Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T01:05:17.612Z Has data issue: false hasContentIssue false

Chapter 7 - Metabolic Movement Disorders

from Section 1: - Basic Introduction

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access

Summary

The etiology of metabolic movement disorders is characterized by marked heterogeneity, including acquired and genetic forms (also known as inborn errors of metabolism). In both cases, metabolic alterations represent a possible pathogenetic mechanism of movement disorders that can present with dystonia, parkinsonism, choreoathetosis, or myoclonus, and can range from hyperacute to chronic forms. These conditions can be classified according to multiple aspects, such as etiology, age, or clinical features’ rapidity of onset. Understanding the underlying pathogenic mechanisms has led to specific treatments for acquired and genetic forms and prompt diagnosis is key to reducing brain damage and improving symptoms. Thus, this chapter offers an overview of these conditions’ main clinical and neuroradiologic features to help clinicians in the diagnostic process.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jinnah, HA, Albanese, A, Bhatia, KP, et al. Treatable inherited rare movement disorders. Mov Disord 2018;33:2135.CrossRefGoogle ScholarPubMed
Sedel, F, Saudubray, JM, Roze, E, Agid, Y, Vidailhet, M. Movement disorders and inborn errors of metabolism in adults: a diagnostic approach. J Inherit Metab Dis 2008;31:308318.CrossRefGoogle ScholarPubMed
Kingma, SDK, Bodamer, OA, Wijburg, FA. Epidemiology and diagnosis of lysosomal storage disorders; challenges of screening. Best Pract Res Clin Endocrinol Metab 2015;29:145157.CrossRefGoogle ScholarPubMed
Muthane, UB, Chickabasaviah, Y, Kaneski, C, et al. Clinical features of adult GM1 gangliosidosis: report of three Indian patients and review of 40 cases. Mov Disord 2004;19:13341341.CrossRefGoogle ScholarPubMed
Bajwa, H, Azhar, W. Niemann–Pick disease. [Updated 2023 Mar 6]. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2024. Available from: www.ncbi.nlm.nih.gov/books/NBK556129/Google Scholar
Vanier, MT. Niemann–Pick disease type C. Orphanet J Rare Dis 2010;5:118.CrossRefGoogle ScholarPubMed
Williams, RE, Adams, HR, Blohm, M, et al. Management strategies for CLN2 disease. Pediatr Neurol 2017;69:102112.CrossRefGoogle ScholarPubMed
Canafoglia, L, Gilioli, I, Invernizzi, F, et al. Electroclinical spectrum of the neuronal ceroid lipofuscinoses associated with CLN6 mutations. Neurology 2015;85:316324.CrossRefGoogle ScholarPubMed
Shahwan, A, Farrell, M, Delanty, N. Progressive myoclonic epilepsies: a review of genetic and therapeutic aspects. Lancet Neurol 2005;4:239248.CrossRefGoogle ScholarPubMed
Schulz, A, Ajayi, T, Specchio, N, et al. Study of intraventricular cerliponase alfa for CLN2 disease. N Engl J Med 2018;378:18981907.CrossRefGoogle ScholarPubMed
Reichert, R, Campos, LG, Vairo, F, et al. Neuroimaging findings in patients with mucopolysaccharidosis: what you really need to know. Radiographics 2016;36:14481462.CrossRefGoogle ScholarPubMed
Michaud, M, Belmatoug, N, Catros, F, et al. Mucopolysaccharidosis: a review. Rev Med Interne 2020;41:180188.CrossRefGoogle ScholarPubMed
Regier, DS, Tifft, CJ, Rothermel, CE. GLB1-related disorders. 2021. In: Adam, MP, Everman, DB, Mirzaa, GM, et al., eds. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 19932023.Google Scholar
Roze, E, Ewenczyk, C, Sedel, F. GM2 gangliosidosis. In: Kompoliti, K, Verhagen Metman, L, eds. Encyclopedia of Movement Disorders. New York: Academic Press; 2010.Google Scholar
Hall, P, Minnich, S, Teigen, C, Raymond, K. Diagnosing lysosomal storage disorders: the GM2 gangliosidoses. Curr Protoc Hum Genet 2014;83:17.16.18.Google ScholarPubMed
Orsini, JJ, Escolar, ML, Wasserstein, MP, Caggana, M. Krabbe disease. 2018. In: Adam, MP, Everman, DB, Mirzaa, GM, et al., eds. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 19932023.Google Scholar
Cousyn, L, Law-Ye, B, Pyatigorskaya, N, et al. Brain MRI features and scoring of leukodystrophy in adult-onset Krabbe disease. Neurology 2019;93:E647–652.CrossRefGoogle ScholarPubMed
Wenger, DA, Rafi, MA, Luzi, P. Molecular genetics of Krabbe disease (globoid cell leukodystrophy): diagnostic and clinical implications. Hum Mutat 1997;10:268279.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Riboldi, GM, di Fonzo, AB. GBA, Gaucher disease, and Parkinson’s disease: from genetic to clinic to new therapeutic approaches. Cells 2019;8:364.CrossRefGoogle ScholarPubMed
Smith, L, Schapira, AHV. GBA variants and Parkinson disease: mechanisms and treatments. Cells 2022;11(8):1261.CrossRefGoogle ScholarPubMed
Tamargo, RJ, Velayati, A, Goldin, E, Sidransky, E. The role of saposin C in Gaucher disease. Mol Genet Metab 2012;106:257263.CrossRefGoogle ScholarPubMed
Lai, SC, Chen, RS, Wu Chou, YH, et al. A longitudinal study of Taiwanese Sialidosis type 1: an insight into the concept of cherry-red spot myoclonus syndrome. European Journal of Neurology 2009;16:912919.CrossRefGoogle ScholarPubMed
Gieselmann, V, Krägeloh-Mann, I. Metachromatic leukodystrophy – an update. Neuropediatrics 2010;41:16.CrossRefGoogle ScholarPubMed
Shaimardanova, AA, Chulpanova, DS, Solovyeva, VV, et al. Metachromatic leukodystrophy: diagnosis, modeling, and treatment approaches. Front Med 2020;7:576221.CrossRefGoogle ScholarPubMed
Atalar, MH, Salk, I, Egilmez, H. Classical signs and appearances in pediatric neuroradiology: a pictorial review. Pol J Radiol 2014;79:479489.Google ScholarPubMed
Kaplan, J, de Domenico, I, Ward, DMV. Chediak–Higashi syndrome. Curr Opin Hematol 2008;15:2229.CrossRefGoogle ScholarPubMed
Aggarwal, A, Bhatt, M. Update on Wilson disease. Int Rev Neurobiol 2013;110:313348.CrossRefGoogle ScholarPubMed
Członkowska, A, Litwin, T, Dusek, P, et al. Wilson disease. Nat Rev Dis Primers 2018;4:21.CrossRefGoogle ScholarPubMed
Ferenci, P, Caca, K, Loudianos, G, et al. Diagnosis and phenotypic classification of Wilson disease. Liver Int 2003;23:139142.CrossRefGoogle ScholarPubMed
Masełbas, W, Chabik, G, Członkowska, A. Persistence with treatment in patients with Wilson disease. Neurol Neurochir Pol 2010;44:260263.CrossRefGoogle ScholarPubMed
Brissot, P, Pietrangelo, A, Adams, PC, et al. Haemochromatosis. Nat Rev Dis Primers 2018;4:18016.CrossRefGoogle ScholarPubMed
Gregory, A, Polster, BJ, Hayflick, SJ. Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J Med Genet 2009;46:7380.CrossRefGoogle ScholarPubMed
Kurian, MA, Hayflick, SJ. Pantothenate kinase-associated neurodegeneration (PKAN) and PLA2G6-associated neurodegeneration (PLAN): review of two major neurodegeneration with brain iron accumulation (NBIA) phenotypes. Int Rev Neurobiol 2013;110:4971.CrossRefGoogle ScholarPubMed
Seo, JH, Song, SK, Lee, PH. A novel PANK2 mutation in a patient with atypical pantothenate-kinase-associated neurodegeneration presenting with adult-onset parkinsonism. J Clin Neurol 2009;5:192194.CrossRefGoogle Scholar
Miyajima, H, Hosoi, Y. Aceruloplasminemia. 2018. In: Adam, MP, Everman, DB, Mirzaa, GM, et al., eds. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 19932023.Google Scholar
Hartig, MB. Neuroferritinopathy. In: Kompoliti, K, Verhagen Metman, L, eds. Encyclopedia of Movement Disorders. New York: Academic Press; 1993.Google Scholar
Riboldi, GM, Frattini, E, Monfrini, E, Frucht, SJ, di Fonzo, A. A practical approach to early-onset parkinsonism. J Parkinsons Dis 2022;12:126.CrossRefGoogle ScholarPubMed
Lindner, M, Kölker, S, Schulze, A, et al. Neonatal screening for glutaryl-CoA dehydrogenase deficiency. J Inherit Metab Dis 2004;27:851859.CrossRefGoogle ScholarPubMed
Boy, N, Mühlhausen, C, Maier, EM, et al. Proposed recommendations for diagnosing and managing individuals with glutaric aciduria type I: second revision. J Inherit Metab Dis 2017;40:75101.CrossRefGoogle ScholarPubMed
Mochel, F, Schiffmann, R, Steenweg, ME, et al. Adult polyglucosan body disease: natural history and key magnetic resonance imaging findings. Ann Neurol 2012;72:433441.CrossRefGoogle ScholarPubMed
Akman, HO, Lossos, A, Kakhlon, O. GBE1 Adult Polyglucosan Body Disease. In Gene Reviews® [Internet]. Seattle, WA: University of Washington, Seattle; 1993, updated 2020.Google Scholar
Harris, JC. Lesch–Nyhan syndrome and its variants: examining the behavioral and neurocognitive phenotype. Curr Opin Psychiatry 2018;31:96102.CrossRefGoogle ScholarPubMed
Harris, JC, Lee, RR, Jinnah, HA, et al. Craniocerebral magnetic resonance imaging measurement and findings in Lesch–Nyhan syndrome. Arch Neurol 1998;55:547553.CrossRefGoogle ScholarPubMed
Edwards, A, Voss, H, Rice, P, et al. Automated DNA sequencing of the human HPRT locus. Genomics 1990;6:593608.CrossRefGoogle ScholarPubMed
Torres, RJ, Puig, JG. Hypoxanthine–guanine phosophoribosyltransferase (HPRT) deficiency: Lesch–Nyhan syndrome. Orphanet J Rare Dis 2007;2:48.CrossRefGoogle ScholarPubMed
Lorincz, MT, Rainier, S, Thomas, D, Fink, JK. Cerebrotendinous xanthomatosis: possible higher prevalence than previously recognized. Arch Neurol 2005;62:14591463.CrossRefGoogle ScholarPubMed
Nie, S, Chen, G, Cao, X, Zhang, Y. Cerebrotendinous xanthomatosis: a comprehensive review of pathogenesis, clinical manifestations, diagnosis, and management. Orphanet J Rare Dis 2014;9:179.CrossRefGoogle ScholarPubMed
Barkhof, F, Verrips, A, Wesseling, P, et al. Cerebrotendinous xanthomatosis: the spectrum of imaging findings and the correlation with neuropathologic findings. Radiology 2000;217:869876.CrossRefGoogle ScholarPubMed
Verrips, A, Wevers, RA, van Engelen, BGM, et al. Effect of simvastatin in addition to chenodeoxycholic acid in patients with cerebrotendinous xanthomatosis. Metabolism 1999;48:233238.CrossRefGoogle ScholarPubMed
Pedroso, JL, Barsottini, OG, Espay, AJ. Movement disorders in metabolic disorders. Curr Neurol Neurosci Reports 2019 19(2):7.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×