Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T00:36:43.792Z Has data issue: false hasContentIssue false

12 - Chemical Geodynamics

Published online by Cambridge University Press:  15 December 2009

Gerald Schubert
Affiliation:
University of California, Los Angeles
Donald L. Turcotte
Affiliation:
Cornell University, New York
Peter Olson
Affiliation:
The Johns Hopkins University
Get access

Summary

Introduction

Much can be learned about the evolution of the Earth by considering the fluid dynamics of mantle convection and the associated thermal problems. However, chemical effects play a crucial role. Volcanism extracts some elements preferentially and can result in chemical buoyancy. Volcanic differentiation also preferentially extracts the radiogenic elements from the mantle into the continental crust.

In order to understand how volcanic processes influence mantle convection, it is necessary to have a general understanding of the major element petrology. However, both trace element studies and isotope studies provide important constraints. Partial melting of mantle rock concentrates incompatible elements into the resulting magma, but isotope ratios remain unaffected. Thus isotope systematics provide quantitative constraints on the long-term evolution of the mantle and processes such as the convective mixing of subducted lithosphere. In this chapter we will discuss some of these isotope families, observations of isotope ratios in rocks and in the atmosphere, and the implications for mantle convection. We will call this chemical geodynamics (Allègre, 1982, 1987). A general treatment of the use of isotopes in geology has been given by Faure (1986) and by Dickin (1995).

Geochemical Reservoirs

The primary geochemical cycle of the solid Earth is directly associated with plate tectonics and mantle convection; it is illustrated schematically in Figure 12.1. This is a box model in which the principal geochemical reservoirs are included. These are the core, the mantle, the oceanic crust, the continental crust, the oceans, and the atmosphere. In terms of the formation of the Earth, the mantle was the primary reservoir. The core was formed by the differentiation of the dense iron-rich components.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×