Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T06:45:50.157Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  17 February 2023

Bruce Marsh
Affiliation:
Johns Hopkins University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ablay, G. J., Clemens, J. D., Petford, N. (2008) Large-scale mechanics of fracture-mediated felsic magma intrusion driven by hydraulic inflation and buoyancy pumping. Geological Society, London, Special Publications, 302, 329.Google Scholar
Alexander, C. (1998) The Endurance: Shackleton’s Legendary Antarctic Expedition. Knopf Doubleday Publishing Group, New York, 224 p.Google Scholar
Allibone, A. H., Cox, S. C., Graham, I. J., Smellie, R. W., Johnstone, R. D., Ellery, S. G., Palmer, K. (1993a) Granitoids of the Dry Valleys Area, Southern Victoria Land, Antarctica: Plutons, field relationships, and isotopic dating. New Zealand Journal of Geology and Geophysics, 36, 281297.CrossRefGoogle Scholar
Allibone, A. H., Cox, S. C., Smillie, R. W. (1993b) Granitoids of the Dry Valleys Area, Southern Victoria Land, Antarctica: Geochemistry and evolution along the early Paleozoic Antarctic Craton margin. New Zealand Journal of Geology and Geophysics, 36, 299316.CrossRefGoogle Scholar
Allibone, A. H., Forsyth, P. J., Sewell, R. J., Turnbull, I. M., Bradshaw, M. A. (1991) Geology of the Thundergut area, southern Victoria Land, Antarctica. 1:50 000 miscellaneous series map 21 (with supplementary text). Geology and Geophysics Division. Department of Scientific and Industrial Research, Wellington, New Zealand.Google Scholar
Anderson, D. L. (2007) New Theory of the Earth. Cambridge University Press, Cambridge, 384 p.Google Scholar
Anderson, S. W., Stofan, E. R., Smrekar, S. E., Guest, J. E., Wood, B. (1999) Pulsed inflation of pahoehoe lava flows for flood basalt emplacement. Earth and Planetary Science Letters, 168, 718. (and Reply to Self et al. (2000) discussion of above.)Google Scholar
Aranson, I. S., Tsimring, L. (2009) Granular Patterns. Oxford University Press, Oxford, 343 p.Google Scholar
Armitage, A. B. (1905) Two Years in the Antarctic: Being a Narrative of the British National Antarctic Expedition. Edward Arnold, London, 315 p.Google Scholar
Armstrong, R. L. (1978) K-Ar dating: Late Cenozoic McMurdo Volcanic Group and Dry Valley glacial history, Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics, 21, 685698.Google Scholar
Arndt, N. T., Goldstein, S. L. (1989) An open boundary between lower continental crust and mantle: Its role in crust formation and crustal recycling. Tectonophysics, 161, 201212.CrossRefGoogle Scholar
Arndt, N. T., Guitreau, M., Boullier, A.-M., Le Roex, A., Tommasi, A., Cordier, P., Sobelev, A. (2010) Olivine, and the origin of kimberlite. Journal of Petrology, 51, 573602.Google Scholar
Aubourg, C., Tshoso, G., Le Gall, B., Bertrand, H., Tiercelin, J. J., Kampunzu, A. B., Dyment, J., Modisi, M. (2008) Magma flow revealed by magnetic fabric in the Okavango giant dyke swarm, Karoo igneous province, northern Botswana. Journal of Volcanology and Geothermal Research, 170, 247261.Google Scholar
Bachmann, O., Bergantz, G. W. (2008) Rhyolites and their source mushes across tectonic stings. Journal of Petrology, 49, 22772285.CrossRefGoogle Scholar
Baragar, W. R. A. (1960) Petrology of basaltic rocks in part of the Labrador Trough. Bulletin of the Geological Society of America, 71, 15891644.CrossRefGoogle Scholar
Barrett, P. J. (1991) The Devonian to Triassic Beacon Supergroup of the Transantarctic Mountains and correlatives in other parts of Antarctica. In: Tingey, R. J. (ed.) The Geology of Antarctica. Oxford Monographs on Geology and Geophysics, 17. Oxford University Press, Oxford, 120152.Google Scholar
Barrett, P. J., Elliot, D. H., Lindsay, J. F. (1986) The Beacon Supergroup (Devonian–Triassic) and Ferrar Group (Jurassic) in the Beardmore Glacier area, Antarctica. In: Turner, M. D., Splettstoesser, J. F. (eds.) Geology of the Central Transantarctic Mountains. Antarctic Research Series, 36. American Geophysical Union, Washington, DC, 339428.CrossRefGoogle Scholar
Batiza, R. (1996) Magmatic segmentation of mid-ocean ridges: A review. In: Macleod, C. J., Tyler, P. A., Walker, C. L. (eds.) Tectonic, Magmatic, Hydrothermal and Biological Segmentation of Mid-Ocean Ridges. Geological Society, London, 103130.Google Scholar
Bedard, J. H. (2005) The roots of a flood basalt province: Expedition to Antarctica. Elements, December, 316–317.Google Scholar
Bedard, J. H., Marsh, B. D., Hersum, T. G., Naslund, H. R., Mukasa, S. B. (2007) Large-scale mechanical redistribution of orthopyroxene and plagioclase in the Basement sill, Ferrar Dolerites, McMurdo Dry Valleys, Antarctica: Petrological, mineral–chemical and field evidence for channelized movement of crystals and melt. Journal of Petrology, 48, 22892326.Google Scholar
Benson, W. N. (1916) Report on the petrology of the dolerites collected by the British Antarctic Expedition, 1907–1909. British Antarctic Exped. 1907–9. Repts. Science Investigations, 2(9), 153160.Google Scholar
Bergantz, G. W. (1989) Underplating and partial melting: Implications for melt generation and extraction. Science, 245, 10931095.Google Scholar
Bergantz, G. W., Schleicher, J. M., Burgisser, A. (2017) On the kinematics and dynamics of crystal-rich systems. Journal of Geophysical Research: Solid Earth, 122, 61316159.Google Scholar
Bhattacharji, S. (1967) Mechanics of flow differentiation in ultramafic and mafic sills. Journal of Geology, 75, 101112.Google Scholar
Bickel, L. (2001) Shackleton’s Forgotten Men: The Untold Tragedy of the Endurance Epic. Pimlico Press, London, 241 p.Google Scholar
Boudreau, A. E. (1995) Crystal aging and the formation of fine-scale igneous layering. Contributions to Mineralogy and Petrology, 54, 5569.CrossRefGoogle Scholar
Boudreau, A. E. (2011) The evolution of texture and layering in layered intrusions. International Geology Review, 53, 330353.CrossRefGoogle Scholar
Boudreau, A. E., McBirney, A. R. (1997) The Skaergaard layered series. Part III. Non-dynamic layering. Journal of Petrology, 38, 10031020.Google Scholar
Boudreau, A. E., Simon, A. (2007) Crystallization and degassing in the basement sill, McMurdo Dry Valleys, Antarctica. Journal of Petrology, 48, 13691386.Google Scholar
Bowen, N. L. (1915) The later stages of the evolution of the igneous rocks. Journal of Geology, 23, 191.Google Scholar
Brauns, C. M., Hergt, J. M., Woodhead, J. D., Maas, R. (2000) Os isotopes and the origin of the Tasmanian dolerites. Journal of Petrology, 41, 905918.CrossRefGoogle Scholar
Bray, B., Harrp, K. S., Geist, D., Garcia, M. O., Swarr, G. J., Garman, K. A., Buck, S. A., Parcheta, C. E., Matulattis, I. (2009) Sr and Nd isotopic and geochemical analysis of the Vanda Dike Swarm, Antarctica. AGU Fall Meeting Abstracts, V51C–1685..Google Scholar
Brey, G. P., Kohler, T. (1990) Geothermobarometry in four-phase lherzolites. II. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology, 31, 13531378.Google Scholar
Brook, E. J., Brown, E. T., Kurz, M. D., Ackert, R. P., Raisbeck, G. M., Yiou, F. (1995) Constraints on age, erosion, and uplift of Neogene glacial deposits in the Transantarctic Mountains determined from in-situ cosmogenic 10Be and 26Al. Geology, 23, 10631066.Google Scholar
Brophy, J. G., Marsh, B. D. (1986) On the origin of high-alumina basalts and the mechanics of melt extraction. Journal of Petrology, 27, 763789.Google Scholar
Browne, W. R. (1923) The dolerites of King George Land and Adelie Land. Scientific Reports of the Australasian Antarctic Expedition 1911–1914, 3, 245258.Google Scholar
Brune, S., Christian Heine, C., Pérez-Gussinye, M., Sobolev, S. V. (2014) Rift migration explains continental margin asymmetry and crustal hyper-extension. Nature Communications, 5, 4014.Google Scholar
Buiter, S. J. H., Pfiffner, A. O., Beaumont, C. (2009) Inversion of extensional sedimentary basins: A numerical evaluation of the localisation of shortening. Earth and Planetary Science Letters, 288, 492504.Google Scholar
Bull, C. (2009) Innocents in the Dry Valleys: An Account of the Victoria University of Wellington Antarctic Expedition 1958–1959. Victoria University Press, Wellington, 267 p.Google Scholar
Burgess, S. D., Bowering, S. A., Fleming, T. H., Elliot, D. H. (2015) High precision geochronology links the Ferrar Large Igneous Province with early Jurassic ocean anoxia and biotic crisis. Earth and Planetary Science Letters, 415, 9099.Google Scholar
Cartwright, J., Hansen, D. M. (2006) Magma transport through the crust via interconnected sill complexes. Geology, 34(11), 929932.Google Scholar
Cawthorn, R. G. (2002) Delayed accumulation of plagioclase in the Bushveld complex. Mineralogical Magazine, 66, 881893.CrossRefGoogle Scholar
Chaloner, B., Kenrick, P. (2015) Did Captain Scott’s Terra Nova expedition discover fossil nothofagus in Antarctica? The Linnean, 31(2), 117.Google Scholar
Chaloner, B., Kenrick, P. (2016) Correction. The Linnean, 32(1), 78.Google Scholar
Charrier, A. D. (2010) Emplacement history of the Basement Sill, Antarctica: Injection mechanics of crystal-laden slurries. PhD dissertation, Johns Hopkins University, Baltimore, MD, 300 p.Google Scholar
Charrier, A. D., Marsh, B. D. (2004) Sill emplacement dynamics from regional flow sorting of opx phenocrysts, Basement Sill, McMurdo Dry Valleys, Antarctica. American Geophysical Union Meeting, Montreal, abstract V42A-03.Google Scholar
Charrier, A. D., Marsh, B. D. (2005) Sill emplacement dynamics: Experimental textural modeling of a pulsing, cooling, particle-laden magma as applied to the Basement Sill, McMurdo Dry Valleys, Antarctica. American Geophysical Union Meeting, San Francisco, abstract V23A-0686.Google Scholar
Charrier, A. D., Marsh, B. D. (2021) Linking the pulses of volcanism with subsurface magma dynamics: Part 1. On the interaction of advancing solidification fronts and flow-sorted particle distributions. (to be submitted).Google Scholar
Choi, S. H., Mukasa, S. B., Ravizza, G., Fleming, T. H., Marsh, B. D., Bédard, J. H. J. (2019) Fossil subduction zone origin for magmas in the Ferrar Large Igneous Province, Antarctica: Evidence from PGE and Os isotope systematics in the Basement Sill of the McMurdo Dry Valleys. Earth and Planetary Science Letters, 506, 507519.Google Scholar
Clague, D. A., Dalrymple, G. B. (1987) The Hawaiian-Emperor volcanic chain. Part I, geologic evolution. In: Volcanism in Hawaii. U.S. Geological Survey Prof. Pap., 1350, 554. Washington, DC.Google Scholar
Cohen, L. H., Ito, K., Kennedy, G. C. (1967) Melting and phase relations in an anhydrous basalt to 40 kilobars. American Journal of Science, 265, 475518.Google Scholar
Cooke, W., Warr, S., Huntley, J. M., Ball, R. C. (1996) Particle size segregation in a two-dimensional bed undergoing vertical vibration. Physical Review Letters, 53, 28122822.Google Scholar
Cotton, L. A. (1916) Petrographical notes on some rocks retrieved from the cache at Depot Island, Antarctica. Report of British Antarctic Expedition. 1907–09. Geology, 2(13), 235237.Google Scholar
Cox, K. G. (1988) The Karroo province. In: MacDougall, J. D. (ed.) Continental Flood Basalts. Kluwer, Boston, MA, 239271.Google Scholar
Cox, S. C., Turnbull, I. M., Isaac, M. J., Townsend, D. B., Smith Lyttle, B. (compilers) (2012) Geology of southern Victoria Land, Antarctica. Institute of Geological & Nuclear Sciences 1:250 000 geological map 22. 1 sheet +135 p. Lower Hutt, New Zealand. GNS Science.Google Scholar
Cummins, L. E., Ragland, P. C., Arthur, J. D. (1992) Classification and tectonic implications of early Mesozoic magma types of the Circum-Atlantic. Geological Society of America, Special Paper, 268, 119135.Google Scholar
Currier, R. M. (2011) Three aspects of magma dynamics: Granite partial melting, experiments on laccolith emplacement, and effects of xenocryst re-equilibration. Doctoral Dissertation, Johns Hopkins University, Baltimore, MD, 220 p.Google Scholar
Currier, R. M., Flood, T. P. (2019) The Orestes melt zone, McMurdo Dry Valleys, Antarctica: Spatially distributed melting regimes in a contact melt zone, with implications for the formation of Rapakivi and Albite granites. Journal of Petrology, 60, 20772100.Google Scholar
Currier, R. M., Marsh, B. D. (2015) Mapping real time growth of experimental laccoliths: The effect of solidification on the mechanics of magmatic intrusion. Journal of Volcanology and Geothermal Research, 302, 211224.Google Scholar
Currier, R. M., Marsh, B. D., Mittal, T. (2010) Insights from analog gelatin experiments on the effect of bedding dip on sill morphology and crystal load. AGU Fall Meeting, #V43A-2343.Google Scholar
Dahm, T. (2000) On the shape and velocity of fluid-filled fractures on Earth. Geophysical Journal International, 142, 181192.Google Scholar
David, T. W. E., Priestley, R. E. (1914) Glaciology, physiography, and tectonic geology of South Victoria Land, with short notes on Paleontology by T. Griffith Taylor. British Antarctic Expedition 1907–1909, Reports on scientific investigations. Geology, 1, 299.Google Scholar
Davidson, J. P., Charlier, B., Hora, J. M., Perlroth, R. (2005a) Mineral isochrons and isotopic fingerprinting: Pitfalls and promises. Geology, 33(1), 2932.Google Scholar
Davidson, J. P., Hora, J. M., Garrison, J. M., Dungan, M. A. (2005b) Crustal forensics in arc magmas. Journal of Volcanology and Geothermal Research, 140, 157170.Google Scholar
Davidson, J. P., Morgan, D. J., Charlier, B., Harlou, R., Hora, J. M. (2007) Microsampling and isotopic analysis of igneous rocks: Implications for the study of magmatic systems. Annual Reviews Earth Planetary Sciences, 35, 273311.Google Scholar
Denton, G. H., Sugden, D. E. (2005) Meltwater features that suggest Miocene ice-sheet overriding of the Transantarctic Mountains in Victoria Land, Antarctica. Geografiska Annaler, 87A, 6785.Google Scholar
Denton, G. H., Sugden, D. E., Marchant, D. R., Hall, B. L., Wilch, T. I. (1993) East Antarctic ice sheet sensitivity to pliocene climatic change from a Dry Valleys perspective. Geografiska Annaler, 75(4), 155204.CrossRefGoogle Scholar
Drever, H. L., Johnston, R. (1967) Picritic minor intrusions. In Wyllie, P. J. (ed.) Ultramafic and Related Rocks. John Wiley and Sons, Inc., New York, 7182.Google Scholar
Ducea, M. N. (2011) Fingerprinting orogenic delamination. Geology, 39(2), 191192.Google Scholar
Eales, H. V., Maier, W. D., Teigler, B. (1991) Corroded plagioclase feldspar inclusions in orthopyroxene and olivine of the lower and critical zones, western Bushveld complex. Mineralogical Magazine, 55, 479486.Google Scholar
Elburg, M., Goldberg, A. (2000) Age and geochemistry of Karoo dolerite dykes from northeast Botswana. Journal of African Earth Sciences, 31, 539554.Google Scholar
Elliot, D. H. (1975) Tectonics of Antarctica: A review. American Journal of Science, 275, 45106.Google Scholar
Elliot, D. H. (1996) The Hanson Formation: A new stratigraphical unit in Transantarctic Mountains, Antarctica. Antarctic Science, 8, 389394.Google Scholar
Elliot, D. H. (2013) The geological and tectonic evolution of the Transantarctic Mountains: a review. In Hambrey, M. J., Barker, P. F., Barrett, P. J., Bowman, V., Davies, B., Smellie, J. L., Tranter, M. (eds.) Antarctic Palaeoenvironments and Earth-Surface Processes. Geological Society, London, Special Publication no. 381, 735.Google Scholar
Elliot, D. H., Fleming, T. H. (2000) Weddell triple junction: The principal focus of Ferrar and Karoo magmatism during initial breakup of Gondwana. Geology, 28, 539542.Google Scholar
Elliott, D. H., Fleming, T. H. (2004) Occurrence and dispersal of magmas in the Jurassic Ferrar Large Igneous Province, Antarctica. Gondwana Research, 7, 223237.Google Scholar
Elliot, D. H., Fleming, T. H. (2017) The Ferrar large igneous province: Field and geochemical constraints on supra-crustal (high-level) emplacement of the magmatic system. In Sensarma, S., Storey, B. C. (eds.) Large Igneous Provinces from Gondwana and Adjacent Regions. Geological Society, London, Special Publications, 463.Google Scholar
Elliot, D. H., Fleming, T. H. (2021) Ferrar large igneous province: Petrology, In: Smellie, J. L., Panter, K. S., Geyer, A. (eds.) Volcanism in Antarctica: 200 Million Years of Subduction, Rifting and Continental Break-up. Geological Society, London, Memoir 55, 93120.Google Scholar
Elliot, D. H., Fleming, T. H., Kyle, P. R., Foland, K. A. (1999) Long distance transport of magmas in the Jurassic Ferrar large igneous province, Antarctica. Earth and Planetary Science Letters, 167, 87104.Google Scholar
Elliot, D. H., Hanson, R. E. (2001) Origin of widespread, exceptionally thick basaltic phreatomagmatic tuff breccia in the Middle Jurassic Prebble and Mawson Formations, Antarctica. Journal of Volcanology and Geothermal Research, 111, 183201.CrossRefGoogle Scholar
Elliot, D. H., Larsen, D. (1993) Mesozoic volcanism in the Central Transantarctic Mountains, Antarctica: Depositional environment and tectonic setting. In: Findlay, R. H., Banks, M. R., Veevers, J. J., Unrug, R. (eds.) Gondwana Eight: Assembly, Evolution and Dispersal, Tasmania, Australia. A. A. Balkema, Rotterdam, 397410.Google Scholar
Elliot, D. H., Larsen, D., Fannngs, C. M., Fleming, T. H., Vervoort, J. D. (2016) The lower Jurassic Hanson formation of the Transantarctic mountains: Implications for the Antarctic sector of the Gondwana plate margin. Geological Magazine, 154, 777803.CrossRefGoogle Scholar
England, P. (1983) Constraints on extension of continental lithosphere. Journal of Geophysical Research, 88, 11451152.Google Scholar
Ernst, R. E. (1990) Magma Flow Directions in Two Mafic Proterozoic Dyke Swarms of the Canadian Shield, as Estimated Using Anisotropy of Magnetic Susceptibility Data. Mafic Dykes and Emplacement Mechanisms. Balkema, Rotterdam, 231235.Google Scholar
Ernst, R. E., Baragar, W. R. A. (1992) Evidence from magnetic fabric for the flow pattern of magma in the Mackenzie giant radiating dyke swarm. Nature, 356, 511513.Google Scholar
Ernst, R. E., Buchan, K. L. (1998) Giant radiating dike swarms: Their use in identifying pre-mesozoic large igneous provinces and mantle plumes. In: Mahoney, J. J., Coffin, M. F. (eds.) Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism, Geophysical Monograph 100. American Geophysical Union, Washington, DC, 297334.Google Scholar
Faure, G., Mensing, T. M. (2010) The Transantarctic Mountains: Rocks, Ice, Meteorites and Water. Springer, New York.Google Scholar
Ferrar, H. T. (1907) Report on the field geology of the region explored during the “Discovery” Antarctic Expedition 1901–1904. National Antarctic Expedition, Natural History Reports, 1(1), 1100.Google Scholar
Ferrar, H. T. (1925) The geological history of the Ross Dependency. New Zealand Journal of Science and Technology, 7, 354361.Google Scholar
Ferré, E. C., Bordarier, C., Marsh, J. S. (2002) Magma flow inferred from AMS fabrics in a layered mafic sill, Insizwa, South Africa. Tectonophysics, 354, 123.Google Scholar
Ferré, E. C., Maes, S. M., Butak, K. C. (2009) The magnetic stratification of layered mafic intrusions: Natural examples and numerical models. Lithos, 111, 8394.Google Scholar
Ferris, J. K., Johnson, A., Storey, B. C. (1998) Form and extent of the Dufek intrusion, Antarctica, from newly compiled aeromagnetic data. Earth and Planetary Science Letters, 154, 185202.Google Scholar
Ferris, J. K., Storey, B. C., Vaughan, A. P. M., Kyle, P. R., Jones, P. C. (2003) The Dufek and Forrestal intrusions, Antarctica: A centre for Ferrar Large Igneous Province dike emplacement. Geophysical Research Letters, 30, 1348.Google Scholar
Fiske, R. S., Jackson, E. D. (1972) Orientation and growth of Hawaiian volcanic rifts: The effect of regional structure and gravitational stresses. Proceedings of the Royal Society of London A, 329, 299326.Google Scholar
Fitzgerald, P. G. (1992) The Transantarctic Mountains of southern Victoria Land: The application of apatite fission track analysis to a rift shoulder uplift. Tectonics, 11(3), 634662.CrossRefGoogle Scholar
Flanagan-Brown, R., Marsh, B. D. (2001) Fluid Dynamic Experiments on Mush Column Magmatism. American Geophysical Union Meeting, Spring, Montreal, abstract V23A-0686.Google Scholar
Fleming, T. H., Elliot, D. H., Jones, L. M., Bowman, J. R., Siders, M. A. (1992) Chemical and isotopic variations in an iron-rich lava flow from North Victoria Land, Antarctica: Implications for low-temperature alteration and the petrogenesis of Ferrar magmas. Contributions to Mineralogy & Petrology, 111, 440457.Google Scholar
Fleming, T. H., Foland, K. A., Elliot, D. H. (1995) Isotopic and chemical constraints on the crustal evolution and source signature of Ferrar magmas, North Victoria Land, Antarctica. Contributions to Mineralogy & Petrology, 121, 217236.Google Scholar
Fleming, T. H., Heimann, A., Foland, K. A., Elliot, D. H. (1997) 40Ar/39Ar geochronology of Ferrar Dolerite sills from the Transantarctic Mountains, Antarctica: Implications for the age and origin of the Ferrar magmatic province. Geological Society of America Bulletin, 109, 533546.Google Scholar
Foland, K. A., Marsh, B. D. (2005) Profiles of 87Sr/86Sr and 143Nd/144Nd as indicators of magma dynamics in the Ferrar dolerite magmatic system, McMurdo Dry Valleys, Antarctica (abstract). Amererican Geophysics Union, December.Google Scholar
Ford, A. B. (1976) Stratigraphy of the layered gabbroic Dufek intrusion, Antarctica: U.S. Geological Survey Bulletin, 1405-D, 36 p.Google Scholar
Ford, A. B., Himmelberg, G. R. (1991) Geology and crystallization of the Dufek intrusion. In: Tingey, R. J. (ed.) The Geology of Antarctica, Oxford Monographs on Geology and Geophysics, 17. Clarendon Press, Oxford. 175214.Google Scholar
Ford, A. B., Kistler, R. W., White, L. D. (1986) Strontium and oxygen isotope study of the Dufek intrusion. Antarctic Journal of the United States, 21(5), 6366.Google Scholar
Ford, A. B., Nelson, S. W. (1972) Density of the stratiform Dufek intrusion, Pensacola Mountains, Antarctica. Antarctic Journal of the United States, 7(5), 147149.Google Scholar
Galland, O., Cobbold, P. R., Hallot, E., de Bremmond d’Ars, J., DeLavaud, G. (2006) Use of vegetable oil and silica powder for scale modeling of magmatic intrusion in a deforming brittle crust. Earth and Planetary Science Letters, 243, 786804.Google Scholar
Garcia, M. O., Hulsebosch, T. P., Rhodes, J. M. (1995) Olivine-rich submarine basalts from the southwest rift zone of Mauna Loa volcano: Implications for magmatic processes and geochemical evolution. In: Rhodes, J. M., Lockwood, J. P. (eds.) Mauna Loa Revealed: Structure, Composition, History, and Hazards. American Geophysical Union, Washington, DC, 219239.Google Scholar
Garcia, M. O., Pietruszka, A. J., Rhodes, J. M. (2003) A petrologic perspective of Kilauea volcano’s summit magma reservoir. Journal of Petrology, 44, 23132339.Google Scholar
Gibb, F. G. F. (1968) Flow differentiation in the xenolithic ultrabasic dykes of the Cuillins and the Strathaird Peninsula, Isle of Skye, Scotland. Journal of Petrology, 9, 411443.Google Scholar
Gibb, F. G. F., Henderson, C. M. B. (1996) The Shiant Isles Main Sill: Structure and mineral fractionation trends. Mineralogical Magazine, 60, 6797.Google Scholar
Gottfried, D., Froelich, A. J. (1985) Geochemical and petrologic features of some mesozoic diabase sheets in the Northern Culpeper basin. US Geological Survey Circular, 946, 8690.Google Scholar
Gottfried, D., Froelich, A. J. (1988) Variations of palladium and platinum contents and ratios in selected Early Mesozoic tholeiitic rock associations in the Eastern United States. US Geological Survey Bulletin, 1776, 332340.Google Scholar
Gould, L. M. (1935) Structure of the Queen Maud Mountains, Antarctica. Geological Society of America Bulletin, 46, 973984.Google Scholar
Goulty, N. R. (2005) Emplacement mechanism of the Great Whin and Midland Valley dolerite sills. Journal Geological Society of London, 162, 10471056.Google Scholar
Grapes, R. H., Reid, D. L. (1971) Rhythmic layering and multiple intrusion in the Ferrar Dolerite of South Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics, 14(3), 600604.Google Scholar
Grapes, R. H., Reid, D. L., McPherson, J. G. (1974) Shallow dolerite intrusion and phreatic eruption in the Allan Hills region, Antarctica. New Zealand Journal of Geology and Geophysics, 17(3), 563577.Google Scholar
Green, D. H., Ringwood, A. E. (1967) An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochimica et Cosmochimica Acta, 31, 767833.Google Scholar
Grindley, G. W. (1963) The geology of the Queen Alexandra Range, Beardmore Glacier, Ross dependency, Antarctica; with notes on the correlation of Gondwana sequences. New Zealand Journal of Geology and Geophysics, 6(3), 307347,Google Scholar
Grindley, G. W., Warren, G. (1964) Stratigraphic nomenclature and correlation in the western Ross Sea region, Antarctica. In: Adie, R. J. (ed.) Antarctic Geology. Proceedings of the First International [SCAR] Symposium of Antarctic Geology, Capetown 16–21 September 1963. North Holland, Amsterdam, 314–333.Google Scholar
Gunn, B. M. (1962) Differentiation in Ferrar Dolerites, Antarctica. New Zealand Journal of Geology and Geophysics, 5, 820863.Google Scholar
Gunn, B. M. (1963) Layered intrusions in the Ferrar dolerites. Mineralogical Society of America, Special Paper, 1, 124133.Google Scholar
Gunn, B. M. (1966) Modal and element variation in Antarctic tholeiites. Geochimica et Cosmochimica Acta, 30, 881920.Google Scholar
Gunn, B. M., Warren, G. (1962) Geology of Victoria Land between the Mawson and Mulock Glaciers, Antarctica. Bulletin of the Geological Survey of New Zealand, 71, 157.Google Scholar
Gunnarsson, B., Marsh, B. D., Taylor, H. P. Jr. (1998) Geology and petrology of postglacial silicic lavas from the SW part of the Torfajokull central volcano, Iceland. Journal Volcanology and Geothermal Research, 83, 145.Google Scholar
Hamilton, W. B. (1964) Diabase sheets differentiated by liquid fractionation, TaylorGlacier region, south Victoria Land. In: Adie, R. J. (ed.) Antarctic Geology. North-Holland Publishing Company, Amsterdam, 442454.Google Scholar
Hamilton, W. B. (1965) Diabase sheets of the Taylor Glacier region, Victoria Land, Antarctica. US Geological Survey, Professional Papers, 456-B, 71 p.Google Scholar
Hansen, D. M., Cartwright, J. A. (2006) Saucer-shaped sill with lobate morphology revealed by 3D seismic data: Implications for resolving a shallow-level sill emplacement mechanism, Journal Geological Society, 163, 509523.Google Scholar
Harris, C., le Roux, P., Cochrane, R., Martin, L., Duncan, A. R., Marsh, J. S., le Roex, A. P., Class, C. (2015) The oxygen isotope composition of Karoo and Etendeka picrites: High δ18O mantle or crustal contamination? Contributions to Mineralogy and Petrology, 170, 8.Google Scholar
Harrowfield, D. L. (1995) Vanda Station: History of an Antarctic Outpost 1963–1995. New Zealand Antarctic Society Inc., New Zealand.Google Scholar
Hattori, K., Muehlenbachs, K. (1982) Oxygen isotope ratios of the Icelandic crust. Journal of Geophysical Research, 87, 65596565.Google Scholar
Hayes, B., Lissenberg, C. J., Bedard, J. H., Beard, C. (2015) The geochemical effects of olivine slurry replenishment and dolostone assimilation in the plumbing system of the Franklin Large Igneous Province, Victoria Island, Arctic Canada. Contributions to Mineralogy Petrology, 169, 2248.Google Scholar
Hayman, P., Campbell, I. H., Cas, R. A. F., Squire, R. J., Doutch, D., Outhwaite, M. (2021) Differentiated Archean dolerites: Igneous and emplacement processes that enhance prospectivity for orogenic gold. Economic Geology, 116(8), 19491980.Google Scholar
Heimann, A., Fleming, T. H., Elliot, D. H., Foland, K. A. (1994) A short interval of Jurassic continental flood basalt volcanism in Antarctica as demonstrated by 40Ar/39Ar geochronology. Earth and Planetary Science Letters, 121, 1941.Google Scholar
Heinonen, A., Kivisaari, H., Michallik, R. M. (2020) High-aluminum orthopyroxene megacrysts (HAOM) in the Ahvenisto complex, SE Finland, and the polybaric crystallization of massif-type anorthosites. Contributions to Mineralogy and Petrology, 175, 125.Google Scholar
Heinonen, J. S., Luttinen, A. V., Spera, F. J., Vuori, S. K., Bohrson, W. A. (2021) Serial interaction of primitive magmas with felsic and mafic crust recorded by gabbroic dikes from the Antarctic extension of the Karoo large igneous province. Contributions to Mineralogy and Petrology, 176, 28.CrossRefGoogle Scholar
Hellweg, M. (2000) Physical models for the source of Lascar’s harmonic tremor. Journal of Volcanology and Geothermal Research, 101, 183198.Google Scholar
Henry, C. D. (2009) Uplift of the Sierra Nevada, California. Geology, Geological Society of America, 37, 575576.Google Scholar
Hergt, J. M., Brauns, C. M. (2001) On the origin of Tasmanian dolerites. Australian Journal of Earth Science, 48(4), 543549.Google Scholar
Hergt, J. M., Chappell, B. W., Faure, G., Mensing, T. (1989a) The geochemistry of Jurassic dolerites from Portal Peak, Antarctica. Contributions to Mineralogy and Petrology, 102, 298305.Google Scholar
Hergt, J. M., Chappell, B. W., McCulloch, T. M., Mcdougall, I., Chivas, A. R. (1989b) Geochemical and isotopic constraints on the origin of the Jurassic dolerites of Tasmania. Journal of Petrology, 30, 341383.Google Scholar
Hergt, J. M., Peate, D. W., Hawkesworth, C. J. (1991) The petrogenesis of Mesozoic Gondwana low-Ti flood basalts. Earth and Planetary Science Letters, 105, 134148.Google Scholar
Hersum, T .G., Marsh, B. D., Simon, A. C. (2007) Contact partial melting of granitic country rock, melt segregation, and re-injection as dikes into Ferrar dolerite sills, McMurdo Dry Valleys, Antarctica. Journal of Petrology, 48, 21252148.Google Scholar
Herzberg, C. T., Zhang, J. (1996) Melting experiments on anhydrous peridotite KLB-1: Composition of magmas in the upper mantle and transition zone. Journal of Geophysical Research, 101, 82718295.Google Scholar
Hildreth, W., Moorbath, S. (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology, 98, 455489.Google Scholar
Hill, D. P. (1977) A model for earthquake swarms. Journal of Geophysical Research, 82, 13471352Google Scholar
Himmelberg, G. R., Ford, A. B. (1975) Petrologic studies of the Dufek intrusion-iron-titanium oxides. Antarctic Journal of the United States, 10(5), 241244.Google Scholar
Himmelberg, G. R., Ford, A. B. (1976) Pyroxenes of the Dufek intrusion, Antarctica. Journal of Petrology, 17(2), 219243.Google Scholar
Himmelberg, G. R., Ford, A. B. (1977) Iron-titanium oxides of the Dufek intrusion, Antarctica. American Mineralogist, 62, 623633.Google Scholar
Himmelberg, G. R., Ford, A. B. (1983) Composite inclusion of olivine gabbro and calc-silicate rock in the Dufek intrusion, a possible fragment of concealed contact zone. Antarctic Journal of the United States, 18(5) 14.Google Scholar
Hinze, W. J., Chandler, V. W. (2020) Reviewing the configuration and extent of the Midcontinent rift system. Precambrian Research, 342, 18.Google Scholar
Hirata, T. (1998) Fracturing due to fluid intrusion into viscoelastic materials. Physical Review E, 57(2), 17721779.Google Scholar
Huber, N. K. (1981) Amount and timing of late cenozoic uplift and tilt of the central Sierra Nevada, California: Evidence from the Upper San Joaquin River Basin. Geological Survey Professional Paper, 1197, 28 p.Google Scholar
Hunter, R. H. (1987) Textural equilibrium in layered igneous rocks. In: Parsons, I. (ed.) Origins of Igneous Layering. D. Reidel Publishing Company, Dordrecht, 473503.Google Scholar
Hyndman, D. W., Alt, D. (1987) Radial dikes, laccoliths, and gelatin models. Journal of Geology, 95, 763774.Google Scholar
Irvine, T. N. (1980) Magmatic density currents and cumulus processes. American Journal of Science, 280-A, 158.Google Scholar
Irvine, T. N. (1987) Layering and related structures in the Duke Island and Skaergaard intrusions: Similarities, differences, and origins. In: Parsons, I. (ed.) Origins of Igneous Layering. D. Reidel Publishing Company, Dordrecht, 185245.Google Scholar
Ivanov, A. V., Meffre, S., Thompson, J., Corfu, F., Kamenetsky, V. S., Kamenetsky, M. B., Demonterova, E. I. (2017) Timing and genesis of the Karoo-Ferrar large igneous province: New high precision U-Pb data for Tasmania confirm short duration of the major magmatic pulse. Chemical Geology, 455, 3243.Google Scholar
Jaeger, H. M., Nagel, S. R. (1992) Physics of the granular state. Science, 255, 15231531.Google Scholar
Jaeger, H. M., Nagel, S. R., Behringer, R. P. (1996) The physics of granular materials. Physics Today, 49, 3238.Google Scholar
Jaeger, J. C., Joplin, G. (1955) Rock magnetism and the differentiation of dolerite sills. Geological Society of Australia, 2, 119.Google Scholar
Jerram, D. A. (2005) Hot and cold in the Dry Valleys, Antarctica. Geoscientist, 15(9), 415.Google Scholar
Jerram, D. A., Davis, G. R., Mock, A., Charrier, A., Marsh, B. D. (2010) Quantifying 3D crystal populations, packing and layering in shallow intrusions: A case study from the Basement Sill, Dry Valleys, Antarctica. Geosphere, 6(5), 537548.Google Scholar
Jullien, R., Meakin, P., Pavlovitch, A. (1992) Three-dimensional model for a particle-size segregation by shaking. Physical Review Lettsers, 89, 640643.Google Scholar
Kavanagh, J. L., Menand, T., Sparks, R. S. J. (2006) An experimental investigation of sill formation and propagation in layered elastic media. Earth and Planetary Science Letters, 245, 799813.Google Scholar
Kibler, E. M. (1981) Peterogenesis of two Ferrar Dolerite sills, Roadend Nunatak, Transantartic Mountains, Antarctica. MS Thesis, The Ohio State University, Columbus, OH.Google Scholar
Kistler, R. W., White, L. D., Ford, A. B. (2000) Strontium and oxygen isotopic data and age for the layered gabbroic Dufek intrusion, Antarctica. United States Geological Survey. Open-File Report 00-133, 29 pp.Google Scholar
Klein, E. M., Langmuir, C. H. (1987) Global correlation of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research, 92, 80898115.Google Scholar
Klemme, S., O’Neil, H. StC. (2000) The effect of Cr on the solubility of Al in Orthopyroxene: Experiments and thermodynamic modeling. Contributions to Mineralogy and Petrology, 140, 8498.Google Scholar
Knight, J. B., Jaeger, H. M., Nagel, S. R. (1993) Vibration-induced size separation in granular media: The convection connection. Physical Review Letters, 70, 37283731.Google Scholar
Kogiso, T. (2007) A geochemical and petrological view of mantle plume. In: Yuen, D., Maruyama, S., Karato, S., Windley, B. F. (eds.) Superplumes: Beyond Plate Tectonics. Springer, Dordrecht, 165186.Google Scholar
Komar, P. D. (1976) Phenocryst interactions and the velocity profile of magma flowing through dikes or sills. Geological Society of America, 87, 13361342.Google Scholar
Korenaga, J., Kelemen, P. B. (1998) Melt migration through the oceanic lower crust: A constraint from melt percolation modeling with finite solid diffusion. Earth and Planetary Science Letters, 156, 111.Google Scholar
Korsch, R. J. (1984) The structure of Shapeless Mountain, Antarctica, and its relation to Jurassic igneous activity. New Zealand Journal of Geology and Geophysics, 27, 487504.Google Scholar
Koyaguchi, T., Takada, A. (1994) An experimental study on the formation of composite intrusions from zoned magma chambers. Journal of Volcanology and Geothermal Research, 59, 261267.Google Scholar
Kyle, P. R., Cole, J. W. (1974) Structural control of volcanism in the McMurdo volcanic group, Antarctica. Bulletin Volcanologique, 38, 1625.Google Scholar
Kyle, P. R., Pankhurst, R. J., Bowman, J. R. (1983) Isotopic and chemical variations in Kirkpatrick Basalt group rocks from southern Victoria Land. In: Oliver, R. L., James, P. R., Jago, J. B. (eds.) Antarctic Earth Science. Australian Academy of Sciences, Canberra, 234237.Google Scholar
Lansing, A. (1959) Endurance: Shackleton’s Incredible Voyage. Hodder and Stoughton, London.Google Scholar
Larson, P. B., Marsh, B. D. (2005) Oxygen isotopes of orthopyroxene and plagioclase from the dais layered intrusion of the Ferrar dolerite magmatic system; McMurdo Dry Valleys, Antarctica (abst.). American Geophysics Union, December.Google Scholar
Leat, P. T. (2008) On the long-distance transport of Ferrar magmas. Geological Society, London, Special Publications, 302, 4561.Google Scholar
Lewis, A. R., Marchant, D. R., Kowalewski, D .E. III, Baldwin, S. L., Webb, L. E. (2007) The age and origin of the Labyrinth, western Dry Valleys, Antarctica: Evidence for extensive middle Miocene subglacial floods and freshwater discharge to the Southern Ocean. Geology, 34(7), 513516.Google Scholar
Lister, J. R. (1991) Steady solutions for feeder dykes in a density-stratified lithosphere. Earth and Planetary Science Letters, 107, 233242.Google Scholar
Macdonald, K. C. (1986) The crest of the mid-atlantic ridge: Models for crustal generation processes and tectonics. In: Vogt, P. R., Tucholke, B. E. (eds.) The Western North Atlantic Region. The Geology of North America. Geological Society of America, 5168.Google Scholar
Macdonald, K. C. (2019) Mid-Ocean Ridge Tectonics, Volcanism, and Geomorphology. Encyclopedia of Ocean Sciences, 3rd ed. Elsevier, Boulder, CO, 405419.Google Scholar
MacLeod, C., Tyler, P. A., Tyler, P. A., Walker, C. (eds.) (1996) Tectonic, magmatic, hydrothermal and biological segmentation of mid-ocean ridges. Geological Society Special Publication No. 118. Geological Society of London, 288 pp.Google Scholar
Major, J. J., Pierson, T. C. (1992) Debris flow rheology: Experimental analysis of fine-grained slurries. Water Resources Research, 28, 841857.CrossRefGoogle Scholar
Makse, H. A., Havlin, S., King, P. R., Stanley, H. E. (1997) Spontaneous stratification in granular mixtures. Nature, 286, 379382.Google Scholar
Malthe-Sørenssen, A., Planke, S., Svensen, H., Jamtveit, B. (2004 ) Formation of saucer-shaped sills. In: Breitkreuz, C., Petford, N. (eds.) Physical Geology of High-Level Magmatic Systems. Geological Society Special Publication, London, 234, 215227.Google Scholar
Mangan, M. T, Marsh, B. D. (1992) Solidification front fractionation in phenocryst-free sheet-like magma bodies. Journal of Geology, 100, 605620.Google Scholar
Mangan, M. T., Marsh, B. D., Froelich, A. J., Gottfried, D. (1993) Emplacement and differentiation of the York Haven diabase sheet, Pennsylvania. Journal of Petrology, 34, 12711302.Google Scholar
Marsh, B. D. (1976) Some Aleutian andesites: Their nature and source. Journal of Geology, 84, 2745.Google Scholar
Marsh, B. D. (1979a) Island Arc Volcanism. American Scientist, 67, 61172.Google Scholar
Marsh, B. D. (1979b) Island Arc Development: Some observations, experiments and speculations. Journal of Geology, 87, 687713.Google Scholar
Marsh, B. D. (1981) On the crystallinity, probability of occurrence, and rheology of lava and magma. Contributions to Mineralogy and Petrology, 78, 8598.Google Scholar
Marsh, B. D. (1982) On the mechanics of igneous diapirism, stoping, and zone melting. American Journal of Science, 282, 808855.Google Scholar
Marsh, B. D. (1984) Mechanics and energetics of magma formation and ascension. In: Boyd, J. (ed.) Explosive Volcanism, Inception, Evolution, and Hazards. National Academies Press, Washington, DC, 6783.Google Scholar
Marsh, B. D. (1989a) Magma chambers. Annual Reviews of Earth and Planetary Sciences, 17, 439474.Google Scholar
Marsh, B. D. (1989b) On convective style and vigor in sheet-like magma chambers. Journal of Petrology, 30(3), 479530.Google Scholar
Marsh, B. D. (1996) Solidification fronts and magmatic evolution. Hallimond Lecture. Mineralogical Magazine, 60, 540.Google Scholar
Marsh, B. D. (2002) On bimodal differentiation by solidification front instability in basaltic magmas, I: Basic mechanics. Geochimica et Cosmochimica Acta, 66, 22112229.Google Scholar
Marsh, B. D. (2004) A magmatic mush column Rosetta Stone: The McMurdo Dry Valleys of Antarctica. EOS Transactions American Geophysical Union, 85(47), 497502.Google Scholar
Marsh, B. D. (2006) Dynamics of magma chambers. Elements, 2, 287292.Google Scholar
Marsh, B. D. (2013) On some fundamentals of igneous petrology. Contributions to Mineralogy and Petrology, 166, 665690.Google Scholar
Marsh, B. D. (2015) Magmatism, magma, and magma chambers. In Watts, A. B. (ed.) Treatise on Geophysics, Earth’s Crust, 2nd ed. Elsevier, Amsterdam, Chapter 6, 276333.Google Scholar
Marsh, B. D., Coleman, N. M. (2009) Magma flow and interaction with waste packages in a geologic repository at Yucca Mountain, Nevada. Journal of Volcanology and Geothermal Research, 182, 7696.Google Scholar
Marsh, B. D., Gunnarsson, B., Congdon, R., Carmody, R. (1991) Hawaiian basalt and Icelandic rhyolite: Indicators of fundamental igneous processes. Geologische Rundschau, 80, 481510.Google Scholar
Mathez, E. A. (2005) Cold fire in Antarctica’s Dry Valleys. Natural History, July/August, 26–31.Google Scholar
Mathez, E. A, McCallum, I. S., Marsh, B. D. (2005) On the mechanism of layering in the Dais Intrusion, McMurdo Dry Valleys, Antarctica. American Geophysical Union Meeting, San Francisco, abstract V23A-0686.Google Scholar
Mawson, D. (1916) Petrology of rock collections from the mainland of South Victoria Land. Report of British Antarctic Expedition. 1907–09. Geology, 2(13), 201234.Google Scholar
McDougal, I. (1962) Differentiation of the Tasmanian dolerites: Red Hill dolerite–granophyre association. Geological Society of America Bulletin, 73, 279316.Google Scholar
McElroy, C. T., Rose, G. (1987) Geology of the Beacon Heights area, Southern Victoria Land, Antarctica. 1:50–000. New Zealand Geological Survey miscellaneous series map 15 (1 sheet) and notes. Wellington: Department of Scientific and Industrial Research.Google Scholar
McGinnis, L. D. (1981) Dry Valley drilling project. Antarctic Research Series. American Geophysical Union, 33, 465 p.Google Scholar
McKelvey, B. C., Webb, P. N. (1959) Geological investigations in South Victoria Land, Antarctica. Part 2; geology of Upper Taylor Glacier Region. New Zealand Journal of Geology and Geophysics, 2(4), 718728.Google Scholar
McKelvey, B. C., Webb, P. N. (1962) Geological investigations in southern Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics, 5(1), 143162.Google Scholar
McKelvey, B. C., Webb, P. N., Gorton, M. P., Kohn, B. P. (1970) Stratigraphy of the Beacon Supergroup between the Olympus and Boomerang ranges, south Victoria Land, Antarctica. Nature, 227: 11261128.Google Scholar
McKelvey, B. C., Webb, P. N., Kohn, B. P. (1977) Stratigraphy of the Taylor and Lower Victoria Groups (Beacon Supergroup) between the Mackay Glacier and Boomerang Range, Antarctica. New Zealand Journal of Geology and Geophysics, 20, 813863.Google Scholar
McKenzie, D. (1984) The generation and compaction of partially molten rock. Journal of Petrology, 25, 713765.Google Scholar
Menand, T. (2008) The mechanics and dynamics of sills in layered elastic rocks and their implications for the growth of laccoliths and other igneous complexes. Earth and Planetary Science Letters, 267, 9399.Google Scholar
Mensing, T. M., Faure, G., Jones, L. M., Bowman, J. R., Hoefs, J. (1984) Petrogenesis of the Kirkpatrick Basalt, Solo Nunatak, northern Victoria Land, Antarctica, based on isotopic compositions of strontium, oxygen, and sulfur. Contributions to Mineralogy and Petrology, 87, 101108.Google Scholar
Middleton, G. V. (1970) Experimental studies related to problems of flysch sedimentation. The Geological Association of Canada, Special Paper Number 7, 253–272.Google Scholar
Middleton, G. V. (1993) Sediment deposition from turbidity currents. In: Wetherill, G. W., Albee, A. L., Burke, K. C. (eds.) Annual Review of Earth and Planetary Sciences. Annual Reviews, Inc., Palo Alto, CA, 21, 89114.Google Scholar
Mix, H. T., Ibarra, D. E., Mulch, A., Graham, S. A., Chamberlain, C. P. (2016) A hot and high Eocene Sierra Nevada. Geological Society of America Bulletin, 128, 531542.Google Scholar
Molzahn, M., Reisberg, L., Worner, G. (1996) Os, Sr, Nd, Pb, O isotope and trace element data from the Ferrar flood basalts, Antarctica: Evidence for an enriched subcontinental lithospheric source. Earth and Planetary Science Letters, 144, 529546.Google Scholar
Moritomi, H., Iwase, T., Chiba, T. (1982) A comprehensive interpretation of solid layer inversion in liquid fluidised beds. Chemical Engineering Science, 37, 17511757.Google Scholar
Moritomi, H., Yamagishi, T., Chiba, T. (1986) Prediction of complete mixing of liquid-fluidized binary solid particles. Chemical Engineering Science, 41, 297305.Google Scholar
Morrison, A. D., Reay, A. (1995) Geochemistry of the Ferrar dolerite sills and dykes at Terra Cotta Mountain, south Victoria Land, Antarctica. Antarctic Science, 7, 7385.Google Scholar
Mudrey, M. G. Jr., Torii, T., Harris, H. (1975) Geology of DVDP 13 – Don Juan Pond. In: Mudrey, M. G. Jr., McGinnis, L. D. (eds.) Dry Valley Drilling Project, Bulletin No. 5, Northern Illinois University Press, DeKalb, IL, 7893.Google Scholar
Muirhead, J. D., Airoldi, G., Rowland, J. V., White, J. D. L. (2012) Interconnected sills and inclined sheet intrusions control shallow magma transport in the Ferrar large igneous province, Antarctica. Bulletin Geological Society of America, 124, 162180.Google Scholar
Muirhead, J. D., Airoldi, G., White, J. D. L., Rowland, J. V. (2014) Cracking the lid: Sill-fed dikes are the likely feeders of flood basalt eruptions. Earth and Planetary Science Letters, 406, 187197,Google Scholar
Murata, K. J., Richter, D. H. (1966) The settling of olivine in Kilauean magma as shown by the lavas of the 1959 eruption. American Journal of Science, 264, 194203.Google Scholar
Nasr-el-Din, H. A., Shook, C. A., Colwell, J. (1987) The lateral variation of solids concentration in horizontal slurry pipeline flow. International Journal of Multiphase Flow, 13(5), 661670.Google Scholar
Nedderman, R. (1992) Statics and Kinematics of Granular Materials. Cambridge University Press, Cambridge.Google Scholar
Neumann, E. R., Svensen, H., Galerne, C. Y., Plamke, S. (2011) Multistage evolution of dolerites in the Karoo Large Igneous Province, central South Africa. Journal of Petrology, 52, 959984.Google Scholar
Nicolas, A. (1995) The Mid-Oceanic Ridges: Mountains Below Sea Level. Springer-Verlag, Berlin.Google Scholar
Oskarsson, N., Sigvaldason, G. E., Steinthorsson, S. (1982) A dynamic model of rift zone petrogenesis and the regional petrology of Iceland. Journal of Petrology, 23, 2874.Google Scholar
Ottino, J. M., Khakhar, D. V. (2000) Mixing and segregation of granular materials. Annual Review of Fluid Mechanics, 32, 5591.Google Scholar
Pertermann, M., Hirschmann, M. M. (2003a) Partial melting experiments on a MORB-like pyroxenite between 2 and 3GPa: Constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. Journal of Geophysical Research, 108, 21252142.Google Scholar
Pertermann, M., Hirschmann, M. M. (2003b) Anhydrous partial melting experiments on MORB-like eclogite: Phase relations, phase compositions and mineral-melt partitioning of major elements at 2–3GPa. Journal of Petrology, 44, 21732201.Google Scholar
Petford, N., Mirhadizadeh, S. (2017) Image-based modeling of lateral magma flow: The Basement Sill, Antarctica. Royal Society Open Science, 4, 161083.Google Scholar
Philpotts, A. R. (1992) A model for emplacement of magma in the Mesozoic Hartford basin. Geological Society of America, Special Paper, 268, 137148.Google Scholar
Philpotts, A. R., Asher, P. M. (1993). Wallrock melting and reaction effects along the Higganum Diabase Dike in Connecticut: Contamination of a continental flood basalt feeder. Journal of Petrology, 34, 10291058.Google Scholar
Philpotts, A. R., Carroll, M., Hill, J. M. (1996) Crystal-mush compaction and the origin of pegmatitic segregation sheets in a thick flood-basalt flow in the Mesozoic Hartford Basin, Connecticut. Journal of Petrology, 37, 811836.Google Scholar
Philpotts, A. R., Martello, A. (1986) Diabase feeder dikes for the Mesozoic basalts in southern New England. American Journal of Science, 284, 105126.Google Scholar
Philpotts, A. R., Philpotts, D. E. (2005) Crystal-mush compaction in the Cohassett flood-basalt flow, Hanford, Washington. Journal of Volcanology and Geothermal Research, 145, 192206.Google Scholar
Polteau, S., Ferre, E. C., Planke, S., Neumann, E. R., Chevallier, L. (2008a) How are saucer-shaped sills emplaced? Constraints from the Golden Valley Sill, South Africa. Journal of Geophysical Research, 113, B12104.Google Scholar
Polteau, S., Mazzini, A. Galland, O., Planke, S., Malthe-Sorenssen, A. (2008b) Saucer-shaped intrusions: Occurrences, emplacement and implications. Earth and Planetary Science Letters, 261, 195204.Google Scholar
Pouliquen, O., Delour, J., Savage, S. B. (1997) Fingering in granular flows. Nature, 386, 816817.Google Scholar
Presnall, D. C., Hoover, J. D. (1987) High pressure phase equilibrium constraints on the origin of mid-ocean ridge basalts. In: Mysen, B. O. (ed.) Magmatic Processes: Physicochemical Principles. Geochemical Society Special Publication, Washington, DC, No 1, 7590.Google Scholar
Prior, G. T. (1899) Petrographical notes on the rock specimens collected in Antarctic regions during the voyage of H.M.S. Erebus and Terror under Sir James Clark Ross in 1839–1943. Mineralogical Magazine, 12, 6991.Google Scholar
Prior, G. T. (1902) Report on the rock specimens collected by the Southern Cross Antarctic Expedition. Report on Southern Cross Antarctic Expedition. British Museum London, 321–332.Google Scholar
Prior, G. T. (1907) Report on the rock specimens collected during the “Discovery” Antarctic Expedition, 1901–4. National Antarctic Expedition, 1901–4. Natural History, 1, Geology (Field Geology: Petrography), 101140.Google Scholar
Puffer, J. H., Philpotts, A. R. (1988) Eastern North American quartz tholeiites: Geochemistry and petrology. In: Manspeizer, W. (ed.) Triassic–Jurassic Rifting. Elsevier, Amsterdam, 579605.Google Scholar
Putirka, K., Condit, C. D. (2003) A cross-section of a magma conduit system at the margin of the Colorado Plateau. Geology, 31, 701704.Google Scholar
Pyne, A. R. (1984) Geology of the Mt. Fleming area, South Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics, 27, 505512.Google Scholar
Ragland, P. C., Cummins, L. E., Arthur, J. D. (1992) Compositional patterns for early Mesozoic diabases from South Carolina to Central Virginia. Geological Society of America, Special Paper, 268, 309332.Google Scholar
Riffenburgh, B. (2004) Shackleton’s forgotten expedition: The voyage of the Nimrod. Bloomsbury, London.Google Scholar
Riley, T. R., Leat, P. T., Curtis, M. L., Millar, I. L., Duncan, R. A., Fazel, A. (2006) Early–Middle Jurassic dolerite dykes from Western Dronning Maud Land (Antarctica): Identifying mantle sources in the Karoo Large Igneous Province. Journal of Petrology, 46, 1489-1524.Google Scholar
Ringwood, A. E. (1975) Composition and Petrology of the Earth’s Mantle. McGraw-Hill, New York.Google Scholar
Rivalta, E., Dahm, T. (2006) Acceleration of buoyancy-driven fractures and magmatic dikes beneath the free surface. Geophysics Journal International, 166, 14241439.Google Scholar
Roper, S. M., Lister, J. R. (2005) Buoyancy-driven crack propagation from an overpressured source. Journal of Fluid Mechanics, 536, 7998.Google Scholar
Ross, J. C. (1847) A Voyage of Discovery and Research in the Southern and Antarctic Regions during the Years 1939–1843, 2 vols. Spttiswoode and Shaw, London.Google Scholar
Ross, P. S., White, J. D. L., McClintock, M. (2008) Geological evolution of the Coombs–Allan Hills area, Ferrar large igneous province, Antarctica: Debris avalanches, mafic pyroclastic density currents, phreatocauldrons. Journal of Volcanology and Geothermal Research, 172, 3860.Google Scholar
Rubin, A. M. (1991) Dikes vs. Diapirs in viscoelastic rock. Earth and Planetary Science Letters, 119, 641659.Google Scholar
Rudnick, R. L. (1995) Making continental crust. Nature, 378, 571578.Google Scholar
Rudnick, R. L., Gao, S. (2005) Composition of the continental crust. In: Rudnick, R. L. (ed.) The Crust, Treatise on Geochemistry, vol.3. Elsevier, Amsterdam, 164.Google Scholar
Ryan, M. P. (1987) Elasticity and contractancy of Hawaiian olivine tholeiite and its role in the stability and structural evolution of subcaldera magma reservoirs and rift system. Volcanism in Hawaii. US Geological Survey Professional Paper, 1350, 13951447.Google Scholar
Ryan, M. P. (1988) The mechanisms and 3-dimensional internal structure of active magmatic systems – Kilauea Volcano, Hawaii. Journal of Geophysical Research, Solid Earth & Planets, 93, 42134248.Google Scholar
Ryan, M. P. (1993) Neutral buoyancy and the structure of midocean ridge magma reservoirs. Journal of Geophysical Research, Solid Earth, 98, 2232122338.Google Scholar
Savage, S. B., Lun, C. K. K. (1988) Particle size segregation in inclined chute flow of dry cohesionless granular solids. Journal of Fluid Mechanics, 189, 311335.Google Scholar
Schouten, H., Klitgord, K. D., Whitehead, J. A. (1985) Segmentation of mid-ocean ridges. Nature, 387, 225229.Google Scholar
Scott, R. F. (1905) The Voyage of the ‘Discovery’, 2 vols. Smith, Elder & Co., London.Google Scholar
Self, S., Keszthely, L. P., Thordarson, T. (2000) Discussion of: ‘Pulsed inflation of pahoehoe lava flows for flood basalt emplacement’, by Anderson, S. W., Stofan, E. R., Smrekar, S. E., Guest, J. E., Wood, B. [Earth Planet. Sci. Lett. 168 (1999) 7–18]. Earth and Planetary Science Letters, 179, 421423.Google Scholar
Self, S., Thordarson, T, Keszthely, L. P., et al. (1996) A new model for the emplacement of Columbia River basalts as large inflated pahoehoe lava flow fields. Geophysical Research Letters, 25, 26892692.Google Scholar
Seward, A. C. (1914) Antarctic fossil plants. In: British Antarctic (“Terra Nova”) expedition, 1910. Natural History Reports Geology 1, 1. London: British Museum (Natural History): 1–49Google Scholar
Shackleton, E. H. (1907) The Heart of the Antarctic: The Farthest South Expedition 1907–1909, 2 vols. William Heinemann, London.Google Scholar
Simkin, T. (1967) Flow differentiation in the picritic sills of North Skye. In: Wyllie, P. J. (ed.) Ultramafic and Related Rocks. John Wiley and Sons, New York, 6469.Google Scholar
Simkin, T. (1993) Terrestrial volcanism in space and time. Annual Reviews of Earth and Planetary Science, 21, 427452.Google Scholar
Sinton, J. M., Detrick, R. S. (1992) Mid-ocean ridge magma chambers. Journal of Geophysical Research, 97, 197216.Google Scholar
Skelton, A. D., Graham, C. M., Bickle, M. J. (1995) Lithological and structural controls on regional 3-D fluid flow patterns during greenschist facies metamorphism of the Dalradian of the SW Scottish Highlands. Journal of Petrology, 36(2), 563586.Google Scholar
Smith, W. C. (1924) The plutonic and hypabyssal rocks of South Victoria Land. Natural History Report, British Antarctic Terra Nova Expedition 1910–1913. Geology, 1, 167227.Google Scholar
Spandler, C., Yaxley, G., Green, D. H., Rosenthal, A. (2007) Phase relations and melting of anhydrous K-bearing eclogite from 1200 to 1600°C and 3 to 5 GPa. Journal of Petrology, 49(4), 771795.Google Scholar
Stewart, D. Jr. (1951) On the mineralogy of Antarctica. American Mineralogist, 36, 362367.Google Scholar
Stolper, E. (1980) A phase diagram for mid-ocean ridge basalts: Preliminary results and implications for petrogenesis: Contributions to Mineralogy and Petrology, 74, 1327.Google Scholar
Storey, B. C. (1995) The role of mantle plumes in continental breakup: Case histories from Gondwanaland. Nature, 377, 301308.Google Scholar
Stroujkova, A., Malin, P. (2001) Multiple ruptures for Long Valley microearthquakes: A link to volcanic tremor? Journal of Volcanology and Geothermal Energy, 106, 123143.Google Scholar
Stump, E. (1995) The Ross Orogen of the Transantarctic Mountains. Cambridge University Press, New York.Google Scholar
Sugden, D., Denton, G. (2004) Cenozoic landscape evolution of the Convoy Range to MacKay Glacier area, Transantarctic Mountains: Onshore to offshore synthesis. Geological Society of America Bulletin, 116, 840857.Google Scholar
Sushchevskaya, N. M., Belyatsky, B. V., Leichenkov, G. L., Laiba, A. A. (2009) Evolution of the Karoo–Maud Mantle Plume in Antarctica and its influence on the magmatism of the early stages of Indian Ocean opening. Geochemistry International, 47, 117.Google Scholar
Takada, A. (1994) Development of a subvolcanic structure by the interaction of liquid-filled cracks. Journal of Volcanology and Geothermal Reaearch, 62, 207224.Google Scholar
Taylor, G. (1916) With Scott: The Silver Lining. Smith, Elder & Co., London. (reprinted, 1997, Bluntisham – Erskine Press, Norfolk.)Google Scholar
Taylor, G. (1922) The Physiography of the McMurdo Sound and Granite Harbor Region. Harrison & Sons, London.Google Scholar
Taylor, H. P. Jr. (1977) Stable isotope studies of spreading centers and their bearing on the origin of granophyres and plagiogranites. Colloques Internationaux du Centre National de la Recherchie Scientifique, 149–165.Google Scholar
Taylor, H. P. Jr. (1987) Comparison of hydrothermal systems in layered gabbros and granites and the origin of low 18O magmas. In: Mysen, B.O. (ed.) Magmatic Processes: Physiochemical Principles. The Geochemical Society Special Publication, Washington, DC, No. 1, 337357.Google Scholar
Teagle, D. A. H., Ildefonse, B., Blum, P, IODP Expedition 335 Scientists (2012) IODP Expedition 335: Deep Sampling in ODP Hole 1256D. Scientific Drilling, no. 13, April, 28–34.Google Scholar
Thompson, G. A. (1998) Deep mantle plumes and geoscience vision. GSA Today, April, 17–25.Google Scholar
Thomson, K., Hutton, D. H. W. (2004) Geometry and growth of sill complexes: Insights using 3D seismic from the North Rockall trough. Bulletin of Volcanology, 66, 364375.Google Scholar
Turnbull, I. M., Allibone, A. H., Forsyth, P. J., Heron, D. W. (1994) Geology of the Bull Pass - St. Johns Range Area, Southern Victoria Land, Antarctica. Institute of Geological & Nuclear Sciences Geological Map 14. Institute of Geological & Nuclear Sciences Limited, Lower Hutt, New Zealand.Google Scholar
Tyler-Lewis, K. (2006) The Lost Men: The Harrowing Saga of Shackleton’s Ross Sea Party. Penguin Books, New York.Google Scholar
Vallance, J. W. (1994) Experimental and field studies related to the behavior of granular mass flows and the characteristics of their deposits. Unpublished PhD Dissertation, Michigan Technological University, 197 p.Google Scholar
Walker, B. A. Jr., Bergantz, G. W., Otamendi, J. E., Ducea, M. N., Cristofolini, E. A. (2015) A MASH zone revealed: The mafic complex of the Sierra Valle Fértil. Journal of Petrology, 56(9), 18631896.Google Scholar
Walker, D., Shibata, T., Delong, S. E. (1979) Abyssal tholeiites from the Oceanographer Fracture Zone II: Phase equilibria and mixing. Contributions to Mineralogy and Petrology, 70, 111125.Google Scholar
Watanbe, T., Masuyama, T., Nagaoka, K., Tahara, T. (2002) Analog experiments on magma-filled cracks: Competition between external stresses and internal pressure. Earth Planets and Space, 54, 12471261.Google Scholar
Webb, P. N., McKelvey, B. C. (1959) Geological investigations in South Victoria Land, Antarctica. Part I – Geology of Victoria Valley. New Zealand Journal of Geology and Geophysics, 2(1), 120136.Google Scholar
White, J. D. L., Bryan, S. E., Ross, P.-S., Self, S., Thordarson, T. (2009) Physical volcanology of continental large igneous provinces: Update and review. In: Thordarson, T., Self, S., Larsen, G., Rowland, S. K., Hoskuldsson, A. (eds.) Studies in Volcanology: The Legacy of George Walker. Special Publications of IAVCEI. Geological Society, London, 2, 291321.Google Scholar
White, J. D. L., McClintock, M. K. (2001) Immense vent complex marks flood-basalt eruption in a wet failed rift: Coombs Hills, Antarctica. Geology, 29, 935938.Google Scholar
White, R. A., McCausland, W. A. (2019) A process-based model of pre-eruption seismicity patterns and its use for eruption forecasting at dormant stratovolcanoes. Journal of Volcanology and Geothermal Research, 382, 267297.Google Scholar
Wilch, T. I., Denton, G. H., Lux, D. R., McKintosh, W. C. (1993) Limited pliocene glacier extent and surface uplift in middle Taylor Valley, Anarctica. Geografiska Annaler, 75A, 331351.Google Scholar
Wilson, A. H. (1996) The great Dyke of Zimbabwe. In: Cawthorn, R. G. (ed.) Layered Intrusions. Elsevier, Amsterdam, 365402.Google Scholar
Wilson, E. (1966) Diary of the Discovery Expedition to the Antarctic regions 1901–1904. Blandford Press, London.Google Scholar
Wójcik, M., Tejchman, J. (2009) Modeling of shear localization during confined granular flow in silos within non-local hypoplasticity. Powder Technology, 192, 298310.Google Scholar
Wolfe, E. W., Garcia, M. O., Jackson, D. B., Koyanagi, R. Y., Neal, C. A., Okamura, A. T. (1987) The Pu,u O,o eruption of Kilauea volcano, episodes 1–20, January 3, 1983 to June 8, 1984. U.S. Geological Survey Professional Paper, 1350, 471508.Google Scholar
Worst, B. G. (1960) The Great Dyke of Southern Rhodesia. Southern Rhodesia Geological Survey Bulletin, 47, 234.Google Scholar
Wright, A. C., Kyle, P. R. (1990) McMurdo volcanic group, Western Ross Embayment. In: LeMasurier, W. E., Thomson, J. W. (eds.) Volcanoes of the Antarctic Plate and Southern Oceans, Antarctic Research Series. American Geophysical Union, Washington, DC, 48, 97-134.Google Scholar
Wright, T. L. (1971) Chemistry of Kilauea and Mauna Loa lava in space and time. Geological Survey Professional Paper 735, 40.Google Scholar
Wright, T. L., Fiske, R. (1971) Origin of the differentiated and hybrid lavas of Kilauea volcano, Hawaii. Journal of Petrology, 12, 165.Google Scholar
Wright, T. L., Marsh, B. D. (2016) Quantification of the intrusion process at Kilauea Volcano, Hawai’i. Journal of Volcanology and Geothermal Research, 328, 3444.Google Scholar
Zavala, K., Leitch, A. M., Fisher, G. W. (2011) Silicic segregations of the Ferrar dolerite sill, Antarctica. Journal of Petrology, 52(10), 19271964.Google Scholar
Zieg, M. J., Marsh, B. D. (2005) The Sudbury igneous complex: Viscous emulsion differentiation of a superheated impact melt sheet. Geological Society America Bulletin, 117, 14271450.Google Scholar
Zieg, M. J., Marsh, B. D. (2012) Multiple reinjections and crystal-mush compaction in the Beacon Sill, McMurdo Dry Valleys, Antarctica. Journal of Petrology, 53(12), 25672591.Google Scholar
Zieg, M. J., Wallrich, B. M. (2018) Emplacement and differentiation of the Black Sturgeon Sill, Nipigon, Ontario: A principal component analysis. Journal of Petrology, 59(19), 23852412.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Bruce Marsh, Johns Hopkins University
  • Book: Magmatism in the McMurdo Dry Valleys, Antarctica
  • Online publication: 17 February 2023
  • Chapter DOI: https://doi.org/10.1017/9781009177078.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Bruce Marsh, Johns Hopkins University
  • Book: Magmatism in the McMurdo Dry Valleys, Antarctica
  • Online publication: 17 February 2023
  • Chapter DOI: https://doi.org/10.1017/9781009177078.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Bruce Marsh, Johns Hopkins University
  • Book: Magmatism in the McMurdo Dry Valleys, Antarctica
  • Online publication: 17 February 2023
  • Chapter DOI: https://doi.org/10.1017/9781009177078.016
Available formats
×