. S., Andalsvik, Y. L., Thomas, E. G., ruohoniemi, J. M., Durgonics, T., Oksavik, K., Zhang, Y., Spanswick, E., Aquino, M. and Sreeja, V. (2016), ‘GPS phase scintillation at high latitudes during the geomagnetic storm of 17–18 March 2015’, J. Geophys. Res., 121, 10448–65, doi: 10.1002/2016JA023171.Google Scholar
Prikryl, Paul, Thayyil Jayachandran, P., Mushini, Sajan C. and Richardson, Ian G. (2014), ‘High-latitude GPS phase scintillation and cycle slips during high-speed solar wind streams and interplanetary coronal mass ejections: A superposed epoch analysis’, Earth Planets Space, 66, doi: 10.1186/1880-5981-66-62.Google Scholar
Rajaram, G. (1977), ‘Structure of the equatorial F region, topside and bottomside – A review’, J. Atmos. Terr. Phys., 39, 1125.Google Scholar
Reiff, P. H. and Luhmann, J. G. (1986), ‘Solar wind control of the polar cap voltage’, in Solar Wind–Magnetosphere Coupling, ed. Kamide, Y. and Slavin, J. A., p. 507, Terra Scientific, Tokyo.Google Scholar
Reiff, P., Spiro, R. and Hill, T. (1981), ‘Dependence of polar cap potential on interplanetary parameters’, J. Geophys. Res., 86(7), 639.Google Scholar
Richmond, A. D. (1995), ‘Ionospheric electrodynamics’, in Handbook of Atmospheric Electrodynamics, vol. II, ed. Volland, H., pp. 249–90, CRC Press, Boca Raton, FL.Google Scholar
Rishbeth, H., Lyon, A. J. and Peart, M. (1963), ‘Diffusion in the equatorial F layer’, J. Geophys. Res., 68, 2559.Google Scholar
Roble, R. G. and Ridley, E. C. (1994), ‘Thermosphere‐ionosphere‐mesosphere‐electrodynamics general circulation model (time‐GCM): Equinox solar cycle minimum simulations (300–500 km)’, Geophys. Res. Lett., 21, 417–20, doi: 10.1029/93GL03391.Google Scholar
Rodriguez, J. V., Carlson, H. C. and Heelis, R. A. (2012), ‘Auroral forms that extend equatorward from the persistent midday aurora during geomagnetically quiet periods’, J. Atmos. Sol. Terr. Phys., 86, 624, doi: 10.1016/j.jastp.2012.06.001.Google Scholar
Russell, C. T., Luhmann, J. G. and Strangeway, R. J. (2016), Space Physics, Cambridge University Press, Cambridge.Google Scholar
Samara, M., Michell, R. G. and Khazanov, G. V. (2017), ‘First optical observations of interhemispheric electron reflections within pulsating aurora’, Geophys. Res. Lett., 44(6), 2618–23, doi: 10.1002/2017GL072794.Google Scholar
Sandholt, P. E. and Farrugia, C. J. (2014), ‘Aspects of magnetosphere-ionosphere coupling in sawtooth substorms: A case study’, Ann. Geophys., 32, 1277–91, doi: 10.5194/angeo-32-1277-2014.Google Scholar
Sandholt, P. E., Farrugia, C. J. and Denig, W. F. (2015), ‘Transitions between states of magnetotail-ionosphere coupling and the role of solar wind dynamic pressure: the 25 July 2004 interplanetary CME case’, Ann. Geophys., 33, 427–36, doi: 10.5194/angeo-33-427-2015.Google Scholar
Siscoe, G. L., Erickson, G. M., Sonnerup, B. U. O., Maynard, N. C., Schoendorf, J. A., Siebert, K. D., Weimer, D. R., White, W. W. and Wilson, G. R. (2002a), ‘Hill model of transpolar potential saturation: Comparisons with MHD simulations’, J. Geophys. Res., 107(A6), doi: 10.1029/2001JA000109.Google Scholar
Siscoe, G. L., Crooker, N. U. and Siebert, K. D. (2002b), ‘Transpolar potential saturation: Roles of region 1 current system and solar wind ram pressure’, J. Geophys. Res., 107(A10), doi: 10.1029/2001JA009176.Google Scholar
Song, P., Vasyliũnas, V. M. and Ma, L. (2005), ‘A three-fluid model of solar wind–magnetosphere–ionosphere–thermosphere coupling’, in Multiscale Coupling of Sun-Earth Processes, ed. Lui, A. T. Y., Kamide, Y. and Consolini, G., pp. 447–56, Elsevier, Amsterdam, doi: 10.1016/B978-044451881-1/50033-2.Google Scholar
Souza, J. R., Asevedo, W. D. Jr, dos Santos, P. C. P., Petry, A., Bailey, G. J., Batista, I. S. and Abdu, M. A. (2013), ‘Longitudinal variation of the equatorial ionosphere: Modeling and experimental results’, Adv. Space Res., 51, 654–60, doi: 10.1016/j.asr.2012.01.023.Google Scholar
Stening, R. J. (1992), ‘Modeling the low-latitude F region’, J. Atmos. Terr. Phys., 54, 1387.Google Scholar
Strangeway, R. J. (2009), ‘Space environment and scientific missions: Magnetic fields in space’, IEEE T. Magn., 45(10), 4486–92.Google Scholar
Strangeway, R. J. (2012), ‘The equivalence of Joule dissipation and frictional heating in the collisional ionosphere’, J. Geophys. Res., 117, A02310, doi: 10.1029/2011JA017302.Google Scholar
Strangeway, R. J. and Raeder, J. (2001), ‘On the transition from collisionless to collisional magnetohydrodynamics’, J. Geophys. Res., 106(A2), 1955–60, doi: 10.1029/2000JA900116.Google Scholar
Strangeway, R. J., Ergun, R. E., Su, Y.-J., Carlson, C. W. and Elphic, R. C. (2005), ‘Factors controlling ionospheric outflows as observed at intermediate altitudes’, J. Geophys. Res., 110, A03221, doi: 10.1029/2004JA010829.Google Scholar
Tanaka, T. (2015), ‘Substorm auroral dynamics reproduced by advanced global magnetosphere–ionosphere (M-I) coupling simulation’, in Auroral Dynamics and Space Weather, pp. 177–90, John Wiley, Hoboken, NJ, doi: 10.1002/9781118978719.ch13.Google Scholar
Tu, J., Song, P. and Vasyliũnas, V. M. (2011), ‘Ionosphere/thermosphere heating determined from dynamic magnetosphere-ionosphere/thermosphere coupling’, J. Geophys. Res., 116, A09311, doi: 10.1029/2011JA016620.Google Scholar
Tu, J., Song, P. and Vasyliũnas, V. M. (2014), ‘Inductive-dynamic magnetosphere-ionosphere coupling via MHD waves’, J. Geophys. Res., 119, 530–47, doi: 10.1002/2013JA018982.Google Scholar
Vorobjev, V. G., Yagodkina, O. I. and Katkalov, Yu. V. (2013), ‘Auroral precipitation model and its applications to ionospheric and magnetospheric studies’, J. Atmos. Sol. Terr. Phys., 102, 157–71, doi: 10.1016/j.jastp.2013.05.007.Google Scholar
Wahlund, J. E., Opgenoorth, H. J., Haggstrom, I., Winser, K. J. and Jones, G. O. L. (1992), ‘EISCAT observations of topside ionospheric ion outflows during auroral activity: revisited’, J. Geophys. Res., 97, 3019–37, doi: 10.1029/91JA02438.Google Scholar
Watson, Chris, Jayachandran, P. T. and MacDougall, John W. (2016), ‘Characteristics of GPS TEC variations in the polar cap ionosphere’, J. Geophys. Res., 121, 4748–68, doi: 10.1002/2015JA022275.Google Scholar
Weimer, D. R., Edwards, T. R. and Olsen, Nils (2017), ‘Linear response of field-aligned currents to the interplanetary electric field’, J. Geophys. Res., 122, 8502–15, doi: 10.1002/2017JA024372.Google Scholar
Wilder, F. D., Clauer, C. R., Baker, J. B. H., Cousins, E. P. and Hairston, M. R. (2011), ‘Inter-hemispheric observations of dayside convection under northward IMF’, J. Geophys. Res., 116, doi: 10.1029/2011JA016748.Google Scholar
Wilder, F. D., Crowley, G., Anderson, B. J. and Richmond, A. D. (2012), ‘Intense dayside Joule heating during the 5 April 2010 geomagnetic storm recovery phase observed by AMIE and AMPERE’, J. Geophys. Res., 117, doi: 10.1029/2011JA017262.Google Scholar
Wilder, F. D., Eriksson, S. and Wiltberger, M. (2015), ‘The role of magnetic flux tube deformation and magnetosheath plasma beta in the saturation of the Region 1 field-aligned current system’, J. Geophys. Res., 120, 2036–51, doi: 10.1002/2014JA020533.Google Scholar
Wilder, Frederick, Clauer, Robert and Baker, Joseph (2010), ‘Polar cap electric field saturation during IMF Bz north and south conditions’, J. Geophys. Res., 115, A10230, doi: 10.1029/2010JA015487.Google Scholar
Xiao, F., Zong, Q., Su, Z., Yang, C., He, Z., Wang, Y. and Gao, Z. (2013), ‘Determining the mechanism of cusp proton aurora’, Sci. Rep., 3, 1654, doi: 10.1038/srep01654.Google Scholar
Xiao, F., Zong, Q., Wang, Y., He, Z., Su, Z., Yang, C. and Zhou, Q. (2015), ‘Generation of proton aurora by magnetosonic waves’, Sci. Rep., 4, 5190, doi: 10.1038/srep05190.Google Scholar
Yoshikawa, A., Amm, O., Vanhamäki, H., Nakamizo, A. and Fujii, R. (2013), ‘Theory of Cowling channel formation by reflection of shear Alfven waves from the auroral ionosphere’, J. Geophys. Res., 118, 6416–25, doi: 10.1002/jgra.50514.Google Scholar
Zhou, X., Haerendel, G., Moen, J. I., Trondsen, E., Clausen, L., Strangeway, R. J., Lybekk, B. and Lorentzen, D. A. (2017), ‘Shock aurora: Field-aligned discrete structures moving along the dawnside oval’, J. Geophys. Res., 122(3), 3145–62, doi: 10.1002/2016JA022666.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×