Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T02:42:43.023Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 November 2011

Dmitry E. Pelinovsky
Affiliation:
McMaster University, Ontario
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Localization in Periodic Potentials
From Schrödinger Operators to the Gross–Pitaevskii Equation
, pp. 385 - 394
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ablowitz, M.J.; Clarkson, P.A.; Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University Press, Cambridge, 1991).
[2] Ablowitz, M.J.; Prinari, B.; Trubach, A.D.; Discrete and Continuous Nonlinear Schrödinger Systems (Cambridge University Press, Cambridge, 2004).
[3] Aftalion, A.; Vortices in Bose–Einstein Condensates, Progress in Nonlinear Differential Equations and Their Applications 67 (Birkhäuser, Boston, 2006).
[4] Aftalion, A.; Helfler, B.; “On mathematical models for Bose–Einstein condensates in optical lattices”, Rev. Math. Phys. 21 (2009), 229–278.Google Scholar
[5] Agrawal, G.P.; Kivshar, Yu.S.; Optical Solitons: From Fibers to Photonic Crystals (Academic Press, San Diego, 2003).
[6] Agueev, D.; Pelinovsky, D.; “Modeling of wave resonances in low-contrast photonic crystals”, SIAM J. Appl. Math. 65 (2005), 1101–1129.Google Scholar
[7] Akhmediev, N.; Ankiewicz, A.; Solitons: Nonlinear Pulses and Beams (Kluwer Academic, Dordrecht, 1997).
[8] Al Khawaja, U.; “A comparative analysis of Painlevé, Lax pair, and similarity transformation methods in obtaining the integrability conditions of nonlinear Schrödinger equations”, J. Math. Phys. 51 (2010), 053506 (11 pp.).Google Scholar
[9] Alama, S.; Li, Y.Y.; “Existence of solutions for semilinear elliptic equations with indefinite linear part”, J. Diff. Eqs. 96 (1992), 89–115.Google Scholar
[10] Alfimov, G.L.; Brazhnyi, V.A.; Konotop, V.V.; “On classification of intrinsic localized modes for the discrete nonlinear Schrödinger equation”, Physica D 194 (2004), 127–150.Google Scholar
[11] Angulo Pava, J.; Nonlinear Dispersive Equations (Existence and Stability of Solitary and Periodic Travelling Wave Solutions) (AMS, Providence, RI, 2009).
[12] Azizov, T.Ya.; Iohvidov, I.S.; Elements of the Theory of Linear Operators in Spaces with Indefinite Metric (Nauka, Moscow, 1986) [in Russian].
[13] Bambusi, D.; Sacchetti, A.; “Exponential times in the one-dimensional Gross–Pitaevskii equation with multiple well potential”, Comm. Math. Phys. 275 (2007), 1–36.Google Scholar
[14] Barashenkov, I.V.; Oxtoby, O.F.; Pelinovsky, D.E.; “Translationally invariant discrete kinks from one-dimensional maps”, Phys. Rev. E 72 (2005), 035602(R) (4 pp.).Google Scholar
[15] Barashenkov, I.V.; van Heerden, T.C.; “Exceptional discretizations of the sine-Gordon equation”, Phys. Rev. E 77 (2008), 036601 (9 pp.).Google Scholar
[16] Bao, W.; Du, Q.; “Computing the ground state solution of Bose–Einstein condensates by a normalized gradient flow”, SIAM J. Sci. Comput. 25 (2004), 1674–1697.Google Scholar
[17] Belmonte-Beitia, J.; Pérez-García, V.M.; Vekslerchik, V.; Torres, P. J.; “Lie symmetries, qualitative analysis and exact solutions of nonlinear Schrödinger equations with inhomogeneous nonlinearities”, Discr. Cont. Dyn. Syst. B 9 (2008), 221–233.Google Scholar
[18] Belmonte-Beitia, J.; Pelinovsky, D.E.; “Bifurcation of gap solitons in periodic potentials with a periodic sign-varying nonlinearity coefficient”, Applic. Anal. 89 (2010), 1335–1350.Google Scholar
[19] Belmonte-Beitia, J.; Cuevas, J.; “Solitons for the cubic–quintic nonlinear Schrödinger equation with time- and space-modulated coefficients”, J. Phys. A: Math. Theor. 42 (2009), 165201 (11 pp.).Google Scholar
[20] Bloch, F.; “Über die Quantenmechanik der Electronen in Kristallgittern”, Z. Phys. 52 (1928), 555–600.Google Scholar
[21] Bluman, G.W.; Kumei, S.; Symmetries and Differential Equations (Springer, New York, 1989).
[22] Brugarino, T.; Sciacca, M.; “Integrability of an inhomogeneous nonlinear Schrödinger equation in Bose–Einstein condensates and fiber optics”, J. Math. Phys. 51 (2010), 093503 (18 pp.).Google Scholar
[23] Buffoni, B.; Sere, E.; “A global condition for quasi-random behaviour in a class of conservative systems”, Commun. Pure Appl. Math. 49 (1996), 285–305.Google Scholar
[24] Busch, K.; Schneider, G.; Tkeshelashvili, L.; Uecker, H.; “Justification of the nonlinear Schrödinger equation in spatially periodic media”, Z. Angew. Math. Phys. 57 (2006), 905–939.Google Scholar
[25] Buslaev, V.S.; Perelman, G.S.; “Scattering for the nonlinear Schrödinger equation: states close to a soliton”, St. Petersburg Math. J. 4 (1993), 1111–1142.Google Scholar
[26] Buslaev, V.S.; Perelman, G.S.; “On the stability of solitary waves for nonlinear Schrödinger equations”, Amer. Math. Soc. Transl. 164 (1995), 75–98.Google Scholar
[27] Buslaev, V.S; Sulem, C.; “On asymptotic stability of solitary waves for nonlinear Schrödinger equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), 419–475.Google Scholar
[28] Calvo, D.C.; Akylas, T.R.; “On the formation of bound states by interacting nonlocal solitary waves”, Physica D 101 (1997), 270–288.Google Scholar
[29] Carretero-Gonzáles, R.; Talley, J.D.; Chong, C.; Malomed, B.A.; “Multistable solitons in the cubic–quintic discrete nonlinear Schrödinger equation”, Physica D 216 (2006), 77–89.Google Scholar
[30] Casenawe, T.; Semilinear Schrödinger Equations, Courant Lecture Notes (Courant Institute, New York, 2003).
[31] Champneys, A.R.; Yang, J.; “A scalar nonlocal bifurcation of solitary waves for coupled nonlinear Schrödinger systems”, Nonlinearity 15 (2002), 2165–2192.Google Scholar
[32] Chang, S.M.; Gustafson, S.; Nakanishi, K.; Tsai, T.P.; “Spectra of linearized operators for NLS solitary waves”, SIAM J. Math. Anal. 39 (2007), 1070–1111.Google Scholar
[33] Chugunova, M.; Pelinovsky, D.; “Count of unstable eigenvalues in the generalized eigenvalue problem”, J. Math. Phys. 51 (2010), 052901 (19 pp.).Google Scholar
[34] Chugunova, M.; Pelinovsky, D.; “Two-pulse solutions in the fifth-order KdV equation: rigorous theory and numerical approximations”, Discr. Cont. Dyn. Syst. B 8 (2007), 773–800.Google Scholar
[35] Chugunova, M.; Pelinovsky, D.; “Block-diagonalization of the symmetric first-order coupled-mode system”, SIAM J. Appl. Dyn. Syst. 5 (2006), 66–83.Google Scholar
[36] Chugunova, M.; Pelinovsky, D.; “Spectrum of a non-self-adjoint operator associated with the periodic heat equation”, J. Math. Anal. Appl. 342 (2008), 970–988.Google Scholar
[37] Chugunova, M.; Pelinovsky, D.; “On quadratic eigenvalue problems arising in stability of discrete vortices”, Lin. Alg. Appl. 431 (2009), 962–973.Google Scholar
[38] Colin, Th.; “Rigorous derivation of the nonlinear Schrödinger equation and Davey–Stewartston systems with quadratic hyperbolic systems”, Asymptot. Anal. 31 (2002), 69–91.Google Scholar
[39] Colin, M.; Lannes, D.; “Short pulse approximations in dispersive media”, SIAM J. Math. Anal. 41 (2009), 708–732.Google Scholar
[40] Comech, A.; Pelinovsky, D.; “Purely nonlinear instability of standing waves with minimal energy”, Commun. Pure Appl. Math. 56 (2003), 1565–1607.Google Scholar
[41] Cuccagna, S.; “On asymptotic stability in energy space of ground states of NLS in 1D”, J. Diff. Eqs. 245 (2008), 653–691.Google Scholar
[42] Cuccagna, S.; Pelinovsky, D.; “Bifurcations from the end points of the essential spectrum in the linearized NLS problem”, J. Math. Phys. 46 (2005) 053520 (15 pp.).Google Scholar
[43] Cuccagna, S; Pelinovsky, D.; Vougalter, V.; “Spectra of positive and negative energies in the linearized NLS problem”, Commun. Pure Appl. Math. 58 (2005), 1–29.Google Scholar
[44] Cuccagna, S.; Tarulli, M.; “On asymptotic stability of standing waves of discrete Schrödinger equation in ℤ”, SIAM J. Math. Anal. 41 (2009), 861–885.Google Scholar
[45] Demanet, L.; Schlag, W.; “Numerical verification of a gap condition for a linearized NLS equation”, Nonlinearity 19 (2006), 829–852.Google Scholar
[46] Derks, G.; Gottwald, G.A.; “A robust numerical method to study oscillatory instability of gap solitary waves”, SIAM J. Appl. Dyn. Syst. 4 (2005), 140–158.Google Scholar
[47] Dimassi, M.; Sjöstrand, J.; Spectral Asymptotics in the Semi-classical Limit, London Mathematical Society Lecture Notes 268 (Cambridge University Press, Cambridge, 1999).
[48] Dmitriev, S.V.; Kevrekidis, P.G.; Yoshikawa, N.; “Discrete Klein–Gordon models with static kinks free of the Peierls–Nabarro potential”, J. Phys. A: Math. Gen. 38 (2005), 7617–7627.Google Scholar
[49] Dmitriev, S.V.; Kevrekidis, P.G.; Sukhorukov, A.A.; Yoshikawa, N.; Takeno, S.; “Discrete nonlinear Schrödinger equations free of the Peierls–Nabarro potential”, Phys. Lett. A 356 (2006), 324–332.Google Scholar
[50] Dohnal, D.; Pelinovsky, D.; Schneider, G.; “Coupled-mode equations and gap solitons in a two-dimensional nonlinear elliptic problem with a separable periodic potential”, J. Nonlin. Sci. 19 (2009), 95–131.Google Scholar
[51] Dohnal, D.; Uecker, H.; “Coupled-mode equations and gap solitons for the 2D Gross–Pitaevskii equation with a non-separable periodic potential”, Physica D 238 (2009), 860–879.Google Scholar
[52] Eastham, M.S.; The Spectral Theory of Periodic Differential Equations (Scottish Academic Press, Edinburgh, 1973).
[53] Eckmann, J.-P.; Schneider, G.; “Nonlinear stability of modulated fronts for the Swift–Hohenberg equation”, Comm. Math. Phys. 225 (2002), 361–397.Google Scholar
[54] Esteban, M.J.; Séré, É.; “Stationary states of the nonlinear Dirac equation: a variational approach”, Comm. Math. Phys. 171 (1995), 323–350.Google Scholar
[55] Evans, L.C.; Partial Differential Equations (AMS, Providence, RI, 1998).
[56] Feckan, M.; Topological Degree Approach to Bifurcation Problems (Springer, Heidelberg, 2008).
[58] Floer, A.; Weinstein, A.; “Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential”, J. Funct. Anal. 69 (1986), 397–408.Google Scholar
[59] Floquet, G.; “Sur les équations Différentielles linéaires à coefficients périodique”, Ann. École Norm. Sup. 12 (1883), 47–88.Google Scholar
[60] Friesecke, G.; Pego, R.L.; “Solitary waves on FPU lattices”, Nonlinearity 12 (1999), 1601–1627; 15 (2002), 1343–1359; 17 (2004), 207–227; 17 (2004), 229–251.Google Scholar
[61] Gagnon, L.; Winternitz, P.; “Symmetry classes of variable coefficients nonlinear Schrödinger equations”, J. Phys. A: Math. Gen. 26 (1993), 7061–7076.Google Scholar
[62] Gang, Z.; Sigal, I.M.; “Asymptotic stability of nonlinear Schrödinger equations with potential”, Rev. Math. Phys. 17 (2005), 1143–1207.Google Scholar
[63] Gang, Z.; Sigal, I.M.; “Relaxation of solitons in nonlinear Schrödinger equations with potential”, Adv. Math. 216 (2007), 443–490.Google Scholar
[64] García-Ripoll, J.J.; Pérez-García, V.M.; “Optimizing Schrödinger functionals using Sobolev gradients: applications to quantum mechanics and nonlinear optics”, SIAM J. Sci. Comput. 23 (2001), 1315–1333.Google Scholar
[65] Georgieva, A.; Kriecherbauer, T.; Venakides, S.; “Wave propagation and resonance in a one-dimensional nonlinear discrete periodic medium”, SIAM J. Appl. Math. 60 (1999), 272–294.Google Scholar
[66] Giannoulis, J.; Mielke, A.; “The nonlinear Schrödinger equation as a macroscopic limit for an oscillator chain with cubic nonlinearities”, Nonlinearity 17 (2004), 551–565.Google Scholar
[67] Giannoulis, J.; Mielke, A.; Sparber, C.; “Interaction of modulated pulses in the nonlinear Schrödinger equation with periodic potential”, J. Diff. Eqs. 245 (2008), 939–963.Google Scholar
[68] Giannoulis, J.; Herrmann, M.; Mielke, A.; “Continuum descriptions for the dynamics in discrete lattices: derivation and Justification”, in Analysis, Modeling and Simulation of Multiscale Problems (Springer, Berlin, 2006), pp. 435–466.
[69] Glazman, I.M.; Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators (Israel Program for Scienti.c Translation, Jerusalem, 1965).
[70] Gohberg, I.G.; Krein, M.G.; Introduction to the Theory of Linear Non-self-adjoint Operators, Translations of Mathematical Monographs 18 (AMS, Providence, RI, 1969).
[71] Golubitsky, M.; Schaeffer, D.G.; Singularities and Groups in Bifurcation Theory, Volume 1 (Springer, Berlin, 1985).
[72] Goodman, R.H.; Weinstein, M.I.; Holmes, P.J.; “Nonlinear propagation of light in one-dimensional periodic structures”, J. Nonlin. Sci. 11 (2001), 123–168.Google Scholar
[73] Gorshkov, K.A.; Ostrovsky, L.A.; “Interactions of solitons in nonintegrable systems: Direct perturbation method and applications”, Physica D 3 (1981), 428–438.Google Scholar
[74] Grillakis, M.; Shatah, J.; Strauss, W.; “Stability theory of solitary waves in the presence of symmetry. I”, J. Funct. Anal. 74 (1987), 160–197.Google Scholar
[75] Grillakis, M.; Shatah, J.; Strauss, W.; “Stability theory of solitary waves in the presence of symmetry. II”, J. Funct. Anal. 94 (1990), 308–348.Google Scholar
[76] Grillakis, M.; “Linearized instability for nonlinear Schrödinger and Klein–Gordon equations”, Commun. Pure Appl. Math. 41 (1988), 747–774.Google Scholar
[77] Grillakis, M.; “Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system”, Commun. Pure Appl. Math. 43 (1990), 299–333.Google Scholar
[78] Grimshaw, R.; “Weakly nonlocal solitary waves in a singularly perturbed nonlinear Schrödinger equation”, Stud. Appl. Math. 94 (1995), 257–270.Google Scholar
[79] Groves, M.D.; “Solitary-wave solutions to a class of fifth-order model equations”, Nonlinearity 11 (1998), 341–353.Google Scholar
[80] Groves, M.D.; Schneider, G.; “Modulating pulse solutions for a class of nonlinear wave equations”, Comm. Math. Phys. 219 (2001), 489–522.Google Scholar
[81] Groves, M.D.; Schneider, G.; “Modulating pulse solutions for quasilinear wave equations”, J. Diff. Eqs. 219 (2005), 221–258.Google Scholar
[82] Groves, M.D.; Schneider, G.; “Modulating pulse solutions to quadratic quasilinear wave equations over exponentially long length scales”, Comm. Math. Phys. 278 (2008), 567–625.Google Scholar
[83] Gross, E.P.; “Hydrodynamics of a superfluid concentrate”, J. Math. Phys. 4 (1963), 195–207.Google Scholar
[84] Gurski, K.F.; Kollar, R.; Pego, R.L.; “Slow damping of internal waves in a stably stratified fluid”, Proc. R. Soc. Lond. 460 (2004), 977–994.Google Scholar
[85] Haragus, M.; Kapitula, T.; “On the spectra of periodic waves for infinite-dimensional Hamiltonian systems”, Physica D 237 (2008), 2649–2671.Google Scholar
[86] Helffer, B.; Semi-classical Analysis for the Schrödinger Operator and Applications, Lecture Notes in Mathematics 1336 (Springer, New York, 1988).
[87] Heinz, H.P.; Küpper, T.; Stuart, C.A.; “Existence and bifurcation of solutions for nonlinear perturbations of the periodic Schrödinger equation”, J. Diff. Eqs. 100 (1992), 341–354.Google Scholar
[88] Hernández-Heredero, R.; Levi, D.; “The discrete nonlinear Schrödinger equation and its Lie symmetry reductions”, J. Nonlin. Math. Phys. 10 (2003), 77–94.Google Scholar
[89] Hislop, P.D.; Sigal, I.M.; Introduction to Spectral Theory with Applications to Schrödinger Operators (Springer, New York, 1996).
[90] Ilan, B.; Weinstein, M. I.; “Band-edge solitons, nonlinear Schrödinger/Gross–Pitaevskii equations and effective media”, Multiscale Model. Simul. 8 (2010), 1055–1101.Google Scholar
[91] Iohvidov, I.S.; Krein, M.G.; Langer, H.; Introduction to the Spectral Theory of Operators in Spaces with an Indefinite Metric (Mathematische Forschung, Berlin, 1982).
[92] Iooss, G.; “Travelling waves in the Fermi–Pasta–Ulam lattice”, Nonlinearity 13 (2000), 849–866.Google Scholar
[93] Iooss, G.; Adelmeyer, M.; Topics in Bifurcation Theory and Applications (World Scientific, Singapore, 1998).
[94] Iooss, G.; Kirchgassner, K.; “Travelling waves in a chain of coupled nonlinear oscillators”, Comm. Math. Phys. 211 (2000), 439–464.Google Scholar
[95] Iooss, G.; Pelinovsky, D.; “Normal form for travelling kinks in discrete Klein–Gordon lattices”, Physica D 216 (2006), 327–345.Google Scholar
[96] James, G.; Sire, Y.; “Travelling breathers with exponentially small tails in a chain of nonlinear oscillators”, Comm. Math. Phys. 257 (2005), 51–85.Google Scholar
[97] James, G.; Sire, Y.; “Numerical computation of travelling breathers in Klein–Gordon chains”, Physica D 204 (2005), 15–40.Google Scholar
[98] JeanJean, L.; Tanaka, K.; “A remark on least energy solutions in ℝN”, Proc. Amer. Math. Soc. 131 (2002), 2399–2408.Google Scholar
[99] Jones, C.K.R.T.; “An instability mechanism for radially symmetric standing waves of a nonlinear Schrödinger equation”, J. Diff. Eqs. 71 (1988), 34–62.Google Scholar
[100] Jones, C.K.R.T.; “Instability of standing waves for nonlinear Schrödinger-type equations”, Ergod. Theor. Dynam. Sys. 8 (1988), 119–138.Google Scholar
[101] Kapitula, T.; “Stability of waves in perturbed Hamiltonian systems”, Physica D 156 (2001), 186–200.Google Scholar
[102] Kapitula, T.; Kevrekidis, P.G.; “Stability of waves in discrete systems”, Nonlinearity 14 (2001), 533–566.Google Scholar
[103] Kapitula, T.; Kevrekidis, P.; “Bose–Einstein condensates in the presence of a magnetic trap and optical lattice: two-mode approximation”, Nonlinearity 18 (2005), 2491–2512.Google Scholar
[104] Kapitula, T.; Kevrekidis, P.; Chen, Z.; “Three is a crowd: solitary waves in photorefractive media with three potential wells”, SIAM J. Appl. Dyn. Syst. 5 (2006), 598–633.Google Scholar
[105] Kapitula, T.; Kevrekidis, P.; Sandstede, B.; “Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems”, Physica D 195 (2004), 263–282; Addendum: Physica D 201 (2005), 199–201.Google Scholar
[106] Kapitula, T.; Law, K.J.H.; Kevrekidis, P.G.; “Interaction of excited states in twospecies Bose–Einstein condensates: a case study”, SIAM J. Appl. Dyn. Syst. 9 (2010), 34–61.Google Scholar
[107] Kapitula, T.; Sandstede, B.; “Edge bifurcations for near integrable systems via Evans function techniques”, SIAM J. Math. Anal. 33 (2002), 1117–1143.Google Scholar
[108] Kato, T.; Perturbation Theory for Linear Operators (Springer, New York, 1976).
[109] Kaup, D.J.; “Perturbation theory for solitons in optical fibers”, Phys. Rev. A 42 (1990), 5689–5694.Google Scholar
[110] Kevrekidis, P.G.; The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives, Springer Tracts in Modern Physics 232 (Springer, New York, 2009).
[111] Kevrekidis, P.G.; “On a class of discretizations of Hamiltonian nonlinear partial differential equations”, Physica D 183 (2003), 68–86.Google Scholar
[112] Kevrekidis, P.G.; Pelinovsky, D.E.; Stefanov, A.; “Asymptotic stability of small bound states in the discrete nonlinear Schrödinger equation in one dimension”, SIAM J. Math. Anal. 41 (2009), 2010–2030.Google Scholar
[113] Kirrmann, P.; Schneider, G.; Mielke, A.; “The validity of modulation equations for extended systems with cubic nonlinearities”, Proc. Roy. Soc. Edinburgh A 122 (1992), 85–91.Google Scholar
[114] Khare, A.; Dmitriev, S.V.; Saxena, A.; “Exact moving and stationary solutions of a generalized discrete nonlinear Schrödinger equation”, J. Phys. A: Math. Gen. 40 (2007), 11301–11317.Google Scholar
[115] Klaus, M.; Pelinovsky, D.; Rothos, V.M.; “Evans function for Lax operators with algebraically decaying potentials”, J. Nonlin. Sci. 16 (2006), 1–44.Google Scholar
[116] Klaus, M.; Shaw, K.; “On the eigenvalues of Zakharov–Shabat systems”, SIAM J. Math. Anal. 34 (2003), 759–773.Google Scholar
[117] Kohn, W.; “Analytic properties of Bloch waves and Wannier functions”, Phys. Rev. 115 (1959), 809–821.Google Scholar
[118] Kollar, R.; Pego, R.L.; “Spectral stability of vortices in two-dimensional Bose–Einstein condensates via the Evans function and Krein signature”, Appl. Math. Res. Express 2011 (2011), in press (46 pp.).Google Scholar
[119] Kollar, R.; “Homotopy method for nonlinear eigenvalue pencils with applications”, SIAM J. Math. Anal. 43 (2011), 612–633.Google Scholar
[120] Koukouloyannis, V.; Kevrekidis, P.G.; “On the stability of multibreathers in Klein–Gordon chains”, Nonlinearity 22 (2009), 2269–2285.Google Scholar
[121] Kominis, Y.; Hizanidis, K.; “Power dependent soliton location and stability in complex photonic structures”, Opt. Express 16 (2008), 12124–12138.Google Scholar
[122] Krieger, J.; Schlag, W.; “Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension”, J. Amer. Math. Soc. 19 (2006), 815–920.Google Scholar
[123] Kruskal, M.D.; Segur, H.; “Asymptotics beyond all orders in a model of crystal growth”, Stud. Appl. Math. 85 (1991), 129–181.Google Scholar
[124] Küpper, T.; Stuart, C.A.; “Necessary and sufficient conditions for gap-bifurcation”, Nonlin. Anal. 18 (1992), 893–903.Google Scholar
[125] Lakoba, T.; Yang, J.; “A generalized Petviashvili iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity”, J. Comput. Phys. 226 (2007), 1668–1692.Google Scholar
[126] Lakoba, T.I.; Yang, J.; “A mode elimination technique to improve convergence of iteration methods for finding solitary waves”, J. Comput. Phys. 226 (2007), 1693–1709.Google Scholar
[127] Lakoba, T.I.; “Conjugate gradient method for finding fundamental solitary waves”, Physica D 238 (2009), 2308–2330.Google Scholar
[128] Lafortune, S.; Lega, J.; “Spectral stability of local deformations of an elastic rod: Hamiltonian formalism”, SIAM J. Math. Anal. 36 (2005), 1726–1741.Google Scholar
[129] Lannes, D.; “Dispersive effects for nonlinear geometrical optics with rectification”, Asymptot. Anal. 18 (1998), 111–146.Google Scholar
[130] Lieb, E.H.; Loss, M.; Analysis, 2nd edn (AMS, Providence, RI, 2001).
[131] Lieb, E.H.; Seiringer, R.; Solovej, J.P.; Yngvason, J.; The Mathematics of the Bose Gas and its Condensation, Oberwolfach Seminars 34 (Birkhäuser, Basel, 2005).
[132] Lin, Z.; “Instability of nonlinear dispersive solitary waves”, J. Funct. Anal. 255 (2008), 1191–1224.Google Scholar
[133] Linares, F.; Ponce, G.; Introduction to Nonlinear Dispersive Equations (Springer, New York, 2009).
[134] Lions, P.-L.; “The concentration compactness principle in the calculus of variations. The locally compact case”, Ann. Inst. Henri Poincaré 1 (1984), 223–283.Google Scholar
[135] Lukas, M.; Pelinovsky, D.E.; Kevrekidis, P.G.; “Lyapunov–Schmidt reduction algorithm for three-dimensional discrete vortices”, Physica D 237 (2008), 339–350.Google Scholar
[136] MacKay, R.S.; Aubry, S.; “Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators”, Nonlinearity 7 (1994), 1623–1643.Google Scholar
[137] MacKay, R.S.; “Slow manifolds”, in Energy Localization and Transfer, eds. T., DauxoisA., Litvak-Hinenzon, R.S., MacKay, and A., Spanoudaki (World Scientific, Singapore, 2004), pp. 149–192.
[138] Mallet-Paret, J.; “The Fredholm alternative for functional differential equations of mixed type”, J. Dyn. Diff. Eqs. 11 (1999), 1–47.Google Scholar
[139] Melvin, T.R.O.; Champneys, A.R.; Kevrekidis, P.G.; Cuevas, J.; “Travelling solitary waves in the discrete Schrödinger equation with saturable nonlinearity: existence, stability and dynamics”, Physica D 237 (2008), 551–567.Google Scholar
[140] Melvin, T.R.O.; Champneys, A.R.; Pelinovsky, D.E.; “Discrete travelling solitons in the Salerno model”, SIAM J. Appl. Dyn. Syst. 8 (2009), 689–709.Google Scholar
[141] Mizumachi, T.; “Asymptotic stability of small solitary waves to 1D nonlinear Schrödinger equations with potential”, J. Math. Kyoto Univ. 48 (2008), 471–497.Google Scholar
[142] Morgante, A.M.; Johansson, M.; Kopidakis, G.; Aubry, S.; “Standing wave instabilities in a chain of nonlinear coupled oscillators”, Physica D 162 (2002), 53–94.Google Scholar
[143] Newell, A.C.; Moloney, J.V.; Nonlinear Optics (Westview Press, Boulder, CO, 2003).
[144] Olver, P.J.; Applications of Lie Groups to Differential Equations (Springer, New York, 1993).
[145] Oxtoby, O.F.; Barashenkov, I.V.; “Moving solitons in the discrete nonlinear Schödinger equation”, Phys. Rev. E 76 (2007), 036603 (18 pp.).Google Scholar
[146] Oxtoby, O.F.; Pelinovsky, D.E.; Barashenkov, I.V.; “Travelling kinks in discrete phi-4 models”, Nonlinearity 19 (2006), 217–235.Google Scholar
[147] Pankov, A.; Travelling Waves and Periodic Oscillations in Fermi–Pasta–Ulam Lattices (Imperial College Press, London, 2005).
[148] Pankov, A.; “Periodic nonlinear Schrödinger equation with application to photonic crystals”, Milan J. Math. 73 (2005), 259–287.Google Scholar
[149] Pankov, A.; “Gap solitons in periodic discrete nonlinear Schrödinger equations”, Nonlinearity 19 (2006), 27–40.Google Scholar
[150] Pankov, A.; “Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach”, Discr. Cont. Dyn. Syst. 19 (2007), 419–430.Google Scholar
[151] Pego, R.L.; Warchall, H.A.; “Spectrally stable encapsulated vortices for nonlinear Schrödinger equations”, J. Nonlin. Sci. 12 (2002), 347–394.Google Scholar
[152] Pelinovsky, D.E.; “Asymptotic reductions of the Gross–Pitaevskii equation”, in Emergent Nonlinear Phenomena in Bose–Einstein Condensates eds. P.G., KevrekidisD.J., Franzeskakis, and R., Carretero-Gonzalez (Springer, New York, 2008), pp. 377–398.
[153] Pelinovsky, D.E.; “Inertia law for spectral stability of solitary waves in coupled nonlinear Schrödinger equations”, Proc. Roy. Soc. Lond. A, 461 (2005), 783–812.CrossRefGoogle Scholar
[154] Pelinovsky, D.E.; “Translationally invariant nonlinear Schrödinger lattices”, Nonlinearity 19 (2006), 2695–2716.Google Scholar
[155] Pelinovsky, D.E.; Kevrekidis, P.G.; Frantzeskakis, D.J.; “Stability of discrete solitons in nonlinear Schrödinger lattices”, Physica D 212 (2005), 1–19.Google Scholar
[156] Pelinovsky, D.E.; Kevrekidis, P.G.; Frantzeskakis, D.J.; “Persistence and stability of discrete vortices in nonlinear Schrödinger lattices”, Physica D 212 (2005), 20–53.Google Scholar
[157] Pelinovsky, D.E.; Melvin, T.R.O.; Champneys, A.R.; “One-parameter localized traveling waves in nonlinear Schrödinger lattices”, Physica D 236 (2007), 22–43.Google Scholar
[158] Pelinovsky, D.E.: Rothos, V.M.; “Bifurcations of travelling breathers in the discrete NLS equations”, Physica D 202 (2005), 16–36.Google Scholar
[159] Pelinovsky, D.; Sakovich, A.; “Internal modes of discrete solitons near the anti–continuum limit of the dNLS equation”, Physica D 240 (2011), 265–281.Google Scholar
[160] Pelinovsky, D.E.; Stepanyants, Yu.A.; “Convergence of Petviashvili's iteration method for numerical approximation of stationary solutions of nonlinear wave equations”, SIAM J. Numer. Anal. 42 (2004), 1110–1127.Google Scholar
[161] Pelinovsky, D.E.; Sukhorukov, A.A.; Kivshar, Yu.S.; “Bifurcations and stability of gap solitons in periodic potentials”, Phys. Rev. E 70 (2004), 036618 (17 pp.).Google Scholar
[162] Pelinovsky, D.; Schneider, G.; “Justification of the coupled-mode approximation for a nonlinear elliptic problem with a periodic potential”, Applic. Anal. 86 (2007), 1017–1036.Google Scholar
[163] Pelinovsky, D.; Schneider, G.; “Moving gap solitons in periodic potentials”, Math. Meth. Appl. Sci. 31 (2008), 1739–1760.Google Scholar
[164] Pelinovsky, D.; Schneider, G.; “Bounds on the tight-binding approximation for the Gross–Pitaevskii equation with a periodic potential”, J. Diff. Eqs. 248 (2010), 837–849.Google Scholar
[165] Pelinovsky, D.; Schneider, G.; MacKay, R.; “Justification of the lattice equation for a nonlinear elliptic problem with a periodic potential”, Comm. Math. Phys. 284 (2008), 803–831.Google Scholar
[166] Pelinovsky, D.E.; Yang, J.; “Instabilities of multihump vector solitons in coupled nonlinear Schrödinger equations”, Stud. Appl. Math. 115 (2005), 109–137.Google Scholar
[167] Perelman, G.; “On the formation of singularities in solutions of the critical nonlinear Schrödinger equation”, Ann. Henri Poincaré 2 (2001), 605–673.Google Scholar
[168] Petviashvili, V.I.; “Equation of an extraordinary soliton”, Sov. J. Plasma Phys. 2 (1976), 257–258.Google Scholar
[169] Pillet, C.A.; Wayne, C.E.; “Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations”, J. Diff. Eqs. 141 (1997), 310–326.Google Scholar
[170] Pitaevskii, L.P.; “Vortex lines in an imperfect Bose gas”, Sov. Phys. JETP 13 (1961), 451–454.Google Scholar
[171] Pitaevskii, L.; Stringari, S.; Bose–Einstein Condensation (Oxford University Press, Oxford, 2003).
[172] Pomeau, Y.; Ramani, A.; Grammaticos, B.; “Structural stability of the Korteweg–de Vries solitons under a singular perturbation”, Physica D 31 (1988), 127–134.Google Scholar
[173] Pontryagin, L.S.; “Hermitian operators in spaces with indefinite metric”, Izv. Akad. Nauk SSSR Ser. Mat. 8 (1944), 243–280.Google Scholar
[174] Porter, M.A.; Chugunova, M.; Pelinovsky, D.E.; “Feshbach resonance management of Bose–Einstein condensates in optical lattices”, Phys. Rev. E 74 (2006), 036610 (8 pp.).Google Scholar
[175] Qin, W.-X.; Xiao, X.; “Homoclinic orbits and localized solutions in nonlinear Schrödinger lattices”, Nonlinearity 20 (2007), 2305–2317.Google Scholar
[176] Reed, M.; Simon, B.; Methods of Modern Mathematical Physics. IV. Analysis of Operators (Academic Press, New York, 1978).
[177] Salerno, M.; “Quantum deformations of the discrete nonlinear Schrödinger equation”, Phys. Rev. A 46 (1992), 6856–6859.Google Scholar
[178] Sánchez, A.; Bishop, A.R.; “Collective coordinates and length-scale competition in spatially inhomogeneous soliton-bearing equations”, SIAM Rev. 40 (1998), 579–615.Google Scholar
[179] Sandstede, B.; “Stability of multiple-pulse solutions”, Trans. Amer. Math. Soc. 350 (1998), 429–472.Google Scholar
[180] Scheel, A.; Van Vleck, E.S.; “Lattice differential equations embedded into reaction–Diffusion systems”, Proc. Roy. Soc. Edinburgh A 139 (2009), 193–207.Google Scholar
[181] Schlag, W.; “Stable manifolds for an orbitally unstable NLS”, Ann. Math. 169 (2009), 139–227.Google Scholar
[182] Schneider, G.; “Validity and limitation of the Newell–Whitehead equation”, Math. Nachr. 176 (1995), 249–263.Google Scholar
[183] Schneider, G.; “The validity of generalized Ginzburg–Landau equations”, Math. Meth. Appl. Sci. 19 (1996), 717–736.Google Scholar
[184] Schneider, G.; “Justification of modulated equations for hyperbolic systems via normal forms”, Nonlin. Diff. Eqs. Appl. 5 (1995), 69–82.Google Scholar
[185] Schneider, G.; Uecker, H.; “Nonlinear coupled mode dynamics in hyperbolic and parabolic periodically structured spatially extended systems”, Asymptot. Anal. 28 (2001), 163–180.Google Scholar
[186] Schneider, G.; Wayne, C.E.; “The long-wave limit for the water wave problem. I. The case of zero surface tension”, Commun. Pure Appl. Math. 53 (2000), 1475–1535.Google Scholar
[187] Schneider, G.; Wayne, C.E.; “The rigorous approximation of long-wavelength capillary–gravity waves”, Arch. Ration. Mech. Anal. 162 (2002), 247–285.Google Scholar
[188] Serkin, V.N.; Hasegawa, A.; Belyaeva, T.L.; “Nonautonomous solitons in external potentials”, Phys. Rev. Lett. 98 (2007), 074102 (4 pp.).Google Scholar
[189] Shatah, J.; Strauss, W.; “Instability of nonlinear bound states”, Comm. Math. Phys. 100 (1985), 173–190.Google Scholar
[190] Shi, H.; Zhang, H.; “Existence of gap solitons in periodic discrete nonlinear Schrödinger equations”, J. Math. Anal. Appl. 361 (2010), 411–419.Google Scholar
[191] Sivan, Y.; Fibich, G.; Efremidis, N.K.; Bar-Ad, S.; “Analytic theory of narrow lattice solitons”, Nonlinearity 21 (2008), 509–536.Google Scholar
[192] Skorobogatiy, M.; Yang, J.; Fundamentals of Photonic Crystal Guiding (Cambridge University Press, Cambridge, 2009).
[193] Soffer, A.; Weinstein, M.I.; “Multichannel nonlinear scattering theory for nonintegrable equations”, Comm. Math. Phys. 133 (1990), 119–146.Google Scholar
[194] Soffer, A.; Weinstein, M.I.; “Multichannel nonlinear scattering theory for nonintegrable equations II: The case of anisotropic potentials and data”, J. Diff. Eqs. 98 (1992), 376–390.Google Scholar
[195] Soffer, A.; Weinstein, M.I.; “Selection of the ground state for nonlinear Schrödinger equations”, Rev. Math. Phys. 16 (2004), 977–1071.Google Scholar
[196] Speight, J.M.; “Topological discrete kinks”, Nonlinearity 12 (1999), 1373–1387.Google Scholar
[197] de Sterke, C.M.; Sipe, J.E.; “Gap solitons”, Prog. Opt. 33 (1994), 203–259.Google Scholar
[198] Stuart, C.A.; “Bifurcations into spectral gaps”, Bull. Belg. Math. Soc. Simon Stevin, 1995, suppl. (59 pp.).
[199] Sulem, C.; Sulem, P.L.; The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse (Springer, New York, 1999).
[200] Sylvester, J.J.; “A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares”, Philos. Mag. IV (1852), 138–142.Google Scholar
[201] Tao, T.; Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional Conference Series in Mathematics 106 (AMS, Providence, RI, 2006).
[202] Tao, T.; “Why are solitons stable?”, Bull. Amer. Math. Soc. 46 (2009), 1–33.Google Scholar
[203] Tovbis, A.; Tsuchiya, M.; Jaffe, C.; “Exponential asymptotic expansions and approximations of the unstable and stable manifolds of singularly perturbed systems with the Henon map as an example”, Chaos 8 (1998), 665–681.Google Scholar
[204] Tovbis, A.; “On approximation of stable and unstable manifolds and the Stokes phenomenon”, Contemp. Math. 255 (2000), 199–228.Google Scholar
[205] Tovbis, A.; “Breaking homoclinic connections for a singularly perturbed differential equation and the Stokes phenomenon”, Stud. Appl. Math. 104 (2000), 353–386.Google Scholar
[206] Tovbis, A.; Pelinovsky, D.; “Exact conditions for existence of homoclinic orbits in the fifth-order KdV model”, Nonlinearity 19 (2006), 2277–2312.Google Scholar
[207] Vakhitov, M.G.; Kolokolov, A.A.; “Stationary solutions of the wave equation in a medium with nonlinearity saturation”, Radiophys. Quantum Electron. 16 (1973), 783–789.Google Scholar
[208] Vougalter, V.; “On the negative index theorem for the linearized nonlinear Schrödinger problem”, Canad. Math. Bull. 53 (2010), 737–745.Google Scholar
[209] Vougalter, V.; Pelinovsky, D.; “Eigenvalues of zero energy in the linearized NLS problem”, J. Math. Phys. 47 (2006), 062701 (13 pp.).Google Scholar
[210] Weder, R.; “The Wk,p-continuity of the Schrödinger wave operators on the line”, Comm. Math. Phys. 208 (1999), 507–520.Google Scholar
[211] Weinstein, M.I.; “Liapunov stability of ground states of nonlinear dispersive evolution equations”, Commun. Pure Appl. Math. 39 (1986), 51–68.Google Scholar
[212] Weinstein, M.; “Excitation thresholds for nonlinear localized modes on lattices”, Nonlinearity 12 (1999), 673–691.Google Scholar
[213] Yang, J.; “Classification of the solitary waves in coupled nonlinear Schrödinger equations”, Physica D 108 (1997), 92–112.Google Scholar
[214] Yang, J.; Akylas, T.R.; “Continuous families of embedded solitons in the third-order nonlinear Schrödinger equation”, Stud. Appl. Math. 111 (2003), 359–375.Google Scholar
[215] Yang, J.; Pelinovsky, D.E.; “Stable vortex and dipole vector solitons in a saturable nonlinear medium”, Phys. Rev. E 67 (2003), 016608 (12 pp.).Google Scholar
[216] Yang, J.; Lakoba, T.; “Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations”, Stud. Appl. Math. 118 (2007), 153–197.Google Scholar
[217] Yang, J.; Lakoba, T.; “Accelerated imaginary-time evolution methods for computations of solitary waves”, Stud. Appl. Math. 120 (2008), 265–292.Google Scholar
[218] Yau, H.T.; Tsai, T.P.; “Asymptotic dynamics of nonlinear Schrödinger equations: resonance dominated and radiation dominated solutions”, Commun. Pure Appl. Math. 55 (2002), 1–64.Google Scholar
[219] Yau, H.T.; Tsai, T.P.; “Stable directions for excited states of nonlinear Schrödinger equations”, Comm. Part. Diff. Eqs. 27 (2002), 2363–2402.Google Scholar
[220] Yau, H.T.; Tsai, T.P.; “Relaxation of excited states in nonlinear Schrödinger equations”, Int. Math. Res. Not. 2002 (2002), 1629–1673.Google Scholar
[221] Zelik, S.; Mielke, A.; “Multi-pulse evolution and space-time chaos in dissipative systems”, Mem. Amer. Math. Soc. 198 (2009), 1–97.Google Scholar
[222] Zhang, G.; “Breather solutions of the discrete nonlinear Schrödinger equations with unbounded potentials”, J. Math. Phys. 50 (2009), 013505 (10 pp.).Google Scholar
[223] Zhou, Z.; Yu, J.; Chen, Y.; “On the existence of gap solitons in a periodic discrete nonlinear Schrödinger equation with saturable nonlinearity”, Nonlinearity 23 (2010), 1727–1740.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Dmitry E. Pelinovsky, McMaster University, Ontario
  • Book: Localization in Periodic Potentials
  • Online publication: 05 November 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511997754.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Dmitry E. Pelinovsky, McMaster University, Ontario
  • Book: Localization in Periodic Potentials
  • Online publication: 05 November 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511997754.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Dmitry E. Pelinovsky, McMaster University, Ontario
  • Book: Localization in Periodic Potentials
  • Online publication: 05 November 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511997754.009
Available formats
×