Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T13:47:32.622Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  14 November 2024

Horatiu Nastase
Affiliation:
Universidade Estadual Paulista, São Paulo
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Peebles, P. J. E., “Principles of physical cosmology,” Princeton University Press, 1993.Google Scholar
Misner, C. W., Thorne, K. S. and Wheeler, J. A., “Gravitation,” W. H. Freeman, 1970.Google Scholar
Landau, L. D. and Lifchitz, E. M., “Mechanics,” Butterworth-Heinemann, 1982.Google Scholar
Wald, R. M., “General relativity,” University of Chicago Press, 1984.CrossRefGoogle Scholar
van Nieuwenhuizen, P., “Supergravity,” Phys. Rep. 68, 189 (1981).CrossRefGoogle Scholar
Hawking, S. W. and Ellis, G. F. R., “The large scale structure of space-time,” Cambridge University Press, 1973.CrossRefGoogle Scholar
Ketov, S. V., “Solitons, monopoles and duality: From sine-Gordon to Seiberg-Witten,” Fortsch. Phys. 45, 237 (1997) [arXiv:hep-th/9611209].Google Scholar
Alvarez-Gaumé, L. and Hassan, S. F., “Introduction to S-duality in N=2 supersym-metric gauge theory. (A pedagogical review of the work of Seiberg and Witten),” Fortsch. Phys. 45, 159 (1997) [arXiv:hep-th/9701069].CrossRefGoogle Scholar
West, P., “Introduction to supersymmetry and supergravity,” World Scientific, 1990.CrossRefGoogle Scholar
Wess, J. and Bagger, J., “Supersymmetry and supergravity,” Princeton University Press, 1992.Google Scholar
Gates, S. J., Grisaru, M. T., Rocek, M. and Siegel, W., “Superspace or one thousand and one lessons in supersymmetry,” Front. Phys. 5, 1 (1983) [arXiv:hep-th/0108200].Google Scholar
Weinberg, S., “The quantum theory of fields,” vol. 1: Foundation; vol. 2: Modern Application; vol. 3: Supersymmetry, Cambridge University Press, 1995, 1996 and 2000.CrossRefGoogle Scholar
Dine, M., “Supersymmetry and string theory, beyond the Standard Model,” Cambridge University Press, 2007.CrossRefGoogle Scholar
van Nieuwenhuizen, P., “An introduction to simple supergravity and the Kaluza-Klein program,” Les Houches lectures, Course 8, in “Relativity, groups and topology II,” pp. 825932, Elsevier, 1983.Google Scholar
Wess, J. and Zumino, B., “A Iagrangian model invariant under supergauge transformations,” Phys. Lett. B 49, 52 (1974).CrossRefGoogle Scholar
Wess, J. and Zumino, B., “Supergauge transformations in four-dimensions,” Nucl. Phys. B 70, 3950 (1974).CrossRefGoogle Scholar
Freedman, D. Z. and van Proeyen, A., “Supergravity,” Cambridge University Press, 2012.CrossRefGoogle Scholar
Freedman, D. Z., van Nieuwenhuizen, P. and Ferrara, S., “Progress toward a theory of supergravity,” Phys. Rev. D 13, 32143218 (1976).CrossRefGoogle Scholar
Ruiz Ruiz, F. and van Nieuwenhuizen, P., “Lectures on supersymmetry and supergravity in (2+1)-dimensions and regularization of supersymmetric gauge theories,” published in: Tlaxcala 1996, Recent developments in gravitation and mathematical physics (2nd Mexican School on Gravitation and Mathematical Physics, Tlaxcala, Mexico, December 1–7, 1996).Google Scholar
Nastase, H., Vaman, D. and van Nieuwenhuizen, P., “Consistency of the AdS7 × S4 reduction and the origin of self-duality in odd dimensions,” Nucl. Phys. B 581, 179 (2000) [arXiv:hep-th/9911238].CrossRefGoogle Scholar
van Nieuwenhuizen, P., “General theory of coset manifolds and antisymmetric tensors applied to Kaluza-Klein supergravity,” pp. 239323, Supersymmetry and Supergravity ’84, Proc. Trieste School, April 1984, Ed. de Wit, B., Fayet, P. and van Nieuwenhuizen, P..Google Scholar
Duff, M. J., Nilsson, B. E. W. and Pope, C. N., “Kaluza-Klein supergravity,” Phys. Rep. 130, 1 (1986).CrossRefGoogle Scholar
Bergshoeff, E., Sezgin, E. and Townsend, P. K., “Supermembranes and eleven-dimensional supergravity,” Phys. Lett. B 189, 75 (1987).CrossRefGoogle Scholar
Fre, P., “Lectures on special Kahler geometry and electric-magnetic duality rotations,” Nucl. Phys. B-Proc. Suppl. 45, 59 (1996) [arXiv:hep-th/9512043].CrossRefGoogle Scholar
de Wit, B. and van Proeyen, A., “Special geometry and symplectic transformations,” Nucl. Phys. B-Proc. Suppl. 45, 196 (1996) [arXiv:hep-th/9510186].CrossRefGoogle Scholar
Cremmer, E., Julia, B. and Scherk, J., “Supergravity theory in eleven-dimensions,” Phys. Lett. B 76, 409 (1978).CrossRefGoogle Scholar
de Wit, B. and Nicolai, H., “On the relation between d = 4 and d = 11 supergravity,” Nucl. Phys. B 243, 91111 (1984).CrossRefGoogle Scholar
de Wit, B., Nicolai, H. and Warner, N. P., “The embedding of gauged N = 8 supergravity Into d = 11 supergravity,” Nucl. Phys. B 255, 2962 (1985).CrossRefGoogle Scholar
Pernici, M., Pilch, K. and van Nieuwenhuizen, P., “Gauged N=8 D=5 supergravity,” Nucl. Phys. B 259, 460 (1985).CrossRefGoogle Scholar
de Wit, B. and Nicolai, H., “N=8 supergravity,” Nucl. Phys. B 208, 323 (1982).CrossRefGoogle Scholar
de Wit, B. and Nicolai, H., “d = 11 supergravity with local SU(8) invariance,” Nucl. Phys. B 274, 363400 (1986).CrossRefGoogle Scholar
de Wit, B. and Nicolai, H., “The consistency of the S7 truncation in D=11 supergravity,” Nucl. Phys. B 281, 211240 (1987).CrossRefGoogle Scholar
Hohm, O. and Samtleben, H., “Exceptional form of D=11 supergravity,” Phys. Rev. Lett. 111, 231601 (2013) [arXiv:1308.1673 [hep-th]].CrossRefGoogle ScholarPubMed
Hohm, O. and Samtleben, H., “Exceptional field theory I: E6(6) covariant form of M-theory and type IIB,” Phys. Rev. D 89, 066016 (2014) [arXiv:1312.0614 [hep-th]].CrossRefGoogle Scholar
Hohm, O. and Samtleben, H., “Exceptional field theory. II. E7(7),” Phys. Rev. D 89, 066017 (2014) [arXiv:1312.4542 [hep-th]].CrossRefGoogle Scholar
Hohm, O. and Samtleben, H., “Exceptional field theory. III. E8(8),” Phys. Rev. D 90, 066002 (2014) [arXiv:1406.3348 [hep-th]].CrossRefGoogle Scholar
Ciceri, F., de Wit, B. and Varela, O., “IIB supergravity and the E6(6) covariant vector-tensor hierarchy,” JHEP 04, 094 (2015) [arXiv:1412.8297 [hep-th]].CrossRefGoogle Scholar
Baguet, A., Hohm, O. and Samtleben, H., “Consistent type IIB reductions to maximal 5D supergravity,” Phys. Rev. D 92, 065004 (2015) [arXiv:1506.01385 [hep-th]].CrossRefGoogle Scholar
Guarino, A., Jafferis, D. L. and Varela, O., “String theory origin of dyonic N=8 supergravity and its Chern-Simons duals,” Phys. Rev. Lett. 115, 091601 (2015) [arXiv:1504.08009 [hep-th]].CrossRefGoogle ScholarPubMed
Guarino, A. and Varela, O., “Dyonic ISO(7) supergravity and the duality hierarchy,” JHEP 02, 079 (2016) [arXiv:1508.04432 [hep-th]].Google Scholar
Samtleben, H., “Lectures on gauged supergravity and flux compactifications,” Class. Quant. Grav. 25, 214002 (2008) [arXiv:0808.4076 [hep-th]].CrossRefGoogle Scholar
Trigiante, M., “Gauged supergravities,” Phys. Rep. 680, 1175 (2017) [arXiv:1609.09745 [hep-th]].CrossRefGoogle Scholar
Romans, L. J., “Massive N=2a supergravity in ten-dimensions,” Phys. Lett. B 169, 374 (1986).CrossRefGoogle Scholar
D’Auria, R. and Fre, P., “Geometric supergravity in d = 11 and its hidden supergroup,” Nucl. Phys. B 201, 101140 (1982). [erratum: Nucl. Phys. B 206, 496 (1982)].CrossRefGoogle Scholar
Castellani, L., D’Auria, R. and Fre, P., “Supergravity and superstrings: A geometric perspective, vol. 1: Mathematical foundations,” World Scientific, 1991.CrossRefGoogle Scholar
Castellani, L., D’Auria, R. and Fre, P., “Supergravity and superstrings: A geometric perspective, vol. 2: Supergravity,” World Scientific, 1991.CrossRefGoogle Scholar
Castellani, L., D’Auria, R. and Fre, P., “Supergravity and superstrings: A geometric perspective, vol. 3: Superstrings,” World Scientific, 1991.CrossRefGoogle Scholar
Murugan, J. and Nastase, H., “A non-Abelian particle–vortex duality,” Phys. Lett. B 753, 401405 (2016) [arXiv:1506.04090 [hep-th]].CrossRefGoogle Scholar
Araujo, T. R. and Nastase, H., “Non-Abelian T-duality for nonrelativistic holographic duals,” JHEP 11, 203 (2015) [arXiv:1508.06568 [hep-th]].CrossRefGoogle Scholar
Buscher, T. H., “A symmetry of the string background field equations,” Phys. Lett. B 194, 5962 (1987).CrossRefGoogle Scholar
Buscher, T. H., “Path integral derivation of quantum duality in nonlinear sigma models,” Phys. Lett. B 201, 466472 (1988).CrossRefGoogle Scholar
Bergshoeff, E., Hull, C. M. and Ortin, T., “Duality in the type II superstring effective action,” Nucl. Phys. B 451, 547578 (1995) [arXiv:hep-th/9504081 [hep-th]].CrossRefGoogle Scholar
Johnson, Clifford, “D-branes.” Cambridge University Press, 2005.Google Scholar
Araujo, T., Colgáin, E. Ó., Sakatani, Y., Sheikh-Jabbari, M. M. and Yavar-tanoo, H., “Holographic integration of TT̄¯ \& JT̄¯ via O(d, d),” JHEP 03, 168 (2019) [arXiv:1811.03050 [hep-th]].CrossRefGoogle Scholar
Gimon, E. G., Hashimoto, A., Hubeny, V. E., Lunin, O. and Rangamani, M., “Black strings in asymptotically plane wave geometries,” JHEP 08, 035 (2003) [arXiv:hep-th/0306131 [hep-th]].CrossRefGoogle Scholar
Duff, M. J., Khuri, R. R. and Lu, J. X., “String solitons,” Phys. Rep. 259, 213236 (1995) [arXiv:hep-th/9412184 [hep-th]].CrossRefGoogle Scholar
Tseytlin, A. A., “Harmonic superpositions of M-branes,” Nucl. Phys. B 475 149163 (1996) [arXiv:hep-th/9604035 [hep-th]].CrossRefGoogle Scholar
Tseytlin, A. A., “’No force’ condition and BPS combinations of p-branes in eleven-dimensions and ten-dimensions,” Nucl. Phys. B 487 141154 (1997) [arXiv:hep-th/9609212 [hep-th]].CrossRefGoogle Scholar
Witten, E., “String theory dynamics in various dimensions,” Nucl. Phys. B 443 85126 (1995) [arXiv:hep-th/9503124 [hep-th]].CrossRefGoogle Scholar
Townsend, P. K., “P-brane democracy,” [arXiv:hep-th/9507048 [hep-th]].Google Scholar
Achucarro, A., Evans, J. M., Townsend, P. K. and Wiltshire, D. L., “Super p-Branes,” Phys. Lett. B 198, 441446 (1987).CrossRefGoogle Scholar
Lu, H. and Pope, C. N., “Interacting intersections,” Int. J. Mod. Phys. A 13 44254443 (1998) [arXiv:hep-th/9710155 [hep-th]].CrossRefGoogle Scholar
Youm, D., “Partially localized intersecting BPS branes,” Nucl. Phys. B 556, 222246 (1999) doi:10.1016/S0550-3213(99)00384-3 [arXiv:hep-th/9902208 [hep-th]].CrossRefGoogle Scholar
Hull, C. M. and Townsend, P. K., “Unity of superstring dualities,” Nucl. Phys. B 438, 109137 (1995) [arXiv:hep-th/9410167 [hep-th]].CrossRefGoogle Scholar
Obers, N. A. and Pioline, B., “U duality and M theory,” Phys. Rep. 318, 113225 (1999) [arXiv:hep-th/9809039 [hep-th]].CrossRefGoogle Scholar
Nastase, H., “Introduction to the AdS/CFT correspondence,” Cambridge University Press, 2015.CrossRefGoogle Scholar
Maldacena, J. M., “The Large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231252 (1998) [arXiv:hep-th/9711200 [hep-th]].CrossRefGoogle Scholar
Itzhaki, N., Maldacena, J. M., Sonnenschein, J. and Yankielowicz, S., “Supergravity and the large N limit of theories with sixteen supercharges,” Phys. Rev. D 58, 046004 (1998) [arXiv:hep-th/9802042 [hep-th]].CrossRefGoogle Scholar
Berenstein, D. E., Maldacena, J. M. and Nastase, H. S., “Strings in flat space and pp waves from N=4 superYang-Mills,” JHEP 04, 013 (2002) [arXiv:hep-th/0202021 [hep-th]].CrossRefGoogle Scholar
Nishioka, T. and Takayanagi, T., “On Type IIA Penrose Limit and N=6 Chern-Simons Theories,” JHEP 08, 001 (2008) [arXiv:0806.3391 [hep-th]].CrossRefGoogle Scholar
Itsios, G., Nastase, H., Núñez, C., Sfetsos, K. and Zacarías, S., “Penrose limits of Abelian and non-Abelian T-duals of AdS5 × S5 and their field theory duals,” JHEP 01, 071 (2018) [arXiv:1711.09911 [hep-th]].CrossRefGoogle Scholar
Figueroa-O’Farrill, J. M. and Papadopoulos, G., “Homogeneous fluxes, branes and a maximally supersymmetric solution of M theory,” JHEP 08, 036 (2001) [arXiv:hep-th/0105308 [hep-th]].CrossRefGoogle Scholar
Blau, M., Figueroa-O’Farrill, J. M., Hull, C. and Papadopoulos, G., “A New maximally supersymmetric background of IIB superstring theory,” JHEP 01, 047 (2002) [arXiv:hep-th/0110242 [hep-th]].CrossRefGoogle Scholar
Lunin, O. and Maldacena, J. M., “Deforming field theories with U(1) x U(1) global symmetry and their gravity duals,” JHEP 05, 033 (2005) [arXiv:hep-th/0502086 [hep-th]].CrossRefGoogle Scholar
Frolov, S., “Lax pair for strings in Lunin-Maldacena background,” JHEP 05, 069 (2005) [arXiv:hep-th/0503201 [hep-th]].CrossRefGoogle Scholar
Borsato, R. and Wulff, L., “Target space supergeometry of η and λ-deformed strings,” JHEP 10, 045 (2016) [arXiv:1608.03570 [hep-th]].CrossRefGoogle Scholar
Delduc, F., Magro, M. and Vicedo, B., “An integrable deformation of the AdS5 × S5 superstring action,” Phys. Rev. Lett. 112, 051601 (2014) [arXiv:1309.5850 [hep-th]].CrossRefGoogle Scholar
Kawaguchi, I., Matsumoto, T. and Yoshida, K., “Jordanian deformations of the AdS5xS5 superstring,” JHEP 04, 153 (2014) [arXiv:1401.4855 [hep-th]].CrossRefGoogle Scholar
Hollowood, T. J., Miramontes, J. L. and Schmidtt, D. M., “An Integrable Deformation of the AdS5 × S5 Superstring,” J. Phys. A 47, 495402 (2014) [arXiv:1409.1538 [hep-th]].CrossRefGoogle Scholar
Orlando, D., Reffert, S., Sakamoto, J. i., Sekiguchi, Y. and Yoshida, K., “Yang–Baxter deformations and generalized supergravity—a short summary,” J. Phys. A 53, 443001 (2020) [arXiv:1912.02553 [hep-th]].CrossRefGoogle Scholar
Ferrara, S., Kallosh, R. and Strominger, A., “N=2 extremal black holes,” Phys. Rev. D 52, R5412R5416 (1995) [arXiv:hep-th/9508072 [hep-th]].CrossRefGoogle ScholarPubMed
Ferrara, S. and Kallosh, R., “Supersymmetry and attractors,” Phys. Rev. D 54, 15141524 (1996) [arXiv:hep-th/9602136 [hep-th]].CrossRefGoogle ScholarPubMed
Ferrara, S. and Kallosh, R., “Universality of supersymmetric attractors,” Phys. Rev. D 54, 15251534 (1996) [arXiv:hep-th/9603090 [hep-th]].CrossRefGoogle ScholarPubMed
Sen, A., “Black hole entropy function and the attractor mechanism in higher derivative gravity,” JHEP 09, 038 (2005) [arXiv:hep-th/0506177 [hep-th]].Google Scholar
Astefanesei, D., Nastase, H., Yavartanoo, H. and Yun, S., “Moduli flow and non-supersymmetric AdS attractors,” JHEP 04, 074 (2008) [arXiv:0711.0036 [hep-th]].Google Scholar
Green, M. B., Schwarz, J. H. and Witten, E., “Superstring theory: 25th anniversary edition,” vol. 2, Cambridge University. Press, 2012.Google Scholar
Polchinski, J., “String theory,” vol. 1: “An introduction to the bosonic string,” and vol. 2: “Superstring theory and beyond,” Cambridge University Press, 2005.Google Scholar
Henneaux, M. and Mezincescu, L., “A Sigma Model Interpretation of Green-Schwarz Covariant Superstring Action,” Phys. Lett. B 152, 340342 (1985)CrossRefGoogle Scholar
Berkovits, N., “Super poincare covariant quantization of the superstring,” JHEP 04, 018 (2000) [arXiv:hep-th/0001035 [hep-th]].CrossRefGoogle Scholar
Berkovits, N., “ICTP lectures on covariant quantization of the superstring,” ICTP Lect. Notes Ser. 13, 57107 (2003) [arXiv:hep-th/0209059 [hep-th]].Google Scholar
Sorokin, D. P., “Superbranes and superembeddings,” Phys. Rep. 329, 1101 (2000) [arXiv:hep-th/9906142 [hep-th]].CrossRefGoogle Scholar
Bandos, I. A. and Sorokin, D. P., “Superembedding approach to superstrings and super-p-branes,” [arXiv:2301.10668 [hep-th]].Google Scholar
Nastase, H., “Cosmology and string theory,” Fundam. Theor. Phys. 197, (2019) Springer, 2019.CrossRefGoogle Scholar
Bernardo, H. and Nastase, H., “Small field inflation in N = 1 supergravity with a single chiral superfield,” JHEP 09, 071 (2016) [arXiv:1605.01934 [hep-th]].CrossRefGoogle Scholar
Baumann, D. and McAllister, L., “Advances in inflation in string theory,” Ann. Rev. Nucl. Part. Sci. 59, 6794 (2009) [arXiv:0901.0265 [hep-th]].CrossRefGoogle Scholar
McAllister, L. and Silverstein, E., “String cosmology: A review,” Gen. Rel. Grav. 40, 565605 (2008) [arXiv:0710.2951 [hep-th]].CrossRefGoogle Scholar
Kallosh, R., Linde, A., Roest, D. and Yamada, Y., “3̄ induced geometric inflation,” JHEP 07, 057 (2017) [arXiv:1705.09247 [hep-th]].CrossRefGoogle Scholar
Maldacena, J. M. and Nunez, C., “Supergravity description of field theories on curved manifolds and a no go theorem,” Int. J. Mod. Phys. A 16, 822-855 (2001) [arXiv:hep-th/0007018 [hep-th]].CrossRefGoogle Scholar
Kallosh, R. and Linde, A. D., “Supersymmetry and the brane world,” JHEP 02, 005 (2000) [arXiv:hep-th/0001071 [hep-th]].CrossRefGoogle Scholar
Obied, G., Ooguri, H., Spodyneiko, L. and Vafa, C., “De Sitter Space and the Swampland,” [arXiv:1806.08362 [hep-th]].Google Scholar
Ooguri, H., Palti, E., Shiu, G. and Vafa, C., “Distance and de sitter conjectures on the swampland,” Phys. Lett. B 788, 180184 (2019) [arXiv:1810.05506 [hep-th]].CrossRefGoogle Scholar
Witten, E., “A simple proof of the positive energy theorem,” Commun. Math. Phys. 80, 381 (1981)CrossRefGoogle Scholar
Hull, C. M., “The positivity of gravitational energy and global supersymmetry,” Commun. Math. Phys. 90, 545 (1983)CrossRefGoogle Scholar
Becker, K., Becker, M. and Schwarz, J. H., “String theory and M-theory: A modern introduction,” Cambridge Univ. Press 2006.CrossRefGoogle Scholar
Burgess, C. and Moore, G., “The Standard Model: a primer,” Cambridge University Press, 2006.CrossRefGoogle Scholar
Braun, V., He, Y.-H., Ovrut, B. and Pantev, T., “The exact MSSM spectrum from string theory,” JHEP 0605, 043 (2006), hep-th/0512177CrossRefGoogle Scholar
Bouchard, V. and Donagi, R., “An SU(5) heterotic Standard Model,” Phys. Lett. B 633, (2006) 783, hep-th/0512149.CrossRefGoogle Scholar
Binetruy, P., “Supersymmetry: Theory, experiment and cosmology,” Oxford Graduate Texts, Oxford University Press, 2006.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Horatiu Nastase, Universidade Estadual Paulista, São Paulo
  • Book: Introduction to Supergravity and its Applications
  • Online publication: 14 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009445573.034
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Horatiu Nastase, Universidade Estadual Paulista, São Paulo
  • Book: Introduction to Supergravity and its Applications
  • Online publication: 14 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009445573.034
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Horatiu Nastase, Universidade Estadual Paulista, São Paulo
  • Book: Introduction to Supergravity and its Applications
  • Online publication: 14 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009445573.034
Available formats
×