Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T00:34:43.282Z Has data issue: false hasContentIssue false

11 - Hot Spots and Mantle Plumes

Published online by Cambridge University Press:  15 December 2009

Gerald Schubert
Affiliation:
University of California, Los Angeles
Donald L. Turcotte
Affiliation:
Cornell University, New York
Peter Olson
Affiliation:
The Johns Hopkins University
Get access

Summary

Introduction

Hot spots are anomalous areas of surface volcanism that cannot be directly associated with plate tectonic processes. The term hot spot is used rather loosely. It is often applied to any long-lived volcanic center that is not part of the global network of mid-ocean ridges and island arcs. The classic example is Hawaii. Anomalous regions of thick crust on ocean ridges are also considered to be hot spots. The prototype example is Iceland.

There is little agreement on the total number of hot spots. Several hot spot lists have been published, and the number of volcanic centers included on these lists ranges from about 20 to more than 100. In one of his original papers associating hot spots with mantle plumes, Morgan (1972) listed 19 hot spots. Crough and Jurdy (1980) listed 42,Wilson (1973) listed 66, and Vogt (1981) listed 117. Table 11.1 gives the coordinates of 30 hot spots from the list of Crough and Jurdy (1980), and Figure 11.1 shows the locations of 20 prominent hot spots (see also Figure 2.23). In many cases hot spots have well-defined tracks associated with volcanic ridges or lines of volcanic edifices; these are also shown in Figure 11.1 and in Figure 2.23. A few hot spots and the tracks they have made appear on all lists, either because of high eruption rates in the recent past or because they have produced conspicuous traces. Among these are Hawaii, Iceland, Reunion, Cape Verde, and the Azores. Others, such as Bermuda, do not have an extensive volcanic history, but qualify as hot spots because they sit atop broad topographic rises or seafloor swells.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×