Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T17:21:27.277Z Has data issue: false hasContentIssue false

18 - From Homeostasis to Allodynamic Regulation

from Topical Psychophysiology

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
Affiliation:
University of Chicago
Louis G. Tassinary
Affiliation:
Texas A & M University
Gary G. Berntson
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adlan, A. M., Lip, G. Y., Paton, J. F., Kitas, G. D., & Fisher, J. P. (2014). Autonomic function and rheumatoid arthritis: a systematic review. Seminars in Arthritis and Rheumatism, 44: 283304.Google Scholar
Anane, L. H., Edwards, K. M., Burns, V. E., Zanten, J. J., Drayson, M. T., & Bosch, J. A. (2010). Phenotypic characterization of gammadelta T cells mobilized in response to acute psychological stress. Brain, Behavior, and Immunity, 24: 608614.Google Scholar
Andersson, U. & Tracey, K. J. (2012). Neural reflexes in inflammation and immunity. Journal of Experimental Medicine, 209: 10571068.Google Scholar
Aston-Jones, G., Rajkowski, J., Kubiak, P., Valentino, R. J., & Shipley, M. T. (1996). Role of the locus coeruleus in emotional activation, Progress in Brain Research, 107: 379402.Google Scholar
Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host–bacterial mutualism in the human intestine. Science, 307: 19151920.Google Scholar
Banks, W. A. & Farrell, C. L. (2003). Impaired transport of leptin across the blood–brain barrier in obesity is acquired and reversible. American Journal of Physiology: Endocrinology and Metabolism, 285: E10E15.Google Scholar
Bautista, D. M., Wilson, S. R., & Hoon, M. A. (2014). Why we scratch an itch: the molecules, cells and circuits of itch. Nature Neuroscience, 17: 175182.Google Scholar
Bernard, C. (1878). Leçons sur les phénomènes de la vie communes aux animaux et aux végétaux. Paris: B. Baillière et Fils. Trans. Hoff, H. E., Guillemin, R., and Guillemin, L. as Lectures on the Phenomena of Life Common to Animals and Plants. Springfield, IL: Charles C. Thomas, 1974.Google Scholar
Berntson, G. G. (2006). Reasoning about brains. In Cacioppo, J. T., Visser, P. S., & Pickett, C. L. (eds.), Social Neuroscience: People Thinking about People (pp. 111). Cambridge, MA: MIT Press.Google Scholar
Berntson, G. G., Boysen, S. T., & Cacioppo, J. T. (1993a). Neurobehavioral organization and the cardinal principle of evaluative bivalence. Annals of the New York Academy of Sciences, 702: 75102.Google Scholar
Berntson, G. G. & Cacioppo, J. T. (2007). Integrative physiology: homeostasis, allostasis, and the orchestration of systemic physiology. In Cacioppo, J. T., Berntson, G. G., & Tassinary, L. G. (eds.), Handbook of Psychophysiology, 3rd edn. (pp. 433452). Cambridge University Press.Google Scholar
Berntson, G. G. & Cacioppo, J. T. (2013). The functional neuroarchitecture of evaluative processes. In Elliot, A. J. (ed.), Handbook of Approach and Avoidance Motivation (pp. 307–21). New York: Psychology Press.Google Scholar
Berntson, G. G., Cacioppo, J. T., Binkley, P. F., Uchino, B. N., Quigley, K. S., & Fieldstone, A. (1994a). Autonomic cardiac control: III. Psychological stress and cardiac response in autonomic space as revealed by pharmacological blockades. Psychophysiology, 31: 599608.Google Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1991). Autonomic determinism: the modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychological Review, 98: 459487.Google Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993b). Cardiac psychophysiology and autonomic space in humans: empirical perspectives and conceptual implications. Psychological Bulletin, 114: 296322.Google Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1994b). Autonomic cardiac control: I. Estimation and validation from pharmacological blockades. Psychophysiology 31: 572585.Google Scholar
Berntson, G. G., Cacioppo, J. T., Quigley, K. S., & Fabro, V. J. (1994c). Autonomic space and psychophysiological response. Psychophysiology, 31: 4461.Google Scholar
Berntson, G. G., Norman, G. J., Hawkley, L. C., & Cacioppo, J. T. (2008). Cardiac autonomic balance versus cardiac regulatory capacity. Psychophysiology, 45: 643652.Google Scholar
Berntson, G. G., Sarter, M., & Cacioppo, J. T. (1998). Anxiety and cardiovascular reactivity: the basal forebrain cholinergic link. Behavioural Brain Research, 94: 225248.Google Scholar
Berntson, G. G., Sarter, M., & Cacioppo, J. T. (2003). Ascending visceral regulation of cortical affective information processing. European Journal of Neuroscience, 18: 21032109.Google Scholar
Berthoud, H. R., Bereiter, D. A., Trimble, E. R., Siegel, E. G., & Jeanrenaud, B. (1981). Cephalic phase, reflex insulin secretion. Neuroanatomical and Physiological Characterization. Diabetologia, 20: 393401.Google Scholar
Blascovich, J., Mendes, W. B., Hunter, S. B., & Salomon, K. (1999). Social “facilitation” as challenge and threat. Journal of Personality and Social Psychology, 77: 6877.Google Scholar
Bohus, B., Benus, R. F., Fokkema, D. S., Koolhaas, J. M., Nyakas, G. A., van Oortmerssen, G. A., … & Steffens, A. B. (1988). Neuroendocrine states and behavioral and physiological stress responses. In Wiegant, M. & de Wied, D. (eds.), Progress in Brain Research, vol. 72 (pp. 5770). Amsterdam: Elsevier.Google Scholar
Bosch, J. A. (2014). The use of saliva markers in psychobiology: mechanisms and methods. Monographs in Oral Science, 24: 99108.Google Scholar
Bosch, J. A., Berntson, G. G., Cacioppo, J. T., Dhabhar, F. S., & Marucha, P. T. (2003a). Acute stress evokes a selective mobilization of T cells that differ in chemokine receptor expression: a potential pathway linking immunologic reactivity to cardiovascular disease. Brain, Behavior, and Immunity, 17: 251259.Google Scholar
Bosch, J. A., Berntson, G. G., Cacioppo, J. T., & Marucha, P. T. (2005). Differential mobilization of functionally distinct natural killer subsets during acute psychologic stress. Psychosomatic Medicine, 67: 366375.Google Scholar
Bosch, J. A., de Geus, E. J., Carroll, D., Goedhart, A. D., Anane, L. A., van Zanten, J. J., … & Edwards, K. M. (2009). A general enhancement of autonomic and cortisol responses during social evaluative threat. Psychosomatic Medicine, 71: 877885.Google Scholar
Bosch, J. A., de Geus, E. J., Kelder, A., Veerman, E. C., Hoogstraten, J., & Amerongen, A. V. (2001). Differential effects of active versus passive coping on secretory immunity. Psychophysiology, 38: 836846.Google Scholar
Bosch, J. A., de Geus, E. J., Ligtenberg, T. J., Nazmi, K., Veerman, E. C., Hoogstraten, J., & Amerongen, A. V. (2000). Salivary MUC5B-mediated adherence (ex vivo) of Helicobacter pylori during acute stress. Psychosomatic Medicine, 62: 4049.Google Scholar
Bosch, J. A., de Geus, E. J., Veerman, E. C., Hoogstraten, J., & Nieuw Amerongen, A. V. (2003b). Innate secretory immunity in response to laboratory stressors that evoke distinct patterns of cardiac autonomic activity. Psychosomatic Medicine, 65: 245258.Google Scholar
Bosch, J. A., Veerman, E. C., de Geus, E. J., & Proctor, G. B. (2011). Alpha-amylase as a reliable and convenient measure of sympathetic activity: don’t start salivating just yet! Psychoneuroendocrinology, 36: 449453.Google Scholar
Boychuk, C. R., Gyarmati, P., Xu, H., & Smith, B. N. (2015). Glucose sensing by GABAergic neurons in the mouse nucleus tractus solitarii. Journal of Neurophysiology, 114: 9991007.Google Scholar
Bradley, M. M., Miccoli, L., Escrig, M. A., & Lang, P. J. (2008). The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology, 45: 602607.Google Scholar
Bradley, P. B. & Elkes, J. (1953). The effect of atropine, hyoscyamine, physostigmine, and neostigmine on the electrical activity of the brain of the conscious cat. Journal of Physiology, 120: 1415.Google Scholar
Brody, S., Keller, U., Degen, L., Cox, D. J., & Schächinger, H. (2004). Selective processing of food words during insulin-induced hypoglycemia in healthy humans. Psychopharmacology, 173: 217220.Google Scholar
Brydon, L. (2011). Adiposity, leptin and stress reactivity in humans. Biological Psychology, 86: 114120.Google Scholar
Burdakov, D., Luckman, S. M., & Verkhratsky, A. (2005). Glucose-sensing neurons of the hypothalamus. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360: 22272235.Google Scholar
Butler, J. E. (2007). Drive to the human respiratory muscles. Respiratory Physiology & Neurobiology, 159: 115126.Google Scholar
Cacioppo, J. T. (1994). Social neuroscience: autonomic, neuroendocrine, and immune responses to stress. Psychophysiology, 31: 113128.Google Scholar
Cacioppo, J. T., Berntson, G. G., Binkley, P. F., Quigley, K. S., Uchino, B. N., & Fieldstone, A. (1994). Autonomic cardiac control: II. Basal response, noninvasive indices, and autonomic space as revealed by autonomic blockades. Psychophysiology, 31: 586598.Google Scholar
Cacioppo, J. T., Berntson, G. G., & Klein, D. J. (1992). What is an emotion? The role of somatovisceral afference, with special emphasis on somatovisceral “illusions.” Review of Personality and Social Psychology, 14: 6398.Google Scholar
Cacioppo, J. T., Berntson, G. G., Sheridan, J. F., & McClintock, M. K. (2000). Multi-level integrative analyses of human behavior: the complementing nature of social and biological approaches. Psychological Bulletin, 126: 829843.Google Scholar
Cacioppo, J. T., Malarkey, W. B., Kiecolt-Glaser, J. K., Uchino, B. N., Sgoutas-Emch, S. A., Sheridan, J. F., Berntson, G. G., & Glaser, R. (1995). Heterogeneity in neuroendocrine and immune responses to brief psychological stressors as a function of autonomic cardiac activation. Psychosomatic Medicine, 57: 154164.Google Scholar
Cacioppo, J. T. & Sandman, C. A. (1978). Physiological differentiation of sensory and cognitive tasks as a function of warning, processing demands, and reported unpleasantness. Biological Psychology, 6: 181192.Google Scholar
Cacioppo, J. T. & Tassinary, L. G. (1990). Inferring psychological significance from physiological signals. American Psychologist, 45: 1628.Google Scholar
Cacioppo, J. T., Tassinary, L. G., Stonebraker, T. B., & Petty, R. E. (1987). Self-report and cardiovascular measures of arousal: fractionation during residual arousal. Biological Psychology, 25: 135151.Google Scholar
Cannon, W. B. (1914). The interrelations of emotions as suggested by recent physiological researches. American Journal of Psychology, 25: 256282.Google Scholar
Cannon, W. B. (1928). The mechanism of emotional disturbance of bodily functions. New England Journal of Medicine, 198: 877884.Google Scholar
Cannon, W. B. (1929a). Bodily Changes in Pain, Hunger, Fear, and Rage. Boston, MA: Charles T. Brandford Company.Google Scholar
Cannon, W. B. (1929b). Organization for physiological homeostasis. Physiological Reviews, 9: 399431.Google Scholar
Cannon, W. B. (1939). The Wisdom of the Body, 2nd edn. London: Kegan Paul, Trench, Trubner & Co.Google Scholar
Cannon, W. B. (1942). Voodoo death. American Anthropologist, 44: 169181.Google Scholar
Carroll, D. (2011). A brief commentary on cardiovascular reactivity at a crossroads. Biological Psychology, 86: 149151.Google Scholar
Carruthers, M. & Taggart, P. (1973). Vagotonicity of violence: biochemical and cardiac responses to violent films and television programmes. British Medical Journal, 3: 384389.Google Scholar
Chida, Y, & Steptoe, A. (2010). Greater cardiovascular responses to laboratory mental stress are associated with poor subsequent cardiovascular risk status: a meta-analysis of prospective evidence. Hypertension, 55: 10261032.Google Scholar
Christian, L. M., Galley, J. D., Hade, E. M., Schoppe-Sullivan, S., Kamp Dush, C., & Bailey, M. T. (2015). Gut microbiome composition is associated with temperament during early childhood. Brain, Behavior, and Immunity, 45: 118127.Google Scholar
Cofer, C. N. & Appley, M. H. (1964). Motivation: Theory and Research. New York: John Wiley.Google Scholar
Cohen, S. & Herbert, T. B. (1996). Health psychology: psychological factors and physical disease from the perspective of human psychoneuroimmunology. Annual Review of Psychology, 47: 113142.Google Scholar
Contrada, R. J. (2011). Stress, adaptation, and health. In Contrada, R. J. & Baum, A. (eds.), The Handbook of Stress Science: Biology, Psychology, and Health (pp. 19). New York: Springer.Google Scholar
Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nature Reviews Neuroscience, 3: 655666.Google Scholar
Craig, A. D. (2003). Interoception: the sense of the physiological condition of the body. Current Opinion in Neurobiology, 13: 500505.Google Scholar
Craig, A. D. (2014). How Do You Feel? An Interoceptive Moment with Your Neurobiological Self. Princeton University Press.Google Scholar
Critchley, H. D. & Harrison, N. A. (2013). Visceral influences on brain and behavior. Neuron, 77: 624638.Google Scholar
Cryan, J. F. & Dinan, T. G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience, 13: 701712.Google Scholar
Damasio, A. R. (1998). Emotion in the perspective of an integrated nervous system. Brain Research Reviews, 26: 8386.Google Scholar
Damasio, A. R. (2010). Self Comes to Mind: Contructing the Conscious Brain. New York: Heinemann.Google Scholar
Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews Neuroscience, 9: 4656.Google Scholar
Davis, M., Falls, W. A., Campeau, S., & Kim, M. (1993). Fear-potentiated startle: a neural and pharmacological analysis. Behavioural Brain Research, 58: 175198.Google Scholar
de Lecea, L., Carter, M. E., & Adamantidis, A. (2012). Shining light on wakefulness and arousal. Biological Psychiatry, 71: 10461052.Google Scholar
de Wit, L., Luppino, F., van Straten, A., Penninx, B., Zitman, F., & Cuijpers, P. (2010). Depression and obesity: a meta-analysis of community-based studies. Psychiatry Research, 178: 230235.Google Scholar
Dhabhar, F. S. (2014). Effects of stress on immune function: the good, the bad, and the beautiful. Immunology Research, 58: 193210.Google Scholar
Dickerson, S. S. & Kemeny, M. E. (2004). Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130: 355391.Google Scholar
Dienstbier, R. A. (1989). Arousal and physiological toughness: implications for mental and physical health. Psychological Review, 96: 84100.Google Scholar
DiGirolamo, D. J., Clemens, T. L., & Kousteni, S. (2012). The skeleton as an endocrine organ. Nature Reviews Rheumatology, 8: 674683.Google Scholar
Dinan, T. G. & Cryan, J. F. (2012). Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology, 37: 13691378.Google Scholar
Dror, O. E. (2014). The Cannon–Bard thalamic theory of emotions: a brief genealogy and reappraisal. Emotion Review, 6: 1320.Google Scholar
Duffy, E. (1962). Activation and Behavior. New York: John Wiley.Google Scholar
Dworkin, B. R. (1993). Learning and Physiological Regulation. University of Chicago Press.Google Scholar
Dworkin, B. R. & Dworkin, S. (1999). Heterotopic and homotopic classical conditioning of the baroreflex. Integrative Physiology and Behavioral Scinece, 34: 158176.Google Scholar
Dworkin, B. R., Elbert, T., Rau, H., Birbaumer, N., Pauli, P., Droste, C., & Brunia, C. H. (1994). Central effects of baroreceptor activation in humans: attenuation of skeletal reflexes and pain perceptions. Proceedings of the National Academy of Sciences of the USA, 91: 63296333.Google Scholar
Edwards, K. M., Bosch, J. A., Engeland, C. G., Cacioppo, J. T., & Marucha, P. T. (2010). Elevated macrophage migration inhibitory factor (MIF) is associated with depressive symptoms, blunted cortisol reactivity to acute stress, and lowered morning cortisol. Brain, Behavior, and Immunity, 24: 12021208.Google Scholar
Edwards, L., McIntyre, D., Carroll, D., Ring, C., & Martin, U. (2002). The human nociceptive flexion reflex threshold is higher during systole than diastole. Psychophysiology, 39: 678681.Google Scholar
Engel, G. L. (1977). Emotional stress and sudden death. Psychology Today, 11: 114118.Google Scholar
Erny, D., Hrabe de Angelis, A. L., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., … & Prinz, M. (2015). Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience, 18: 965977.Google Scholar
Farr, O. M., Tsoukas, M. A., & Mantzoros, C. S. (2015). Leptin and the brain: influences on brain development, cognitive functioning and psychiatric disorders. Metabolism, 64: 114130.Google Scholar
Feldman, S. M. & Waller, H. J. (1962). Dissociation of electrocortical activation and behavioral arousal. Nature, 196: 13201322.Google Scholar
Ferguson, A. V. (2014). Circumventricular organs: integrators of circulating signals controlling hydration, energy balance, and immune function. In De Luca, L. A., Menani, J. V., & Johnson, A. K. (eds.), Neurobiology of Body Fluid Homeostasis: Transduction and Integration (pp. 2336). Boca Raton, FL: CRC Press.Google Scholar
Field, B. C., Chaudhri, O. B., & Bloom, S. R. (2010). Bowels control brain: gut hormones and obesity. Nature Reviews Endocrinology, 6: 444453.Google Scholar
Fisher, L. (1990). Stress and cardiovascular physiology in animals. In Brown, M., Koob, G., & Rivier, C. (eds.), Stress: Neurobiology and Neuroendocrinology (pp. 463474). New York: Marcel Dekker.Google Scholar
Folkow, B. (2000). Perspectives on the integrative functions of the “sympatho-adrenomedullary system.” Autonomic Neuroscience, 83: 101115.Google Scholar
Frankenhaeuser, M. (1982). Challenge–control interaction as reflected in sympathetic-adrenal and pituitary-adrenal activity: comparison between the sexes. Scandinavian Journal of Psychology, Supp. 1: 158164.Google Scholar
Friedman, B. H. & Kreibig, S. D. (2010). The biopsychology of emotion: current theoretical, empirical, and methodological perspectives. Biological Psychology, 84: 381382.Google Scholar
Galley, J. D. & Bailey, M. T. (2014). Impact of stressor exposure on the interplay between commensal microbiota and host inflammation. Gut Microbes, 5: 390396.Google Scholar
Gerin, W. (2011). Acute stress responses in the psychophysiological laboratory. In Contrada, R. J. & Baum, A. (eds.), The Handbook of Stress Science: Biology, Psychology, and Health (pp. 501514). New York: Springer.Google Scholar
Gianaros, P. J., Onyewuenyi, I. C., Sheu, L. K., Christie, I. C., & Critchley, H. D. (2012). Brain systems for baroreflex suppression during stress in humans. Human Brain Mapping, 33: 17001716.Google Scholar
Goedhart, A. D., Willemsen, G., Houtveen, J. H., Boomsma, D. I., & De Geus, E. J. (2008). Comparing low frequency heart rate variability and preejection period: two sides of a different coin. Psychophysiology, 45: 10861090.Google Scholar
Goldstein, D. S. & Kopin, I. J. (2007). Evolution of concepts of stress. Stress, 10: 109120.Google Scholar
Gray, J. A. & McNaughton, N. (1996). The neuropsychology of anxiety: reprise. Nebraska Symposium on Motivation, 43: 61134.Google Scholar
Gray, T. S. & Bingaman, E. W. (1996). The amygdala: corticotropin-releasing factor, steroids, and stress. Critical Reviews in Neurobiology, 10: 155168.Google Scholar
Gregg, M. E., Matyas, T. A., & James, J. E. (2002). A new model of individual differences in hemodynamic profile and blood pressure reactivity. Psychophysiology, 39: 6472.Google Scholar
Guyton, A. C. (1991). Blood-pressure control: special role of the kidneys and body fluids. Science, 252: 18131816.Google Scholar
Haapakoski, R., Mathieu, J., Ebmeier, K. P., Alenius, H., & Kivimaki, M. (2015). Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and C-reactive protein in patients with major depressive disorder. Brain, Behavior, and Immunity, 49: 206215.Google Scholar
Hagenaars, M. A., Oitzl, M., & Roelofs, K. (2014). Updating freeze: aligning animal and human research. Neuroscience & Biobehavioral Reviews, 47: 165176.Google Scholar
Hanlin, L., Price, J., Zhang, G., Assaf, N., Mitchell, J., & Rohleder, N. (2015). Fasting modulates interleukin-6 and cortisol reactivity to the Trier Social Stress Test. Psychoneuroendocrinology, 61: 69.Google Scholar
Harrison, N. A., Brydon, L., Walker, C., Gray, M. A., Steptoe, A., & Critchley, H. D. (2009). Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biological Psychiatry, 66: 407414.Google Scholar
Harrison, N. A., Cooper, E., Voon, V., Miles, K., & Critchley, H. D. (2013). Central autonomic network mediates cardiovascular responses to acute inflammation: relevance to increased cardiovascular risk in depression? Brain, Behavior, and Immunity, 31: 189196.Google Scholar
Harrison, N. A., Gray, M. A., Gianaros, P. J., & Critchley, H. D. (2010). The embodiment of emotional feelings in the brain. Journal of Neuroscience, 30: 1287812884.Google Scholar
Harshaw, C. (2015). Interoceptive dysfunction: toward an integrated framework for understanding somatic and affective disturbance in depression. Psychological Bulletin, 141: 311363.Google Scholar
Heany, S. J., van Honk, J., Stein, D. J., & Brooks, S. J. (2016). A quantitative and qualitative review of the effects of testosterone on the function and structure of the human social-emotional brain. Metabolic Brain Disease, 31: 157167.Google Scholar
Henry, J. P. (1986). Neuroendocrine patterns of emotional response. In Plutchick, R. & Kellerman, H. (eds.), Emotion: Theory, Research and Experiences (pp. 3760). San Diego, CA: Academic Press.Google Scholar
Hofer, P., Lanzenberger, R., & Kasper, S. (2013). Testosterone in the brain: neuroimaging findings and the potential role for neuropsychopharmacology. European Neuropsychopharmacology, 23: 7988.Google Scholar
Howren, M. B., Lamkin, D. M., & Suls, J. (2009). Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosomatic Medicine, 71: 171186.Google Scholar
Inagaki, T. K., Muscatell, K. A., Irwin, M. R., Cole, S. W., & Eisenberger, N. I. (2012). Inflammation selectively enhances amygdala activity to socially threatening images. NeuroImage, 59: 32223226.Google Scholar
Iriki, M. & Simon, E. (2012). Differential control of efferent sympathetic activity revisited. Journal of Physiological Science, 62: 275298.Google Scholar
Iwata, J. & LeDoux, J. E. (1988). Dissociation of associative and nonassociative concomitants of classical fear conditioning in the freely behaving rat. Behavioral Neuroscience, 102: 6676.Google Scholar
James, W. (1884). What is an emotion? Mind, 9: 188205.Google Scholar
Joels, M. & Baram, T. Z. (2009). The neuro-symphony of stress. Nature Reviews Neuroscience, 10: 459466.Google Scholar
Jones, B. E. (2003). Arousal systems. Frontiers in Bioscience, 8: S438S451.Google Scholar
Karsenty, G. & Ferron, M. (2012). The contribution of bone to whole-organism physiology. Nature, 481: 314320.Google Scholar
Kataoka, N., Hioki, H., Kaneko, T., & Nakamura, K. (2014). Psychological stress activates a dorsomedial hypothalamus-medullary raphe circuit driving brown adipose tissue thermogenesis and hyperthermia. Cell Metabolism, 20: 346358.Google Scholar
Kawai, M. & Rosen, C. J. (2010). Minireview: a skeleton in serotonin’s closet? Endocrinology, 151: 41034108.Google Scholar
Kirschbaum, C., Gonzalez Bono, E., Rohleder, N., Gessner, C., Pirke, K. M., Salvador, A., & Hellhammer, D. H. (1997). Effects of fasting and glucose load on free cortisol responses to stress and nicotine. Journal of Clinical Endocrinology and Metabolism, 82: 11011105.Google Scholar
Knox, D., Sarter, M., & Berntson, G. G. (2004). Visceral afferent bias on cortical processing: role of adrenergic afferents to the basal forebrain cholinergic system. Behavioral Neuroscience, 118: 14551459.Google Scholar
Kohler, O., Benros, M. E., Nordentoft, M., Farkouh, M. E., Iyengar, R. L., Mors, O., & Krogh, J. (2014). Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry, 71: 13811391.Google Scholar
Koizumi, K. & Kollai, M. (1981). Control of reciprocal and non-reciprocal action of vagal and sympathetic efferents: study of centrally induced reactions, Journal of the Autonomic Nervous System, 3: 483501.Google Scholar
Koizumi, K. & Kollai, M. (1992). Multiple modes of operation of cardiac autonomic control: development of the ideas from Cannon and Brooks to the present, Journal of the Autonomic Nervous System, 41: 1930.Google Scholar
Kopin, I. J. (1995). Definitions of stress and sympathetic neuronal responses. Annals of the New York Academy of Sciences, 771: 1930.Google Scholar
Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: a review. Biological Psychology, 84: 394421.Google Scholar
Lacey, J. I. (1959). Psychophysiological approaches to the evaluation of psychotherapeutic process and outcome. In Rubinstein, E. A. & Parloff, M. B. (eds.), Research in Psychotherapy (pp. 160208). Washington: APA.Google Scholar
Lacey, J. I. (1967). Somatic response patterning and stress: some revisions of activation theory. In Appley, M. H. & Trumbull, R. (eds.), Psychological Stress: Issues in Research (pp. 444). New York: Appleton-Century-Crofts.Google Scholar
Lacey, J. I., Kagan, J., Lacey, B. C., & Moss, H. A. (1963). The visceral level: situational determinants and behavioral correlates of autonomic response patterns. In Knapp, P. H. (ed.), Expression of Emotions in Man (pp. 161196). New York: International University Press.Google Scholar
Lacourt, T. E., Houtveen, J. H., Veldhuijzen van Zanten, J. J., Bosch, J. A., Drayson, M. T., & Van Doornen, L. J. (2015). Negative affectivity predicts decreased pain tolerance during low-grade inflammation in healthy women. Brain, Behavior, and Immunity, 44: 3236.Google Scholar
Ladwig, K. H., Marten-Mittag, B., Lowel, H., Doring, A., & Koenig, W. (2003). Influence of depressive mood on the association of CRP and obesity in 3205 middle aged healthy men. Brain, Behavior, and Immunity, 17: 268275.Google Scholar
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1998). Emotion, motivation, and anxiety: brain mechanisms and psychophysiology. Biological Psychiatry, 44: 12481263.Google Scholar
Levenson, R. W. (2014). The autonomic nervous system and emotion. Emotion Review, 6: 100112.Google Scholar
Licht, C. M., Vreeburg, S. A., van Reedt Dortland, A. K., Giltay, E. J., Hoogendijk, W. J., DeRijk, R. H., … & Penninx, B. W. (2010). Increased sympathetic and decreased parasympathetic activity rather than changes in hypothalamic-pituitary-adrenal axis activity is associated with metabolic abnormalities. Journal of Clinical Endocrinology and Metabolism, 95: 24582466.Google Scholar
Light, K. C. & Obrist, P. A. (1980). Cardiovascular response to stress: effects of opportunity to avoid, shock experience, and performance feedback. Psychophysiology, 17: 243252.Google Scholar
Loewy, A. D. (1990). Autonomic control of the eye. In Loewy, A. D. & Spyer, K. M. (eds.), Central Regulation of Autonomic Function (pp. 268285). Oxford University Press.Google Scholar
Lucini, D., Norbiato, G., Clerici, M., & Pagani, M. (2002). Hemodynamic and autonomic adjustments to real life stress conditions in humans. Hypertension, 39: 184188.Google Scholar
Luppino, F. S., de Wit, L. M., Bouvy, P. F., Stijnen, T., Cuijpers, P., Penninx, B. W., & Zitman, F. G. (2010). Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Archives of General Psychiatry, 67: 220229.Google Scholar
Magoun, H. W. (1963). The Waking Brain. Springfield, IL: Charles C. Thomas.Google Scholar
Malliani, A. (2005). Heart rate variability: from bench to bedside. European Journal of Internal Medicine, 16: 1220.Google Scholar
Mason, J. W. (1975a). A historical view of the stress field: part 1. Journal of Human Stress, 1: 612.Google Scholar
Mason, J. W. (1975b). A historical view of the stress field: part 2. Journal of Human Stress, 1: 2236.Google Scholar
Mayer, E. A., Knight, R., Mazmanian, S. K., Cryan, J. F., & Tillisch, K. (2014). Gut microbes and the brain: paradigm shift in neuroscience. Journal of Neuroscience, 34: 1549015496.Google Scholar
McCabe, P. M. & Schneiderman, P. (1985). Psychophysiologic reactions to stress. In Schneiderman, N. & Tapp, J. T. (eds.), Behavioral Medicine: The Biopsychosocial Approach (pp. 99131). London: Lawrence Erlbaum Associates.Google Scholar
McCusker, R. H. & Kelley, K. W. (2013). Immune–neural connections: how the immune system’s response to infectious agents influences behavior. Journal of Experimental Biology, 216: 8498.Google Scholar
McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338: 171179.Google Scholar
McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: central role of the brain. Physiological Reviews, 87: 873904.Google Scholar
McEwen, B. S. & Gianaros, P. J. (2010). Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Annals of the New York Academy of Sciences, 1186: 190222.Google Scholar
McEwen, B. S. & Wingfield, J. C. (2010). What is in a name? Integrating homeostasis, allostasis and stress. Hormones and Behavior, 57: 105111.Google Scholar
McInnis, C. M., Thoma, M. V., Gianferante, D., Hanlin, L., Chen, X., Breines, J. G., … & Rohleder, N. (2014). Measures of adiposity predict interleukin-6 responses to repeated psychosocial stress. Brain, Behavior, and Immunity, 42: 3340.Google Scholar
Miller, G. E., Freedland, K. E., Carney, R. M., Stetler, C. A., & Banks, W. A. (2003). Pathways linking depression, adiposity, and inflammatory markers in healthy young adults. Brain, Behavior, and Immunity, 17: 276285.Google Scholar
Moieni, M., Irwin, M. R., Jevtic, I., Breen, E. C., & Eisenberger, N. I. (2015). Inflammation impairs social cognitive processing: a randomized controlled trial of endotoxin. Brain, Behavior, and Immunity, 48: 132138.Google Scholar
Nagy, T., van Lien, R., Willemsen, G., Proctor, G., Efting, M., Fulop, M., … & Bosch, J. A. (2015). A fluid response: alpha-amylase reactions to acute laboratory stress are related to sample timing and saliva flow rate. Biological Psychology, 109: 111119.Google Scholar
Nater, U. M., Ditzen, B., Strahler, J., & Ehlert, U. (2013). Effects of orthostasis on endocrine responses to psychosocial stress. International Journal of Psychophysiology, 90: 341346.Google Scholar
Neumann, I. D. & Slattery, D. A. (2016). Oxytocin in general anxiety and social fear: a translational approach. Biological Psychiatry, 79: 213221.Google Scholar
Norman, G. J., Berntson, G. G., & Cacioppo, J. T. (2014). Emotion, somatovisceral afference, and autonomic regulation. Emotion Review, 6: 113123.Google Scholar
Norman, G. J., Cacioppo, J. T., Morris, J. S., Malarkey, W. B., Berntson, G. G., & DeVries, A. C. (2011a). Oxytocin increases autonomic cardiac control: moderation by loneliness. Biological Psychology, 86(3): 174180.Google Scholar
Norman, G. J., DeVries, A. C., Cacioppo, J. T., & Berntson, G. G. (2011b). Multilevel analyses of stress. In Contrada, R. J. & Baum, A. (eds.), The Handbook of Stress Science: Biology, Psychology, and Health (pp. 619634). New York: Springer.Google Scholar
Norman, G. J., Hawkley, L. C., Cole, S. W., Berntson, G. G., & Cacioppo, J. T. (2012). Social neuroscience: the social brain, oxytocin, and health. Social Neuroscience, 7: 1829.Google Scholar
Obrist, P. A. (1981). Cardiovascular Psychophysiology: A Perspective. New York: Plenum Press.Google Scholar
Ottaviani, C., Shapiro, D., Goldstein, I. B., James, J. E., & Weiss, R. (2006). Hemodynamic profile, compensation deficit, and ambulatory blood pressure. Psychophysiology, 43: 4656.Google Scholar
Pacak, K. & Palkovits, M. (2001). Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocrine Reviews, 22: 502548.Google Scholar
Packard, M. G. & Goodman, J. (2012). Emotional arousal and multiple memory systems in the mammalian brain. Frontiers in Behavioral Neuroscience, 6: 14.Google Scholar
Paine, N. J., Bosch, J. A., & Van Zanten, J. J. (2012). Inflammation and vascular responses to acute mental stress: implications for the triggering of myocardial infarction. Current Pharmaceutical Design, 18: 14941501.Google Scholar
Paine, N. J., Ring, C., Bosch, J. A., Drayson, M. T., Aldred, S., & Veldhuijzen van Zanten, J. J. (2014). Vaccine-induced inflammation attenuates the vascular responses to mental stress. International Journal of Psychophysiology, 93: 340348.Google Scholar
Pape, H. C., Jungling, K., Seidenbecher, T., Lesting, J., & Reinscheid, R. K. (2010). Neuropeptide S: a transmitter system in the brain regulating fear and anxiety. Neuropharmacology, 58: 2934.Google Scholar
Parvizi, J. & Damasio, A. (2001). Consciousness and the brainstem. Cognition, 79: 135160.Google Scholar
Pedersen, B. K. & Febbraio, M. A. (2012). Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nature Reviews Endocrinology, 8: 457465.Google Scholar
Pfaff, D. W., Kieffer, B. L., & Swanson, L. W. (2008). Mechanisms for the regulation of state changes in the central nervous system: an introduction. Annals of the New York Academy of Sciences, 1129: 17.Google Scholar
Qureshi, I. A. & Mehler, M. F. (2013). Towards a “systems”-level understanding of the nervous system and its disorders. Trends in Neurosciences, 36: 674684.Google Scholar
Raison, C. L. & Miller, A. H. (2013). Role of inflammation in depression: implications for phenomenology, pathophysiology and treatment. Modern Trends in Pharmacopsychiatry, 28: 3348.Google Scholar
Ramsay, D. S. & Woods, S. C. (2014). Clarifying the roles of homeostasis and allostasis in physiological regulation. Psychological Review, 121: 225247.Google Scholar
Reagan, L. P. (2007). Insulin signaling effects on memory and mood. Current Opinion in Pharmacology, 7: 633637.Google Scholar
Rethorst, C. D., Toups, M. S., Greer, T. L., Nakonezny, P. A., Carmody, T. J., Grannemann, B. D., … & Trivedi, M. H. (2013). Pro-inflammatory cytokines as predictors of antidepressant effects of exercise in major depressive disorder. Molecular Psychiatry, 18: 11191124.Google Scholar
Riddell, N. E., Burns, V. E., Wallace, G. R., Edwards, K. M., Drayson, M., Redwine, L. S., … & Bosch, J. A. (2015). Progenitor cells are mobilized by acute psychological stress but not beta-adrenergic receptor agonist infusion. Brain, Behavior, and Immunity, 49: 4953.Google Scholar
Ring, C., Burns, V. E., & Carroll, D. (2002). Shifting hemodynamics of blood pressure control during prolonged mental stress. Psychophysiology, 39: 585590.Google Scholar
Robbins, T. W., Granon, S., Muir, J. L., Durantou, F., Harrison, A., & Everitt, B. J. (1998). Neural systems underlying arousal and attention: implications for drug abuse. Annals of the New York Academy of Sciences, 846: 222237.Google Scholar
Robinson, B. F., Epstein, S. E., Beiser, G. D., & Braunwald, E. (1966). Control of heart rate by the autonomic nervous system. Circulation Research, 14: 400411.Google Scholar
Rohleder, N., Wolf, J. M., Maldonado, E. F., & Kirschbaum, C. (2006). The psychosocial stress-induced increase in salivary alpha-amylase is independent of saliva flow rate. Psychophysiology, 43: 645652.Google Scholar
Romanovsky, A. A. (2004). Do fever and anapyrexia exist? Analysis of set point-based definitions. American Journal of Physiology: Regulatory and Integrative Comparative Physiology, 287: R992R995.Google Scholar
Roosterman, D., Goerge, T., Schneider, S. W., Bunnett, N. W., & Steinhoff, M. (2006). Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiological Reviews, 86: 13091379.Google Scholar
Rosen, C. J. (2009). Bone: serotonin, leptin and the central control of bone remodeling. Nature Reviews Rheumatology, 5: 657658.Google Scholar
Sacco, M., Meschi, M., Regolisti, G., Detrenis, S., Bianchi, L., Bertorelli, M., … & Caiazza, A. (2013). The relationship between blood pressure and pain. Journal of Clinical Hypertension (Greenwich), 15: 600605.Google Scholar
Santisteban, M. M., Ahmari, N., Carvajal, J. M., Zingler, M. B., Qi, Y., Kim, S., … & Zubcevic, J. (2015). Involvement of bone marrow cells and neuroinflammation in hypertension. Circulation Research, 117: 178191.Google Scholar
Saper, C. B. (2002). The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annual Review of Neuroscience, 25: 433469.Google Scholar
Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21: 5589.Google Scholar
Sarter, M., Berntson, G. G., & Cacioppo, J. T. (1996). Brain imaging and cognitive neuroscience: toward strong inference in attributing function to structure. American Psychologist, 51: 1321.Google Scholar
Sarter, M., Bruno, J. P., & Berntson, G. G. (2003). Reticular activating system. In Nadel, L. (ed.), Encyclopedia of Cognitive Science, vol. 3 (pp. 963967). London: Nature Publishing Group.Google Scholar
Satpute, A. B., Wager, T. D., Cohen-Adad, J., Bianciardi, M., Choi, J. K., Buhle, J. T., … & Feldman Barrett, L. (2013). Identification of discrete functional subregions of the human periaqueductal gray. Proceedings of the National Academy of Sciences of the USA, 110: 1710117106.Google Scholar
Schaible, H. G. (2014). Nociceptive neurons detect cytokines in arthritis. Arthritis Research & Therapy, 16: 470.Google Scholar
Schellekens, H., Finger, B. C., Dinan, T. G., & Cryan, J. F. (2012). Ghrelin signalling and obesity: at the interface of stress, mood and food reward. Pharmacology & Therapeutics, 135: 316326.Google Scholar
Schneiderman, N., Ironson, G., & Siegel, S. D. (2005). Stress and health: psychological, behavioral, and biological determinants. Annual Review of Clinical Psychology, 1: 607628.Google Scholar
Schneiderman, N. & McCabe, P. M. (1989). Psychophysiologic strategies in laboratory research. In Schneiderman, N., Weiss, S. M., & Kaufman, P. G. (eds.), Handbook of Research Methods in Cardiovascular Behavioral Medicine (pp. 349364). New York: Plenum Press.Google Scholar
Schommer, N. C., Hellhammer, D. H., & Kirschbaum, C. (2003). Dissociation between reactivity of the hypothalamus–pituitary–adrenal axis and the sympathetic–adrenal–medullary system to repeated psychosocial stress. Psychosomatic Medicine, 65: 450460.Google Scholar
Schroeder, J. P. & Packard, M. G. (2003). Systemic or intra-amygdala injections of glucose facilitate memory consolidation for extinction of drug-induced conditioned reward. European Journal of Neuroscience, 17: 14821488.Google Scholar
Schulkin, J. (ed.) (2004). Allostasis, Homeostasis, and the Costs of Physiological Adaptation. Cambridge University Press.Google Scholar
Schulkin, J. (2011). Social allostasis: anticipatory regulation of the internal milieu. Frontiers in Evolutionary Neuroscience, 2: 111.Google Scholar
Schwabe, L., Joels, M., Roozendaal, B., Wolf, O. T., & Oitzl, M. S. (2012). Stress effects on memory: an update and integration. Neuroscience & Biobehavioral Reviews, 36: 17401749.Google Scholar
Selye, H. (1950). Stress and the general adaptation syndrome. British Medical Journal, 1: 13831392.Google Scholar
Selye, H. (1956). The Stress of Life. New York: McGraw-Hill.Google Scholar
Selye, H. (1973). Homeostasis and heterostasis. Perspectives in Biology and Medicine, 16: 441445.Google Scholar
Selye, H. (1975). Confusion and controversy in the stress field. Journal of Human Stress, 1: 3744.Google Scholar
Selye, H. (1976). Stress in Health and Disease. Boston, MA: Butterworths.Google Scholar
Shelton, R. C. & Miller, A. H. (2011). Inflammation in depression: is adiposity a cause? Dialogues in Clinical Neuroscience, 13: 4153.Google Scholar
Shih, C. D., Chan, S. H., & Chan, J. Y. (1995). Participation of hypothalamic paraventricular nucleus in locus ceruleus-induced baroreflex suppression in rats. American Journal of Physiology, 269: H4652.Google Scholar
Slominski, A. T., Zmijewski, M. A., Skobowiat, C., Zbytek, B., Slominski, R. M., & Steketee, J. D. (2012). Sensing the environment: regulation of local and global homeostasis by the skin’s neuroendocrine system. Advances in Anatomy, Embryology, and Cell Biology, 212: v, vii, 1115.Google Scholar
Sokolov, E. N. (1963). Perception and the Conditioned Reflex. New York: Macmillan.Google Scholar
Spencer, S. J., Emmerzaal, T. L., Kozicz, T., & Andrews, Z. B. (2015). Ghrelin’s role in the hypothalamic–pituitary–adrenal axis stress response: implications for mood disorders. Biological Psychiatry, 78: 1927.Google Scholar
Steenbergen, L., Sellaro, R., van Hemert, S., Bosch, J. A., & Colzato, L. S. (2015). A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain, Behavior, and Immunity, 48: 258264.Google Scholar
Steinberg, B. E., Tracey, K. J., & Slutsky, A. S. (2014). Bacteria and the neural code. New England Journal of Medicine, 371: 21312133.Google Scholar
Sterling, P. (2004). Principles of allostasis: optimal design, predictive regulation, pathophysiology and rational therapeutics. In Schulkin, J. (ed.), Allostasis, Homeostasis, and the Costs of Physiological Adaptation (pp. 1764). Cambridge University Press.Google Scholar
Sterling, P. (2012). Allostasis: a model of predictive regulation. Physiology & Behavior, 106(1), 515.Google Scholar
Sterling, P. & Eyer, J. (1988). Allostasis: a new paradigm to explain arousal pathology. In Fisher, S. & Reason, J. (eds.), Handbook of Life Stress, Cognition and Health (pp. 629649). New York: John Wiley.Google Scholar
Stern, R. M. & Sison, C. E. E. (1990). Response patterning. In Cacioppo, J. T. & Tassinary, L. G. (eds.), Principles of Psychophysiology: Physical, Social, and Inferential Elements (pp. 193216). Cambridge University Press.Google Scholar
Strawbridge, R., Arnone, D., Danese, A., Papadopoulos, A., Herane Vives, A., & Cleare, A. J. (2015). Inflammation and clinical response to treatment in depression: a meta-analysis. European Neuropsychopharmacology, 25: 15321543.Google Scholar
Sved, A. F., Cano, G., & Card, J. P. (2001). Neuroanatomical specificity of the circuits controlling sympathetic outflow to different targets. Clinical and Experimental Pharmacology & Physiology, 28: 115119.Google Scholar
Taylor, S. E., Klein, L. C., Lewis, B. P., Gruenewald, T. L., Gurung, R. A., & Updegraff, J. A. (2000). Biobehavioral responses to stress in females: tend-and-befriend, not fight-or-flight. Psychological Review, 107: 411429.Google Scholar
Thayer, J. F. & Fischer, J. E. (2009). Heart rate variability, overnight urinary norepinephrine and C-reactive protein: evidence for the cholinergic anti-inflammatory pathway in healthy human adults. Journal of Internal Medicine, 265: 439447.Google Scholar
Uchino, B. N., Cacioppo, J. T., & Kiecolt-Glaser, J. K. (1996). The relationship between social support and physiological processes: a review with emphasis on underlying mechanisms and implications for health. Psychological Bulletin, 119: 488531.Google Scholar
Ulrich-Lai, Y. M. & Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience, 10: 397409.Google Scholar
Van Roon, A. M., Mulder, L. J., Althaus, M., & Mulder, G. (2004). Introducing a baroreflex model for studying cardiovascular effects of mental workload. Psychophysiology, 41: 961981.Google Scholar
Van Roon, A. M., Mulder, L. J. M., Veldman, J. B. P., & Mulder, G. (1995). Beat-to-beat blood-pressure measurements applied in studies on mental workload. Homeostasis in Health and Disease, 36: 316324.Google Scholar
Vingerhoets, A. J. (1985). The role of the parasympathetic division of the autonomic nervous system in stress and the emotions. International Journal of Psychosomatics, 32: 2834.Google Scholar
Vingerhoets, A. J., Ratliff-Crain, J., Jabaaij, L., Menges, L. J., & Baum, A. (1996). Self-reported stressors, symptom complaints and psychobiological functioning: I. Cardiovascular stress reactivity. Journal of Psychosomatic Research, 40: 177190.Google Scholar
Vrijkotte, T. G., van den Born, B. J., Hoekstra, C. M., Gademan, M. G., van Eijsden, M., de Rooij, S. R., & Twickler, M. (2015). Cardiac autonomic nervous system activation and metabolic profile in young children: the ABCD study. PLoS One, 10: e0138302.Google Scholar
Watson, D. & Pennebaker, J. W. (1989). Health complaints, stress, and distress: exploring the central role of negative affectivity. Psychological Review, 96: 234254.Google Scholar
Weiner, H. (1992). Perturbing the Organism: The Biology of Stressful Experience. University of Chicago Press.Google Scholar
Wenger, M. A. (1941). The measurement of individual differences in autonomic balance. Psychosomatic Medicine, 3: 427434.Google Scholar
Werner, J. (1988). Functional mechanisms of temperature regulation, adaptation and fever: complementary system theoretical and experimental evidence. Pharmacology & Therapeutics, 37: 123.Google Scholar
Wheaton, B. & Montazer, S. (2009). Stressors, stress, and distress. In Scheid, T. L. & Brown, T. N. (eds.), A Handbook for the Study of Mental Health: Social Contexts, Theories, and Systems, 2nd edn. (pp. 171199). Cambridge University Press.Google Scholar
Winsky-Sommerer, R., Boutrel, B., & de Lecea, L. (2005). Stress and arousal: the corticotrophin-releasing factor/hypocretin circuitry. Molecular Neurobiology, 32: 285294.Google Scholar
Wirtz, P. H., Ehlert, U., Emini, L., & Suter, T. (2008). Higher body mass index (BMI) is associated with reduced glucocorticoid inhibition of inflammatory cytokine production following acute psychosocial stress in men. Psychoneuroendocrinology, 33: 11021110.Google Scholar
Zigman, J. M., Bouret, S. G., & Andrews, Z. B. (2016). Obesity impairs the action of the neuroendocrine Ghrelin system. Trends in Endocrinology and Metabolism, 27: 5463.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×