Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T15:50:48.162Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  01 June 2011

Allen L. Mann
Affiliation:
University of Tampere, Finland
Gabriel Sandu
Affiliation:
University of Helsinki
Merlijn Sevenster
Affiliation:
Philips Research Laboratories, The Netherlands
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Independence-Friendly Logic
A Game-Theoretic Approach
, pp. 198 - 202
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abelard, P. and , Héloïse. The Letters of Abelard and Eloise. Penguin, London, revised edition, 2003. Translated by Betty Radice.Google Scholar
[2] Benthem, J. F. A. K.. Logic games are complete for game logics. Studia Logica, 75:183–203, 2003.CrossRefGoogle Scholar
[3] Benthem, J. F. A. K.. Probabilistic features in logic games. In Kolak, D. and Symons, D., editors, Quantifiers, Questions and Quantum Physics, pages 189–194. Springer, Dordrecht, 2004.CrossRefGoogle Scholar
[4] Benthem, J. F. A. K.. The epistemic logic of IF games. In Auxier, R. E. and Hahn, L. E., editors, The Philosophy of Jaakko Hintikka, volume 30 of Library of Living Philosophers, pages 481–513. Open Court, Chicago, 2006.Google Scholar
[5] Blackburn, P., Rijke, M., and Venema, Y.. Modal Logic. Cambridge University Press, Cambridge, UK, 2001.CrossRefGoogle Scholar
[6] Blackburn, P., Benthem, J. F. A. K., and Wolter, F., editors. Handbook of Modal Logic, volume 3 of Studies in Logic and Practical Reasoning. Elsevier, Amsterdam, 2007.Google Scholar
[7] Blass, A. and Gurevich, Y.. Henkin quantifiers and complete problems. Annals of Pure and Applied Logic, 32:1–16, 1986.CrossRefGoogle Scholar
[8] Burgess, J. P.. A remark on Henkin sentences and their contraries. Notre Dame Journal of Formal Logic, 44:185–188, 2003.CrossRefGoogle Scholar
[9] Caicedo, X., Dechesne, F., and Janssen, T. M. V.. Equivalence and quantifier rules for logic with imperfect information. Logic Journal of IGPL, 17:91–129, 2009.CrossRefGoogle Scholar
[10] Caicedo, X. and Krynicki, M.. Quantifiers for reasoning with imperfect information and -logic. In Carnielli, W. A. and Ottaviano, I. M., editors, Advances in Contemporary Logic and Computer Science: Proceedings of the Eleveth Brazilian Conference on Mathematical Logic, May 6-10, 1996, volume 235 of Contemporary Mathematics, pages 17–31. American Mathematical Society, 1999.CrossRefGoogle Scholar
[11] Cameron, P. J. and Hodges, W.. Some combinatorics of imperfect information. Journal of Symbolic Logic, 66:673–684, 2001.CrossRefGoogle Scholar
[12] Church, A.. A note on the Entscheidungsproblem. Journal of Symbolic Logic, 1:40–41, 1936.CrossRefGoogle Scholar
[13] Craig, W.. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. Journal of Symbolic Logic, 22:269–285, 1957.CrossRefGoogle Scholar
[14] Dechesne, F.. Game, Set, Maths: Formal investigations into logic with imperfect information. PhD thesis, Tilburg University, Tilburg, 2005.
[15] Dedekind, R.. Was sind und was sollen die Zahlen?Braunschweig, Germany, 1888.Google Scholar
[16] Ebbinghaus, H.-D. and Flum, J.. Finite Model Theory. Springer-Verlag, Berlin, 1999.Google Scholar
[17] Ebbinghaus, H.-D., Flum, J., and Thomas, W.. Mathematical Logic. Undergraduate Texts in Mathematics. Springer-Verlag, Berlin, 2nd edition, 1994.CrossRefGoogle Scholar
[18] Ehrenfeucht, A.. An application of games to the completeness problem for formalized theories. Fundamenta Mathematicae, 49:129–141, 1961.CrossRefGoogle Scholar
[19] Enderton, H. B.. Finite partially ordered quantifiers. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 16:393–397, 1970.CrossRefGoogle Scholar
[20] Fraïssé, R.. Sur quelques classifications des systèmes de relations. Publications scientifiques, série A, 35–182, Université d'Alger, 1954.
[21] Gale, D. and Stewart, F.. Infinite games with perfect information. In Kuhn, H. W. and Tucker, A. W., editors, Contributions to the Theory of Games II, volume 28 of Annals of Mathematics Studies, pages 245–266. Princeton University Press, Princeton, 1953.Google Scholar
[22] Galliani, P.. Game values and equilibria for undetermined sentences of dependence logic. Master's thesis. Master of Logic Series 2008-08, University of Amsterdam, Amsterdam, 2008.
[23] Galliani, P. and Mann, A. L.. Lottery semantics. In Kontinen, J. and Väänänen, J., editors, Proceedings of the ESSLLI Workshop on Dependence and Independence in Logic, pages 30–54, Copenhagen, August 16–20, 2010.Google Scholar
[24] Hella, L. and Sandu, G.. Partially ordered connectives and finite graphs. In Krynicki, M., Mostowski, M., and Szczerba, L. W., editors, Quantifiers: Logics, Models and Computation, volume 2, pages 79–88. Kluwer Academic Publishers, Dordrecht, 1995.CrossRefGoogle Scholar
[25] Henkin, L.. Some remarks on infinitely long formulas. In Bernays, P., editor, Infinitistic Methods: Proceedings of the Symposium on Foundations of Mathematics, Warsaw, 2–9 September 1959, pages 167–183, Oxford, 1961. Pergamon Press.Google Scholar
[26] Hintikka, J.. Language-games for quantifiers. In Studies in Logical Theory, volume 2 of American Philosophical Quarterly Monograph Series, pages 46–72. Basil Blackwell, Oxford, 1968.Google Scholar
[27] Hintikka, J.. Quantifiers vs. quantification theory. Dialectica, 27:329–358, 1973.CrossRefGoogle Scholar
[28] Hintikka, J.. Principles of Mathematics Revisited. Cambridge University Press, Cambridge, UK, 1996.CrossRefGoogle Scholar
[29] Hintikka, J. and Kulas, J.. The Game of Language. Reidel, Dordrecht, 1983.CrossRefGoogle Scholar
[30] Hintikka, J. and Sandu, G.. Informational independence as a semantic phenomenon. In Fenstad, J. E.et al., editors, Logic, Methodology and Philosophy of Science, volume 8, pages 571–589. Elsevier, Amsterdam, 1989.Google Scholar
[31] Hintikka, J. and Sandu, G.. Game-theoretical semantics. In Benthem, J. F. A. K. and Meulen, A., editors, Handbook of Logic and Language, pages 361–481. North Holland, Amsterdam, 1997.CrossRefGoogle Scholar
[32] Hodges, W.. Compositional semantics for a language of imperfect information. Logic Journal of the IGPL, 5:539–563, 1997.CrossRefGoogle Scholar
[33] Hodges, W.. Some strange quantifiers. In Mycielski, J., Rozenberg, G., and Salomaa, A., editors, Structures in Logic and Computer Science: A Selection of Essays in Honor of A. Ehrenfeucht, Lecture Notes in Computer Science, pages 51–65. Springer-Verlag, 1997.CrossRefGoogle Scholar
[34] Kleene, S. C.. Introduction to Metamathematics. Van Nostrand, 1952.Google Scholar
[35] Kuhn, H. W.. Extensive games. Proceedings of the National Academy of Sciences of the United States of America, 36:570–576, 1950.CrossRefGoogle ScholarPubMed
[36] Kuhn, H. W.. Extensive games and the problem of information. In Kuhn, H. W. and Tucker, A. W., editors, Contributions to the Theory of Games II, volume 28 of Annals of Mathematics Studies, pages 193–216. Princeton University Press, Princeton, 1953.Google Scholar
[37] Ladner, R. E.. The computational complexity of provability in systems of modal propositional logic. SIAM Journal on Computing, 6:467–480, 1977.CrossRefGoogle Scholar
[38] Lewis, D. K.. Convention: A Philosophical Study. Harvard University Press, Cambridge, Massachusetts, 1969.Google Scholar
[39] Mann, A. L.. Independence-Friendly Cylindric Set Algebras. PhD thesis, University of Colorado at Boulder, 2007.
[40] Mann, A. L.. Independence-friendly cylindric set algebras. Logic Journal of IGPL, 17:719–754, 2009.CrossRefGoogle Scholar
[41] Marx, M.. Complexity of modal logic. In Blackburn et al. [6], pages 139–179.
[42] Nash, J.. Non-cooperative games. Annals of Mathematics, 54:286–295, 1951.CrossRefGoogle Scholar
[43] Neumann, J.. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100:295–320, 1928.CrossRefGoogle Scholar
[44] Osborne, M. J.. An Introduction to Game Theory. Oxford University Press, Oxford, 2003.Google Scholar
[45] Osborne, M. J. and Rubinstein, A.. A Course in Game Theory. MIT Press, Cambridge, Massachusetts, 1994.Google Scholar
[46] Peirce, C. S.. Reasoning and the Logic of Things. Harvard University Press, Cambridge, Massachusetts, 1992.Google Scholar
[47] Piccione, M. and Rubinstein, A.. On the interpretation of decision problems with imperfect recall. Games and Economic Behavior, 20:3–24, 1997.CrossRefGoogle Scholar
[48] Raghavan, T. E. S.. Zero-sum two person games. In Aumann, R. J. and Hart, S., editors, Handbook of Game Theory with Economic Applications, volume 2, pages 736–759. Elsevier, Amsterdam, 1994.Google Scholar
[49] Sandu, G.. On the logic of informational independence and its applications. Journal of Philosophical Logic, 22:29–60, 1993.CrossRefGoogle Scholar
[50] Sandu, G.. The logic of informational independence and finite models. Logic Journal of the IGPL, 5:79–95, 1997.CrossRefGoogle Scholar
[51] Sandu, G. and Väänänen, J.. Partially ordered connectives. Mathematical Logic Quarterly, 38:361–372, 1992.CrossRefGoogle Scholar
[52] Sevenster, M.. Branches of Imperfect Information: Logic, Games, and Computation. PhD thesis, University of Amsterdam, Amsterdam, 2006.
[53] Sevenster, M.. Decidability of independence-friendly modal logic. Review of Symbolic Logic, 3:415–441, 2010.CrossRefGoogle Scholar
[54] Sevenster, M. and Sandu, G.. Equilibrium semantics of languages of imperfect information. Annals of Pure and Applied Logic, 161:618–631, 2010.CrossRefGoogle Scholar
[55] Skolem, T.. Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theoreme über dichte Mengen. Videnskapsselskapet Skrifter, I. Matematisk-naturvidenskabelig Klasse, 4:1–36, 1920.Google Scholar
[56] Skolem, T.. Logico-combinatorial investigations in the satisfiability or provability of mathematical propositions: A simplified proof of a theorem by L. Löwenheim and generalizations of the theorem. In Heijenoort, J., editor, From Frege to Gödel: A Source Book in Mathematical Logic, pages 254–263. Harvard University Press, Cambridge, Massachusetts, 1967.Google Scholar
[57] Skolem, T.. Selected Works in Logic. Scandinavian University Press, Oslo, 1970.Google Scholar
[58] Tarski, A.. Pojȩcie prawdy w jȩzykach nauk dedukcyjnych (On the concept of truth in languages of deductive sciences). Warsaw, 1933. English translation in (Tarski 1983), pages 152–278.Google Scholar
[59] Tarski, A.. The semantic conception of truth and the foundations of semantics. Philosophy and Phenomenological Research, 4:341–376, 1944.CrossRefGoogle Scholar
[60] Tarski, A.. Logic, Semantics, Metamathematics: Papers from 1923 to 1938. Hackett, Indianapolis, 2nd edition, 1983.Google Scholar
[61] Tarski, A. and Vaught, R. L.. Arithmetical extensions of relational systems. Compositio Mathematica, 13:81–102, 1956–1958.Google Scholar
[62] Tulenheimo, T.. On IF modal logic and its expressive power. In Balbiani, P., Suzuki, N.-Y., Wolter, F., and Zakharyaschev, M., editors, Advances in Modal Logic, volume 4, pages 474–498. King's College Publications, 2003.Google Scholar
[63] Tulenheimo, T.. Independence-Friendly Modal Logic. PhD thesis, University of Helsinki, Helsinki, 2004.
[64] Tulenheimo, T. and Sevenster, M.. On modal logic, IF logic and IF modal logic. In Hodkinson, I. and Venema, Y., editors, Advances in Modal Logic, volume 6, pages 481–501. College Publications, 2006.Google Scholar
[65] Väänänen, J.. A remark on nondeterminacy in IF logic. In Aho, T. and Pietarinen, A.-V., editors, Truth and Games: Essays in Honour of Gabriel Sandu, chapter 4, pages 71–77. Societas Philosophica Fennica, Helsinki, 2006.Google Scholar
[66] Väänänen, J.. Dependence Logic. Cambridge University Press, Cambridge, UK, 2007.CrossRefGoogle Scholar
[67] Walkoe, W.. Finite partially-ordered quantification. Journal of Symbolic Logic, 35:535–555, 1970.CrossRefGoogle Scholar
[68] Wittgenstein, L.. Philosophical Investigations. Basil Blackwell, Oxford, 1958. Translated by G. E. M. Anscombe.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Allen L. Mann, University of Tampere, Finland, Gabriel Sandu, University of Helsinki, Merlijn Sevenster, Philips Research Laboratories, The Netherlands
  • Book: Independence-Friendly Logic
  • Online publication: 01 June 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511981418.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Allen L. Mann, University of Tampere, Finland, Gabriel Sandu, University of Helsinki, Merlijn Sevenster, Philips Research Laboratories, The Netherlands
  • Book: Independence-Friendly Logic
  • Online publication: 01 June 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511981418.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Allen L. Mann, University of Tampere, Finland, Gabriel Sandu, University of Helsinki, Merlijn Sevenster, Philips Research Laboratories, The Netherlands
  • Book: Independence-Friendly Logic
  • Online publication: 01 June 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511981418.009
Available formats
×