Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T00:03:06.401Z Has data issue: false hasContentIssue false

Chapter 8 - Neonatal Seizures Due to Acute Causes

from Part II - Practice of Neuromonitoring: Neonatal Intensive Care Unit

Published online by Cambridge University Press:  08 September 2022

Cecil D. Hahn
Affiliation:
The Hospital for Sick Children, University of Toronto
Courtney J. Wusthoff
Affiliation:
Lucile Packard Children’s Hospital, Stanford University
Get access

Summary

In the neonatal period, the majority of seizures are acute reactive events provoked by injury. Some etiologies require immediate diagnosis and treatment. Many of these acute, symptomatic seizures resolve once the underlying etiology is corrected or the acute neurological disruption of the causal event subsides. The electroencephalogram (EEG), amplitude-integrated EEG (aEEG), or quantitative electroencephalography (QEEG) may aid in rapid diagnosis and treatment of clinical and subclinical seizures. The new ILAE classification for neonatal seizures emphasizes the need for EEG for accurate diagnosis. Most EEG patterns in the neonate are non-specific to the etiology of seizures. However, even while non-specific, certain patterns can help direct the diagnostic evaluation. In many cases neuromonitoring may have specific characteristics that are helpful to direct further workup. This chapter discusses neuromonitoring in neonatal seizures due to acute causes, including vascular injury (stroke or hemorrhage), infection, acute metabolic disturbance, brain injury of prematurity, and neonatal abstinence syndrome.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

McCoy, B, Hahn, CD. Continuous EEG monitoring in the neonatal intensive care unit. J Clin Neurophysiol. 2013;30(2):106–14.CrossRefGoogle ScholarPubMed
Abend, NS, Dlugos, DJ, Clancy, RR. A review of long-term EEG monitoring in critically ill children with hypoxic-ischemic encephalopathy, congenital heart disease, ECMO, and stroke. J Clin Neurophysiol. 2013;30(2):134–42.CrossRefGoogle ScholarPubMed
Pressler, RM, Cilio, MR, Mizrahi, EM, et al. The ILAE classification of seizures and the epilepsies: Modification for seizures in the neonate. Position paper by the ILAE Task Force on Neonatal Seizures. Epilepsia. 2021;62(3):615–28.CrossRefGoogle ScholarPubMed
Boylan, GB, Pressler, RM, Rennie, JM, et al. Outcome of electroclinical, electrographic, and clinical seizures in the newborn infant. Dev Med Child Neurol. 1999;41(12):819–25.CrossRefGoogle ScholarPubMed
Glass, HC. Neonatal seizures: advances in mechanisms and management. Clin Perinatol. 2014;41(1):177–90.CrossRefGoogle ScholarPubMed
Murray, DM, Boylan, GB, Ali, I, et al. Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch Dis Child Fetal Neonatal Ed. 2008;93(3):F187–91.Google Scholar
Pellegrin, S, Munoz, FM, Padula, M, et al. Neonatal seizures: case definition & guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine. 2019;37(52):7596–609.Google Scholar
Lombroso, CT. Seizures in the newborn period. In Vinken, PJ, Bruyn, GW, editors. Handbook of Clinical Neurology. Volume 15: The Epilepsies. Amsterdam: North-Holland; 1974, pp. 189218.Google Scholar
Lynch, JK, Nelson, KB. Epidemiology of perinatal stroke. Curr Opin Pediatr. 2001;13(6):499505.CrossRefGoogle ScholarPubMed
Clancy, R, Malin, S, Laraque, D, Baumgart, S, Younkin, D. Focal motor seizures heralding stroke in full-term neonates. Am J Dis Child. 1985;139(6):601–6.Google ScholarPubMed
Mercuri, E, Rutherford, M, Cowan, F, et al. Early prognostic indicators of outcome in infants with neonatal cerebral infarction: a clinical, electroencephalogram, and magnetic resonance imaging study. Pediatrics. 1999;103(1):3946.CrossRefGoogle ScholarPubMed
Scher, MS, Beggarly, M. Clinical significance of focal periodic discharges in neonates. J Child Neurol. 1989;4(3):175–85.CrossRefGoogle ScholarPubMed
Tsuchida, TN, Wusthoff, CJ, Shellhaas, RA, et al. American clinical neurophysiology society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: report of the American Clinical Neurophysiology Society critical care monitoring committee. J Clin Neurophysiol. 2013;30(2):161–73.CrossRefGoogle ScholarPubMed
Herman, ST, Abend, NS, Bleck, TP, et al. Consensus statement on continuous EEG in critically ill adults and children, part II: personnel, technical specifications, and clinical practice. J Clin Neurophysiol. 2015;32(2):96108.CrossRefGoogle ScholarPubMed
Walsh, BH, Low, E, Bogue, CO, Murray, DM, Boylan, GB. Early continuous video electroencephalography in neonatal stroke. Dev Med Child Neurol. 2011;53(1):8992.CrossRefGoogle ScholarPubMed
Bonduel, M, Sciuccati, G, Hepner, M et al. Arterial ischemic stroke and cerebral venous thrombosis in children: a 12-year Argentinean registry. Acta Haematol. 2006;115(3–4):180–5.Google Scholar
Berfelo, FJ, Kersbergen, KJ, van Ommen, CH, et al. Neonatal cerebral sinovenous thrombosis from symptom to outcome. Stroke. 2010;41(7):1382–8.CrossRefGoogle ScholarPubMed
Frerichs, KU, Deckert, M, Kempski, O, et al. Cerebral sinus and venous thrombosis in rats induces long-term deficits in brain function and morphology–evidence for a cytotoxic genesis. J Cereb Blood Flow Metab. 1994;14(2):289300.CrossRefGoogle ScholarPubMed
Kelly, JJ, Jr., Mellinger, JF, Sundt, TM, Jr. Intracranial arteriovenous malformations in childhood. Ann Neurol. 1978;3(4):338–43.CrossRefGoogle ScholarPubMed
Paiva, T, Campos, J, Baeta, E, et al. EEG monitoring during endovascular embolization of cerebral arteriovenous malformations. Electroencephalogr Clin Neurophysiol. 1995;95(1):313.CrossRefGoogle ScholarPubMed
Fenichel, GM, Webster, DL, Wong, WK. Intracranial hemorrhage in the term newborn. Arch Neurol. 1984;41(1):30–4.CrossRefGoogle ScholarPubMed
Tramonte, JJ, Goodkin, HP. Temporal lobe hemorrhage in the full-term neonate presenting as apneic seizures. J Perinatol. 2004;24(11):726–9.CrossRefGoogle ScholarPubMed
Holt, DE, Halket, S, de Louvois, J, Harvey, D. Neonatal meningitis in England and Wales: 10 years on. Arch Dis Child Fetal Neonatal Ed. 2001;84(2):F85–9.CrossRefGoogle Scholar
Chequer, RS, Tharp, BR, Dreimane, D, et al. Prognostic value of EEG in neonatal meningitis: retrospective study of 29 infants. PediatrNeurol. 1992;8(6):417–22.Google ScholarPubMed
ter Horst, HJ, van Olffen, M, Remmelts, HJ, de Vries, H, Bos, AF. The prognostic value of amplitude integrated EEG in neonatal sepsis and/or meningitis. Acta Paediatrica. 2010;99(2):194200.Google Scholar
Mizrahi, EM, Tharp, BR. A characteristic EEG pattern in neonatal herpes simplex encephalitis. Neurology. 1982;32(11):1215–20.CrossRefGoogle ScholarPubMed
Riggs, JE. Neurologic manifestations of electrolyte disturbances. Neurol Clin. 2002;20(1):227–39, vii.Google Scholar
Lin, CC. [EEG manifestations in metabolic encephalopathy]. Acta Neurol Taiwan. 2005;14(3):151–61.Google ScholarPubMed
Kaplan, PW. The EEG in metabolic encephalopathy and coma. J Clin Neurophysiol. 2004;21(5):307–18.Google ScholarPubMed
Kossoff, EH, Silvia, MT, Maret, A, Carakushansky, M, Vining, EP. Neonatal hypocalcemic seizures: case report and literature review. J Child Neurol. 2002;17(3):236–9.CrossRefGoogle ScholarPubMed
Nunes, ML, Penela, MM, da Costa, JC. Differences in the dynamics of frontal sharp transients in normal and hypoglycemic newborns. Clin Neurophysiol. 2000;111(2):305–10.Google ScholarPubMed
Moore, AM, Perlman, M. Symptomatic hypoglycemia in otherwise healthy, breastfed term newborns. Pediatrics. 1999;103 (4 Pt 1):837–9.CrossRefGoogle ScholarPubMed
Yalnizoglu, D, Haliloglu, G, Turanli, G, Cila, A, Topcu, M. Neurologic outcome in patients with MRI pattern of damage typical for neonatal hypoglycemia. Brain Dev. 2007;29(5):285–92.CrossRefGoogle ScholarPubMed
Tam, EW, Widjaja, E, Blaser, SI et al. Occipital lobe injury and cortical visual outcomes after neonatal hypoglycemia. Pediatrics. 2008;122(3):507–12.CrossRefGoogle ScholarPubMed
Barkovich, AJ, Ali, FA, Rowley, HA, Bass, N. Imaging patterns of neonatal hypoglycemia. AJNR Am J Neuroradiol. 1998;19(3):523–8.Google ScholarPubMed
Vannucci, RC, Vannucci, SJ. Hypoglycemic brain injury. Semin Neonatol. 2001;6(2):147–55.CrossRefGoogle ScholarPubMed
Caraballo, RH, Sakr, D, Mozzi, M, et al. Symptomatic occipital lobe epilepsy following neonatal hypoglycemia. Pediatr Neurol. 2004;31(1):24–9.CrossRefGoogle ScholarPubMed
Fong, CY, Harvey, AS. Variable outcome for epilepsy after neonatal hypoglycaemia. Dev Med Child Neurol. 2014;56(11):1093–9.CrossRefGoogle ScholarPubMed
Volpe, JJ. Neurology of the Newborn. 5th ed. Elsevier Health Sciences; 2008.Google Scholar
Strober, JB, Bienkowski, RS, Maytal, J. The incidence of acute and remote seizures in children with intraventricular hemorrhage. Clin Pediatr (Phila). 1997;36(11):643–7.CrossRefGoogle ScholarPubMed
Lloyd, RO, O’Toole, JM, Pavlidis, E, Filan, PM, Boylan, GB. Electrographic Seizures during the Early Postnatal Period in Preterm Infants. J Pediatr. 2017;187:18–25 e2.CrossRefGoogle ScholarPubMed
Hellstrom-Westas, L, Klette, H, Thorngren-Jerneck, K, Rosen, I. Early prediction of outcome with aEEG in preterm infants with large intraventricular hemorrhages. Neuropediatrics. 2001;32(6):319–24.Google Scholar
Watanabe, K, Hakamada, S, Kuroyanagi, M, Yamazaki, T, Takeuchi, T. Electroencephalographic study of intraventricular hemorrhage in the preterm newborn. Neuropediatrics. 1983;14(4):225–30.CrossRefGoogle ScholarPubMed
Watanabe, K, Hayakawa, F, Okumura, A. Neonatal EEG: a powerful tool in the assessment of brain damage in preterm infants. Brain Dev. 1999;21(6):361–72.CrossRefGoogle Scholar
Watanabe, H. The neonatal electroencephalogram and sleep-cycle patterns. In Eyre, J, editor. The Neurophysiological Examination of the Newborn Infant Clinics in Developmental Medicine. London: Mac Keith Press; 1992, pp. 1147.Google Scholar
Tharp, BR, Scher, MS, Clancy, RR. Serial EEGs in normal and abnormal infants with birth weights less than 1200 grams–a prospective study with long term follow-up. Neuropediatrics. 1989;20(2):6472.Google Scholar
Clancy, RR, Tharp, BR. Positive Rolandic sharp waves in the electroencephalograms of premature neonates with intraventricular hemorrhage. Electroencephalogr Clin Neurophysiol. 1984;57(5):395404.CrossRefGoogle ScholarPubMed
Novotny, EJ, Jr., Tharp, BR, Coen, RW, et al. Positive Rolandic sharp waves in the EEG of the premature infant. Neurology. 1987;37(9):1481–6.CrossRefGoogle ScholarPubMed
Aso, K, Abdab-Barmada, M, Scher, MS. EEG and the neuropathology in premature neonates with intraventricular hemorrhage. J Clin Neurophysiol. 1993;10(3):304–13.CrossRefGoogle ScholarPubMed
Olischar, M, Klebermass, K, Kuhle, S, et al. Progressive posthemorrhagic hydrocephalus leads to changes of amplitude-integrated EEG activity in preterm infants. Childs Nerv Syst. 2004;20(1):41–5.CrossRefGoogle ScholarPubMed
Scoppa, A, Casani, A, Cocca, F, et al. aEEG in preterm infants. J Matern Fetal Neonatal Med. 2012;25 Suppl 4:139–40.Google Scholar
Baud, O, d’Allest, AM, Lacaze-Masmonteil, T, et al. The early diagnosis of periventricular leukomalacia in premature infants with positive Rolandic sharp waves on serial electroencephalography. J Pediatr. 1998;132(5):813–7.CrossRefGoogle ScholarPubMed
Okumura, A, Hayakawa, F, Kato, T, Kuno, K, Watanabe, K. Positive Rolandic sharp waves in preterm infants with periventricular leukomalacia: their relation to background electroencephalographic abnormalities. Neuropediatrics. 1999;30(6):278–82.CrossRefGoogle ScholarPubMed
Okumura, A, Hayakawa, F, Kato, T, Kuno, K, Watanabe, K. Developmental outcome and types of chronic-stage EEG abnormalities in preterm infants. Dev Med Child Neurol. 2002;44(11):729–34.Google ScholarPubMed
Kidokoro, H, Okumura, A, Hayakawa, F, et al. Chronologic changes in neonatal EEG findings in periventricular leukomalacia. Pediatrics. 2009;124(3):e468–75.CrossRefGoogle ScholarPubMed
Kubota, T, Okumura, A, Hayakawa, F, et al. Combination of neonatal electroencephalography and ultrasonography: sensitive means of early diagnosis of periventricular leukomalacia. Brain Dev. 2002;24(7):698702.CrossRefGoogle ScholarPubMed
Inder, TE, Buckland, L, Williams, CE, et al. Lowered electroencephalographic spectral edge frequency predicts the presence of cerebral white matter injury in premature infants. Pediatrics. 2003;111(1):2733.CrossRefGoogle ScholarPubMed
Kohelet, D, Shochat, R, Lusky, A, Reichman, B, Israel Neonatal, N. Risk factors for seizures in very low birthweight infants with periventricular leukomalacia. J Child Neurol. 2006;21(11):965–70.CrossRefGoogle ScholarPubMed
Hawgood, S, Spong, J, Yu, VY. Intraventricular hemorrhage. Incidence and outcome in a population of very-low-birth-weight infants. Am J Dis Child. 1984;138(2):136–9.Google Scholar
Watanabe, K, Iwase, K. Spindle-like fast rhythms in the EEGs of low-birth weight infants. Dev Med Child Neurol. 1972;14(3):373–81.Google Scholar
Hudak, ML, Tan, RC. Committee on Drugs; Committee on Fetus and Newborn; American Academy of Pediatrics. Neonatal drug withdrawal. Pediatrics. 2012;129(2):e540–60.CrossRefGoogle ScholarPubMed
Doberczak, TM SS, Cutler, R, Senie, RT, Loucopoulos, JA, Kandall, SR. One-year follow-up of infants with abstinence-associated seizures. Arch Neurol. 1988;45(6):649–53.Google Scholar
Doberczak, TM, Shanzer, S, Senie, RT, Kandall, SR. Neonatal neurologic and electroencephalographic effects of intrauterine cocaine exposure. J Pediatr. 1988;113(2):354–8.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×