Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T17:16:52.746Z Has data issue: false hasContentIssue false

7 - Isoperimetric problems on infinite graphs

Published online by Cambridge University Press:  18 February 2010

L. H. Harper
Affiliation:
University of California, Riverside
Get access

Summary

Why infinite graphs? The EIP, or any of its variants, would not seem suited to infinite graphs. On finite graphs we can always find a solution by brute force, evaluating |Θ(S)| for all 2|V| subsets of vertices. Even so, the finite problem is NP-complete, an analog of undecidability, and on infinite graphs it is very likely undecidable. Certainly there is no apparent solution.

The primary motivation for considering the EIP on infinite graphs is to develop global methods. Problems are the life blood of mathematics and there are some very large, i.e. finite but for all practical purposes infinite, graphs for which we would like to solve the EIP. The 120-cell, an exceptional regular solid in four dimensions, is the only regular solid for which we have not solved the EIP. It has 600 vertices so we prefer to call it the 600-vertex, V600. Another is the graph of the n-permutohedron, n ≥ 4, which has n! vertices. Solving those problems will require developing better methods than we have now. The regular tessellations of Euclidean space are relatively easy to work with but present some of the same kinds of technical problems as those higher dimensional semiregular and exceptional regular solids.

There are also problems arising in applications which bring us to consider isoperimetric problems on infinite graphs. The original application, solving a kind of layout problem if G is regarded as representing an electronic circuit, did not seem to make sense if G is infinite.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×