Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T04:37:40.821Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  15 February 2019

Patrick McNamara
Affiliation:
Boston University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achermann, P., Finelli, L. A., & Borbély, A. (2001). Unihemispheric enhancement of delta power in human frontal sleep EEG by prolonged wakefulness. Brain Research, 913(2), 220223.Google Scholar
Affani, J. M., Cervino, C. O., & Marcos, H. J. A. (2001). Absence of penile erections during paradoxical sleep: Peculiar penile events during wakefulness and slow wave sleep in the armadillo. Journal of Sleep Research, 10, 219228.CrossRefGoogle Scholar
Ainsworth, M. S., Blehar, M. C., Waters, E., & Wall, S. (1978). Patterns of Attachment: A Psychological Study of the Strange Situation. Cambridge: Erlbaum.Google Scholar
Alloy, L. B., Ng, T. H., Titone, M. K., & Boland, E. M. (2017). Circadian rhythm dysregulation in bipolar spectrum disorders. Current Psychiatry Reports, 19(4), 21. doi: 10.1007/s11920-017-0772-z. Review. PMID:28321642.Google Scholar
Anderson, J. R. (1998). Sleep, sleeping sites, and sleep-related activities: Awakening to their significance. American Journal of Primatology, 46(1), 6375.Google Scholar
Anderson, C., & Horne, J. A. (2003). Prefrontal cortex: Links between low frequency delta EEG in sleep and neuropsychological performance in healthy, older people. Psychophysiology, 40(3), 349357. PMID:12946109.Google Scholar
Antony, J., Gobel, E. W., O’Hare, J. K., Reber, P. J., & Paller, K. A. (2012). Cued memory reactivation during sleep influences skill learning. Nature Neuroscience, 15, 11141116.Google Scholar
Antrobus, J. S. (1991). Dreaming: Cognitive processes during cortical activation and high afferent thresholds. Psychological Review, 98, 96121.Google Scholar
Argiolas, A., & Gessa, G. L. (1991). Central functions of oxytocin. Neuroscience and Biobehavioral Reviews, 15(2), 217231.Google Scholar
Arnulf, I., Zeitzer, J. M., File, J., Farber, N., & Mignot, E. (2005). Kleine-Levin syndrome: A systematic review of 186 cases in the literature. Brain, 128 (Pt 12), 27632776. E-pub October 17, 2005. Review. PMID:16230322.Google Scholar
Aviv, A., & Susser, E. (2013). Leukocyte telomere length and the father’s age enigma: Implications for population health and for life course. International Journal of Epidemiology. doi:10.1093/ije/dys236.Google Scholar
Barnouw, V. (1963). Culture and Personality. Cambridge: Dorsey Press.Google Scholar
Beattie, L., Kyle, S. D., Espie, C. A., & Biello, S. M. (2015). Social interactions, emotion and sleep: A systematic review and research agenda. Sleep Medicine Reviews, 24, 83100. doi: 10.1016/j.smrv.2014.12.005.Google Scholar
Beebe, D. W. (2016). WEIRD considerations when studying adolescent sleep need. Sleep, 39(8), 14911492.Google Scholar
Beijers, R., Jansen, J., Riksen-Walraven, M., & de Weerth, C. (2011). Attachment and infant night waking: A longitudinal study from birth through the first year of life. Journal of the American Academy of Child and Adolescent Psychiatry, 32(9), 635643.Google ScholarPubMed
Belsky, J., Steinberg, L., & Draper, P. (1991). Childhood experience, interpersonal development, and reproductive strategy: An evolutionary theory of socialization. Child Development, 62, 647670.CrossRefGoogle ScholarPubMed
Benington, J. H., & Frank, M. G. (2003). Cellular and molecular connections between sleep and synaptic plasticity. Progress in Neurobiology, 69(2), 71101. Review. PMID:12684067.Google Scholar
Benington, J. H., & Heller, H. C. (1994). Does the function of REM sleep concern non-REM sleep or waking?Progress in Neurobiology, 44, 433449.Google Scholar
Benington, J. H., & Heller, H. C. (1995). Restoration of brain energy metabolism as the function of sleep. Progress in Neurobiology, 45, 347360.CrossRefGoogle ScholarPubMed
Benoit, D., Zeanah, C. H., Boucher, C., & Minde, K. K. (1992). Sleep disorders in early childhood: Association with insecure maternal attachment. Journal of the American Academy of Child and Adolescent Psychiatry, 31(1), 8693.Google Scholar
Blanco-Centurion, C., Xu, M., Murillo-Rodriguez, E., Gerashchenko, D., Shiromani, A. M., Salin-Pascual, R. J., et al. (2006). Adenosine and sleep homeostasis in the basal forebrain. Journal of Neuroscience, 26(31), 80928100.Google Scholar
Bliwise, D. L. (2000). Normal aging. In Kryger, M. H., Roth, T., & Dement, W. C. (eds.), Principles and Practice of Sleep Medicine (pp. 2642). Cambridge: Saunders.Google Scholar
Blurton Jones, N. G., & da Costa, E. (1987). A suggested adaptive value of toddler night waking: Delaying the birth of the next sibling. Ethology and Sociobiology, 8, 135142.CrossRefGoogle Scholar
Booker, C. (2006). The Seven Basic Plots: Why We Tell Stories. Cambridge: Bloomsbury Academic Press.Google Scholar
Bourguignon, E. (1972). Dreams and altered states of consciousness in anthropological research. In Hsu, F. L. K. (ed.), Psychological Anthropology (pp. 403434). Cambridge: Schenkman Publications.Google Scholar
Borbely, A. A. (1980). Sleep: Circadian rhythm versus recovery process. In Koukkou, M., Lehmann, D., & Angst, J. (eds.), Functional States of the Brain: Their Determinants (pp. 151161). Cambridge: Elsevier.Google Scholar
Borbely, A. A. (1982). A two process model of sleep regulation. Human Neurobiology, 1, 195204.Google ScholarPubMed
Borbely, A. A., Tobler, I., & Hanagasioglu, M. (1984). Effect of sleep deprivation on sleep and EEG power spectra in the rat. Behavioral Brain Research, 14, 171182.Google Scholar
Bowlby, J. (1969). Attachment and Loss (Vol. 1). Cambridge: Basic Books.Google Scholar
Braun, A. R., Balkin, T. J., Wesensten, N. J., Carson, R. E., Varga, M., Baldwin, P., Selbie, S., Belenky, G., & Herscovitch, P. (1997). Regional cerebral blood flow throughout the sleep-wake cycle. Brain, 120, 11731197.Google Scholar
Braun, A. R., Balkin, T. J., Wesensten, N. J., Gwadry, F., Carson, R. E., Varga, M., Baldwin, P., Belenky, G., & Herscovitch, P. (1998). Dissociated pattern of activity in visual cortices and their projections during human rapid eye-movement sleep. Science, 279, 9195.CrossRefGoogle ScholarPubMed
Brereton, D. (2000). Dreaming, adaptation, and consciousness: The social mapping hypothesis. Ethos, 28(3), 379409. 10.1525/eth.2000.28.3.379.Google Scholar
Brubaker, L. L. (1998). Note on the relevance of dreams for evolutionary psychology. Psychology Reports, 82(3), 1006.Google Scholar
Bulkeley, K. (2014). Digital dream analysis: A revised method. Conscious and Cognition, 29, 159170. doi: 10.1016/j.concog.2014.08.015. Epub October 3, 2014. PMID: 25286125.Google Scholar
Burnham, M. M., Goodlin-Jones, B. L., Gaylor, E. E., & Anders, T. F. (2002). Nighttime sleep-wake patterns and self-soothing from birth to one year of age: A longitudinal intervention study. Journal of Child Psychology and Psychiatry, 43(6), 713725.CrossRefGoogle ScholarPubMed
Burns, J. (2007). The Descent of Madness: Evolutionary Origins of Psychosis and the Social Brain. Cambridge: Routledge.Google Scholar
Buxton, J. L., Suderman, M., Pappas, J. J., Borghol, N., McArdle, W., Blakemore, A. I., Hertzman, C., Power, C., Szyf, M., & Pembrey, M. (2014). Human leukocyte telomere length is associated with DNA methylation levels in multiple subtelomeric and imprinted loci. Scientific Reports, 4, 4954. doi: 10.1038/srep04954.Google Scholar
Buysse, D. (2011). Insomnia: Recent developments and future directions. In Kryger, M., Roth, T., & Dement, W. C. (eds.), Principles and Practice of Sleep Medicine (5th edn). Cambridge: W. B. Saunders Co.Google Scholar
Buzsaki, G. (1996). The hippocampo-neocortical dialogue. Cerebral Cortex, 6(2), 8192.Google Scholar
Cajochen, C., Foy, R., & Dijk, D. J. (1999). Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans. Sleep Research Online, 2(3), 6569. PMID: 11382884.Google Scholar
Capellini, I., Barton, R. A., Preston, B., McNamara, P., & Nunn, C. L. (2008). Phylogenetic analysis of the ecology and evolution of mammalian sleep. Evolution, 62(7), 17641776. PMID: 18384657.Google Scholar
Capellini, I., McNamara, P., Preston, B. T., Nunn, C. L., & Barton, R. A. (2009). Does sleep play a role in memory consolidation? A comparative test. PLoS ONE, 4(2), e4609. PMID: 19240803.Google Scholar
Capellini, I., Nunn, C. L., McNamara, P., Preston, B. T., & Barton, R. A. (2008). Energetic constraints, not predation, influence the evolution of sleep patterning in mammals. Functional Ecology, 22(5), 847853.Google Scholar
Carskadon, M. A., Acebo, C., & Jenni, O. (2004). Regulation of adolescent sleep: Implications for behavior. Annals of the New York Academy of Sciences, 1021, 276291.Google Scholar
Carskadon, M., & Dement, W. C. (2000). Normal human sleep: An overview. In Kryger, M. H., Roth, T., & Dement, W. C. (eds.), Principles and Practice of Sleep Medicine (3rd edn, pp. 1525). Cambridge: Saunders.Google Scholar
Cartwright, R. D. (1999). Dreaming in sleep disordered patients. In Chokroverty, S. (ed.), Sleep Disorders Medicine: Basic Science, Technical Considerations, and Clinical Aspects (pp. 127134). Cambridge: Butterworth- Heinemann.Google Scholar
Cartwright, R. (2010). The Twenty-Four Hour Mind. Cambridge: Cambridge University Press.Google Scholar
Chauvet, J., Deschamps, E. B., & Hillaire, C. (1995). Chauvet Cave: The Discovery of the World’s Oldest Paintings. Cambridge: Thames and Hudson.Google Scholar
Chemelli, R. M., Willie, J. T., Sinton, C. M., Elmquist, J.Scammell, T., Lee, C., Richardson, J. A., Williams, S. C., Xiong, Y., Kisanuki, Y., Fitch, T. E., Nakazato, M., Hammer, R. E., Saper, C. B., & Yanagisawa, M. (1990). Narcolepsy in orexin knockout mice: Molecular genetics of sleep regulation. Cell, 98(4), 437451.Google Scholar
Chen, Q., Yang, H., Zhou, N., Sun, L., Bao, H., Tan, L., Chen, H., Ling, X., Zhang, G., Huang, L., Li, L., Ma, M., Yang, H., Wang, X., Zou, P., Peng, K., Liu, T., Cui, Z., Ao, L., Roenneberg, T., Zhou, Z., & Cao, J. (2016). Inverse u-shaped association between sleep duration and semen quality: Longitudinal observational study (MARHCS) in Chongqing, China. SLEEP, 39(1), 7986.Google Scholar
Cheyne, J. A. (2002). Situational factors affecting sleep paralysis and associated hallucinations: Position and timing effects. Journal of Sleep Research, 11(2), 169–77. PMID: 12028482.Google Scholar
Cheyne, J. A., & Girard, T. A. (2007). Paranoid delusions and threatening hallucinations: A prospective study of sleep paralysis experiences. Conscious and Cognition, 16(4), 959749. Epub March 6, 2007. PMID: 17337212.Google Scholar
Chisholm, J. S. (ed.). (1999). Death, Hope and Sex: Steps to an Evolutionary Ecology of Mind and Morality. Cambridge: Cambridge University Press.Google Scholar
Cipolli, C., & Poli, D. (1992). Story structure in verbal reports of mental sleep experience after awakening in REM sleep. Sleep, 15, 133142.Google Scholar
Clayton-Smith, J., & Laan, L. (2003). Angelman syndrome: A review of the clinical and genetic aspects. Journal of Medical Genetics, 40(2), 8795.Google Scholar
Clawson, B. C., Durkin, J., & Aton, S. J. (2016). Form and function of sleep spindles across the lifespan. Neural Plasticity. 2016:6936381. doi: 10.1155/2016/6936381. Epub April 14, 2016.Google Scholar
Colace, C. (2010). Children’s Dreams: From Freud’s Observations to Modern Dream Research (1st edn). Cambridge: Karnac Books Ltd.Google Scholar
Corsi-Cabrera, M., Miro, E., del-Rio-Portilla, Y., Perez-Garci, E., Villanueva, Y., & Guevara, M. A. (2003). Rapid eye movement sleep dreaming is characterized by uncoupled EEG activity between frontal and perceptual cortical regions. Brain and Cognition, 51(3), 337345.Google Scholar
Crick, F., & Mitchison, G. (1983). The function of dream sleep. Nature, 304, 111114.Google Scholar
Crick, F., & Mitchison, G. (1986). REM sleep and neural nets. Journal of Mind and Behavior, 7, 229250.Google Scholar
Czeisler, C. (2006). Impact of extended-duration shifts on medical errors, adverse events, and attentional failures. PLOS Medicine, 3, 12.Google Scholar
Czeisler, C. A., & Gooley, J. J. (2007). Sleep and circadian rhythms in humans. Cold Spring Harbor Symposia on Quantitative Biology, 72, 579597.Google Scholar
Czisch, M., Wehrle, R., Kaufmann, C., Wetter, T. C., Holsboer, F., Pollmacher, T., & Auer, D. P. (2004). Functional MRI during sleep: BOLD signal decreases and their electrophysiological correlates. European Journal of Neuroscience, 20(2), 566574.Google Scholar
Czisch, M., Wetter, T. C., Kaufmann, C., Pollmacher, T., Holsboer, F., & Auer, D. P. (2002). Altered processing of acoustic stimuli during sleep: Reduced auditory activation and visual deactivation detected by a combined fMRI/EEG study. Neuroimage, 16(1), 251258.Google Scholar
Dale, A., Lafrenière, A., & De Koninck, J. (2017). Dream content of Canadian males from adolescence to old age: An exploration of ontogenetic patterns.; Consciousness and Cognition, 49, 145156. doi: 10.1016/j.concog.2017.01.008. Epub February 15, 2017. PMID:28212501.CrossRefGoogle ScholarPubMed
Dale, A., Lortie-Lussier, M., & De Koninck, J. (2015). Ontogenetic patterns in the dreams of women across the lifespan. Consciousness and Cognition, 37, 214224.Google Scholar
Dang-Vu, T. T., Desseilles, M., Petit, D., Mazza, S., Montplaisir, J., & Maquet, P. (2007). Neuroimaging in sleep medicine. Sleep Medicine, 8, 349372.Google Scholar
Dang-Vu, T. T, Desseilles, M., Laureys, S., Degueldre, C., Perrin, F., Phillips, C., Maquet, P., & Peigneux, P. (2005). Cerebral correlates of delta waves during non-REM sleep revisited. Neuroimage, 28(1), 1421. Epub June 23, 2005.Google Scholar
Dang-Vu, T. T., Schabus, M., Desseilles, M., Sterpenich, V., Bonjean, M., & Maquet, P. (2010) Functional neuroimaging insights into the physiology of human sleep. Sleep, 33(12), 1589–603. Review. PMID:21120121.Google Scholar
D’Andrade, R. G. (1961). Anthropological studies of dreams. In Hsu, F. L. K. (ed.), Psychological Anthropology: Approaches to Culture and Personality (pp. 296332). Cambridge: Dorsey Press.Google Scholar
Daoyun, J., and Wilson, M. A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neuroscience, 10(1), 100107.Google Scholar
De Gennaro, L., Vecchio, F., Ferrara, M., Curcio, G., Rossini, P. M., & Babiloni, C. (2004). Changes in fronto-posterior functional coupling at sleep onset in humans. Journal of Sleep Research, 13(3), 209217.Google Scholar
Dement, W. C. (1965). Recent studies on the biological role of rapid eye movement sleep. American Journal of Psychiatry, 122, 404408.Google Scholar
Dement, W. C., & Vaughn, C. (2000). The Promise of Sleep. Cambridge: Dell Publishing.Google Scholar
Devereux, G. (1951). Reality and Dream: Psychotherapy of a Plains Indian. Cambridge: International Universities Press.Google Scholar
Dew, M. A., Hoch, C. C., Buysse, D. J., Monk, T. H., Begley, A. E., Houck, P. R., et al. (2003). Healthy older adults’ sleep predicts all-cause mortality at 4 to 19 years of follow-up. Psychosomatic Medicine, 65(1), 6373.CrossRefGoogle Scholar
Dewald, J. F., Meijer, A. M., Oort, F. J., Kerkhof, G. A., & Bögels, S. M. (2010). The influence of sleep quality, sleep duration and sleepiness on school performance in children and adolescents: A meta-analytic review. Sleep Medicine Review, 14(3), 179–89. doi: 10.1016/j.smrv.2009.10.004. Epub January 21, 2010.Google Scholar
Dixon, B. R. (1908). Notes on the Achomawi and Atsugewi Indians of Northern California. American Anthropologist, 10, 208220.Google Scholar
Domhoff, G. W. (1996). Finding Meaning in Dreams: A Quantitative Approach. Cambridge: Plenum.Google Scholar
Domhoff, G. W. (2003). The Scientific Study of Dreams: Neural Networks, Cognitive Development, and Content Analysis. Cambridge: American Psychological Association.Google Scholar
Domhoff, G. W. (2011). The neural substrate for dreaming: is it a subsystem of the default network?Consciousness and Cognition, 20(4), 11631174. doi: 10.1016/j.concog.2011.03.001. Epub March 29, 2011.Google Scholar
Domhoff, G. W., & Kamiya, J. (1964). Problems in dream content study with objective indicators: A comparison of home and laboratory dream reports. Archives of General Psychiatry, 11, 519524.Google Scholar
Dresler, M., Wehrle, R., Spoormaker, V. I., Koch, S. P., Holsboer, F., Steiger, A., Obrig, H., Sämann, P. G., & Czisch, M. (2012). Neural correlates of dream lucidity obtained from contrasting lucid versus non-lucid REM sleep: A combined EEG/fMRI case study. Sleep, 35(7), 10171020. doi: 10.5665/sleep.1974. PMID: 22754049.Google Scholar
Dumoulin Bridi, M. C., Aton, S. J., Seibt, J., Renouard, L., Coleman, T., & Frank, M. G. (2015). Rapid eye movement sleep promotes cortical plasticity in the developing brain. Science Advances, 1(6), e1500105. doi: 10.1126/sciadv.1500105. eCollection July 2015.Google Scholar
Dunbar, R. (1998). The social brain hypothesis. Evolutionary Anthropology, 6, 178190.Google Scholar
Dunbar, R. I. (2012). The social brain meets neuroimaging. Trends in Cognitive Science, 16(2), 101102. doi: 10.1016/j.tics.2011.11.013. Epub December 15, 2011. PMID:22177800.Google Scholar
Durrence, H. H., & Lichstein, K. L. (2006). The sleep of African Americans: A comparative review. Behavioral Sleep Medicine, 4(1), 2944. Review. PMID:16390283.Google Scholar
Eggan, D. (1949). The significance of dreams for anthropological research. American Anthropology, 51(2), 177198.Google Scholar
Eggan, D. (1961). Dream analysis. In Kaplan, B. (ed.), Studying Personality Cross-Culturally (pp. 551577). Cambridge: Harper and Row.Google Scholar
Eisenberg, D. T. A. (2011). An evolutionary review of human telomere biology: The thrifty telomere hypothesis and notes on potential adaptive paternal effects. American Journal of Human Biology, 23, 149167.Google Scholar
Eisenberg, D. & Kuzawa, C. (2013) Commentary: The evolutionary biology of the paternal age effect on telomere length. International Journal of Epidemiology, 42(2), 462-465. doi:10.1093/ije/dyt027.Google Scholar
Eisenberg, D. T., Hayes, M. G., & Kuzawa, C. W. (2012). Delayed paternal age of reproduction in humans is associated with longer telomeres across two generations of descendants. Proceedings of the National Academy of Sciences of the United States of America, 109, 10251–1056.Google Scholar
Ekirch, A. (2005). At Day’s Close: Night in Times Past. Cambridge: W. W. Norton.Google Scholar
Everson, C. A., & Szabo, A. Repeated exposure to severely limited sleep results in distinctive and persistent physiological imbalances in rats. PLoS ONE, 6(8), e22987.Google Scholar
Fantini, M. L., Corona, A., Clerici, S., & Ferini-Strambi, L. (2005). Aggressive dream content without daytime aggressiveness in REM sleep behavior disorder. Neurology, 65(7), 10101015. PMID:16217051.Google Scholar
Finelli, L.A., Borbely, A.A. & Achermann, P. (2001) Functional topography of the human non-REM sleep electroencephalogram. European Journal of Neuroscience, 13, 22822290.Google Scholar
Fogel, S. M., Nader, R., Cote, K. A., & Smith, C. T. (2007). Sleep spindles and learning potential. Behavioral Neuroscience, 121(1), 110. PMID:17324046.Google Scholar
Fosse, M. J., Fosse, R., Hobson, J. A., & Stickgold, R. (2003). Dreaming and episodic memory: A functional dissociation?Journal of Cognitive Neuroscience, 15, 19.Google Scholar
Foulkes, D. (1962). Dream reports from different stages of sleep. Journal of Abnormal and Social Psychology, 65, 1425.Google Scholar
Foulkes, D. (1978). A Grammar of Dreams. Cambridge: Basic Books.Google Scholar
Foulkes, D. (1982). Children’s Dreams: Longitudinal Studies. Cambridge: John Wiley.Google Scholar
Foulkes, D. (1985). Dreaming: A Cognitive-Psychological Analysis. Cambridge: Lawrence Erlbaum.Google Scholar
Foulkes, D., & Schmidt, M. (1983). Temporal sequence and unit composition in dream reports from different stages of sleep. Sleep, 6(3), 265280.Google Scholar
Frank, M. G. (1999). Phylogeny and evolution of rapid eye movement (REM) sleep. In Mallick, B. N. & Inoue, S. (eds.), Rapid Eye Movement Sleep (pp. 1538). Cambridge: Narosa.Google Scholar
Frank, M. G., & Benington, J. H. The role of sleep in memory consolidation and brain plasticity: Dream or reality? The Neuroscientist, 12(6), 477–488.Google Scholar
Frank, M. G., & Heller, H. C. Development of REM and slow wave sleep in the rat. American Journal of Physiology, 272, R1792–R1799.Google Scholar
Frank, M. G., Issa, N. P., & Stryker, M. P. Sleep enhances plasticity in the developing visual cortex. Neuron, 30, 275–287.Google Scholar
Frank, R. H. (1988). Passions within Reason: The Strategic Role of Emotions. Cambridge: Norton.Google Scholar
Franken, P., Chollet, D., & Tafti, M. (2001). The homeostatic regulation of sleep need is under general control. Journal of Neuroscience, 21, 26102621.Google Scholar
Franklin, M. S. & Zyphur, M. J. (2005). The role of dreams in the evolution of the human mind. Evolutionary Psychology, 3, 5978.Google Scholar
Freud, S. (1900). Die Traumdeutung. Cambridge: Franz Deuticke, Leipzig & Vienna.Google Scholar
Freud, S. (1950). The Interpretation of Dreams. Cambridge: Random House.Google Scholar
French, T., & Fromme, E. (1964). Dream Interpretation: A New Approach. Cambridge: Basic Books.Google Scholar
Fruth, B., & Hohmann, G. (1993). Ecological and behavioral aspects of nest building in wild bonobos. Ethology, 94, 113126.Google Scholar
Fruth, B., & McGrew, W. C. (1998). Resting and nesting in primates: Behavioral ecology of inactivity. American Journal of Primatology, 46(1), 35.Google Scholar
Garfield, A. S., Cowley, M., Smith, F. M., Moorwood, K., et al. 2011. Distinct physiological and behavioral functions for parental alleles of imprinted Grb10. Nature, 469, 534538.CrossRefGoogle ScholarPubMed
Gemignani, A., Piarulli, A., Menicucci, D., Laurino, M., Rota, G., Mastorci, F., Gushin, V., Shevchenko, O., Garbella, E., Pingitore, A., Sebastiani, L., Bergamasco, M., L’Abbate, A., Allegrini, P., & Bedini, R. (2014). How stressful are 105 days of isolation? Sleep EEG patterns and tonic cortisol in healthy volunteers simulating manned flight to Mars. International Journal of Psychophysiology, 93(2), 211219. doi: 10.1016/j.ijpsycho.2014.04.008. Epub May 2, 2014.Google Scholar
Giuditta, A., Ambrosini, M. V., Montagnese, P., Mandile, P., Cotugno, M., Grassi, Z. G., et al. (1995). The sequential hypothesis of the function of sleep. Behavioural Brain Research, 69, 157166.Google Scholar
Godbout, R., Bergeron, C., Stip, E., & Mottron, L. (1998). A laboratory study of sleep and dreaming in a case of Asperger’s syndrome. Dreaming, 8(2), 7588.Google Scholar
Goodenough, D. R. (1991). Dream recall: History and current status of the field. In Ellman, S. J. & Antrobus, J. S. (eds.), The Mind in Sleep: Psychology and Psychophysiology (2nd edn, pp. 143171). Cambridge: John Wiley.Google Scholar
Grunebaum, G., & Callois, R. (1966). The Dream and Human Societies. Cambridge: University of California Press.Google Scholar
Guevara, M. A., Lorenzo, I., Arce, C., Ramos, J., & Corsi-Cabrera, M. (1995). Inter- and intrahemispheric EEG correlation during sleep and wakefulness. Sleep, 18(4), 257265.Google Scholar
Hafner, M., Stepanek, M., Taylor, J., Troxel, W. M., & van Stolk, C. (2017). Why sleep matters—The economic costs of insufficient sleep: A cross-country comparative analysis. RAND Health Quarterly, 6(4), 11. eCollection January 2017. PMID: 28983434.Google Scholar
Haig, D. (2002). Genomic Imprinting and Kinship. Cambridge: Rutgers University Press.Google Scholar
Haig, D. (1993). Genetic conflicts in human pregnancy. Quarterly Review of Biology, 68(4), 495532.Google Scholar
Haig, D. (2000). Genomic imprinting, sex-biased dispersal, and social behavior. Annals of the New York Academy of Sciences, 907, 149163.Google Scholar
Haig, D. (2014). Troubled sleep: Night waking, breastfeeding and parent-offspring conflict. Evolution, Medicine, and Public Health, 2014(1), 32–9. doi: 10.1093/emph/eou005. Epub March 7, 2014. PMID: 24610432.Google Scholar
Haig, D., & Westoby, M. (1988). Inclusive fitness, seed resources and maternal care. In Doust, L. L. (ed.), Plant Reproductive Ecology (pp. 6079). Cambridge: Oxford University Press.Google Scholar
Halász, P., Bódizs, R., Parrino, L., & Terzano, M. (2014). Two features of sleep slow waves: Homeostatic and reactive aspects – from long term to instant sleep homeostasis. Sleep Medicine, 15(10), 11841195. doi: 10.1016/j.sleep.2014.06.006. Epub July 8, 2014. Review. PMID:25192672.Google Scholar
Hall, C. (1963). Strangers in dreams: An empirical confirmation of the Oedipus complex. Journal of Personality, 31, 336345.Google Scholar
Hall, C., & Van de Castle, R. (1966). The Content Analysis of Dreams. Cambridge: Appleton-Century-Crofts.Google Scholar
Harrison, Y., Horne, J. A., & Rothwell, A.. (2000). Prefrontal neuropsychological effects of sleep deprivation in young adults – a model for healthy aging?Sleep, 23(8), 10671073. PMID: 11145321.Google Scholar
Hartmann, E. (1984). The Nightmare. Cambridge: Basic Books.Google Scholar
Hartmann, E. (1996). Outline for a theory on the nature and function of dreaming. Dreaming, 6, 147169.Google Scholar
Hartmann, E. (1998). Dreams and Nightmares: The New Theory on the Origin and Meaning of Dreams. Cambridge: Plenum.Google Scholar
Hartmann, E., Russ, D., van der Kolk, B., Falke, R., & Oldfield, M. (1981). A preliminary study of the personality of the nightmare sufferer: Relationship to schizophrenia and creativity?American Journal of Psychiatry, 138, 784797.Google Scholar
Hartse, K. M. (1994). Sleep in insects and nonmammalian vertebrates. In Kryger, M. H., Roth, T., & Dement, W. C. (eds.), Principles and Practice of Sleep Medicine (2nd edn, pp. 95104). Cambridge: Saunders.Google Scholar
Hennevin, E., Huetz, C., & Edeline, J. M. (2007). Neural representations during sleep: From sensory processing to memory traces. Neurobiology of Learning and Memory, 87(3), 416440; https://doi.org/10.1016/j.nlm.2006.10.006.Google Scholar
Herlin, B., Leu-Semenescu, S., Chaumereuil, C., & Arnulf, I. (2015); Evidence that non-dreamers do dream: A REM sleep behaviour disorder model. Journal of Sleep Research, August 25. doi: 10.1111/jsr.12323.Google Scholar
Hertz, G., Cataletto, M., Feinsilver, S. H., & Angulo, M. (1993). Sleep and breathing patterns in patients with Prader Willi syndrome (PWS): Effects of age and gender. Sleep, 16(4), 366371.Google Scholar
Hobson, J. A. (1988). The Dreaming Mind. Cambridge: Basic Books.Google Scholar
Hobson, J. A., Pace-Schott, E. F., & Stickgold, R. (2000). Dreaming and the brain: Toward a cognitive neuroscience of conscious states. Behavioral Brain Sciences, 23, 793842.Google Scholar
Hobson, J. A., & Friston, K. J. (2012). Waking and dreaming consciousness: Neurobiological and functional considerations. Progress in Neurobiology, 98(1), 8298. doi: 10.1016/j.pneurobio.2012.05.003; PMCID: PMC3389346.Google Scholar
Hobson, J. A., & McCarley, R. (1977). The brain as a dream state generator: An activation-synthesis hypothesis of the dream process. American Journal of Psychiatry, 134, 13351348.Google ScholarPubMed
Hobson, J. A., & Pace-Schott, E. F. (2002). The cognitive neuroscience of sleep: Neuronal systems, consciousness and learning. Nature Reviews, Neuroscience, 3, 679693.Google Scholar
Hobson, J. A., Pace-Schott, E. F, & Stickgold, R. (2000a). Consciousness: Its vicissitudes in waking and sleep. In Gazzaniga, M. (ed.), The New Cognitive Neurosciences (2nd edn, pp. 13411354). Cambridge: MIT Press.Google Scholar
Hobson, J. A., Stickgold, R., & Pace-Schott, E. F. (1998). The neuropsychology of REM sleep dreaming. Neuroreport, 9(3), R1R14.Google Scholar
Hofle, N., Paus, T., Reutens, D., Fiset, P., Gotman, J., Evans, A. C. & Jones, B. E. (1997). Regional cerebral blood flow changes as a function of delta and spindle activity during slow wave sleep in humans. The Journal of Neuroscience, 17, 48004808.Google Scholar
Hofer, M. A., & Shair, H. (1982). Control of sleep-wake states in the infant rat by features of the mother-infant relationship. Developmental Psychobiology, 15(3), 229243.Google Scholar
Hofle, N., Paus, T., Reutens, D., Fiset, P., Gotman, J., Evans, A. C., et al. (1997). Regional cerebral blood flow changes as a function of delta and spindle activity during slow wave sleep in humans. Journal of Neuroscience, 17, 48004808.Google Scholar
Hollan, D. (2003). The cultural and intersubjective context of dream remembrance and reporting: Dreams, aging, and the anthropological encounter in Toraja, Indonesia. In Lohmann, R. I. (ed.), Dream Travelers: Sleep Experiences and Culture in the Western Pacific (pp. 169187). Cambridge: Palgrave Macmillan.Google Scholar
Hong, C. C. H., Gillin, J. C., Dow, B. M., Wu, J. & Buchsbaum, M. S. (1995) Localized and lateralized cerebral glucose metabolism associated with eye movments during REM sleep and wakefulness: A positron emission tomography (PET) study. Sleep, 18, 570–80.Google Scholar
Horne, J. A. (1993). Human sleep, sleep loss and behaviour: Implications for the prefrontal cortex and psychiatric disorder. British Journal of Psychiatry, 162, 413419. Review. No abstract available. PMID: 8453439.CrossRefGoogle ScholarPubMed
Horne, J. A. (2000). REM sleep—by default?Neuroscience and Biobehavioral Reviews, 24, 777797.Google Scholar
Hrdy, S. B. (1999). Mother Nature. Cambridge: Pantheon.Google Scholar
Huber, R., Ghilardi, M. F., Massimini, M., & Tononi, G. (2004). Local sleep and learning. Nature, 430(6995), 7881. Epub June 6, 2004. PMID:15184907.Google Scholar
Hultkrantz, A. (1970). Attitudes to animals in Shoshoni Indian Religion. Studies in Comparative Religion, 4, 7079.Google Scholar
Hultkrantz, A. (1987). Native Religions of North America: The Power of Visions and Fertility. Cambridge: Harper and Row.Google Scholar
Hunt, H. T. The Multiplicity of Dreams: Memory, Imagination and Consciousness. New Haven, CT: Yale University Press.Google Scholar
Irwin, L. (1994). The Dream Seekers: Native American Visionary Traditions of the Great Plains. Cambridge: University of Oklahoma Press.Google Scholar
Isles, A. R., Davies, W., & Wilkinson, L. S. 2006. Genomic imprinting and the social brain. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 361, 22292237.Google Scholar
Jackowska, M., Hamer, M., Carvalho, L. A., Erusalimsky, J. D., Butcher, L., et al. (2012). Short sleep duration is associated with shorter telomere length in healthy men: Findings from the Whitehall II Cohort Study. PLoS ONE, 7(10), e47292. doi:10.1371/journal.pone.0047292.Google Scholar
Janecka, M., Rijsdijk, F., Rai, D.Modabbernia, A. & Reichenberg, A. (2017). Advantageous developmental outcomes of advancing paternal age. Translational Psychiatry, 7, e1156; doi:10.1038/tp.2017.125; published online June 20, 2017.Google Scholar
Jedrej, M. C., & Shaw, R. (eds.). (1992). Dreaming, Religion, and Society in Africa. Cambridge: E. J. Brill.Google Scholar
Jouvet, M. (1999). The Paradox of Sleep: The Story of Dreaming. Cambridge: MIT Press.Google Scholar
Jouvet, D., Vimont, P., Delorme, F., & Jouvet, M. (1964). Study of selective deprivation of the paradoxal sleep phase in the cat. Comptes Rendus des Seances de la Societe de Biology et de ses Filiales, 158, 756759.Google Scholar
Kahn, D., Stickgold, R., Pace-Schott, E. F., & Hobson, J. A. (2000). Dreaming and waking consciousness: A character recognition study. Journal of Sleep Research, 9(4), 317325.Google Scholar
Karmanova, I. G. (1982). Evolution of Sleep: Stages of the Formation of the Wakefulness-Sleep Cycle in Vertebrates. Cambridge: Karger.Google Scholar
Kaufmann, C., Wehrle, R., Wetter, T. C., Holsboer, F., Auer, D. P., Pollmacher, T., & Czisch, M. (2006). Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: An EEG/fMRI study. Brain, 129( 3), 655667.Google Scholar
Keller, P. S. (2011). Sleep and attachment. In El-Sheikh, M. (ed.). Sleep and Development (pp. 4977). Cambridge: Oxford University Press.Google Scholar
Kennedy, D. P., & Adolphs, R. (2012). The social brain in psychiatric and neurological disorders. Trends in Cognitive Science, 16(11), 559572. doi: 10.1016/j.tics.2012.09.006. Epub October 6, 2012. Review. PMID: 23047070.CrossRefGoogle ScholarPubMed
Kern, S., Auer, A., Gutsche, M., Otto, A., Preuß, K., & Schredl, M. (2014). Relationship between political, musical and sports activities in waking life and the frequency of these dream types in politics and psychology students. International Journal of Dream Research, 7(1), 8084.Google Scholar
Keverne, E. B., & Curley, J. P. (2008). Epigenetics, brain evolution and behavior. Front Neuroendocrinol, 29, 398412.Google Scholar
Keverne, E. B., Martel, F. L., & Nevison, C. M. (1996). Primate brain evolution: Genetic and functional considerations. Proceedings of the Royal Society of London B: Biological Sciences, 263, 689696.Google Scholar
Kilborne, B. J. (1981). Moroccan dream interpretation and culturally constituted defense mechanisms. Ethos, 9(4), 294312.Google Scholar
Kilduff, T. S., Krilowicz, B., Milsom, W. K., Trachsel, L., & Wang, L. C. (1993). Sleep and mammalian hibernation: Homologous adaptations and homologous processes?Sleep, 16(4), 372386.Google Scholar
Kirkwood, T. B. L., & Holliday, R. (1979). The evolution of ageing and longevity. Proceedings of the Royal Society of London B: Biological Sciences, 205, 531546.Google Scholar
Kochanek, K. D., Murphy, S. L., Xu, J., & Arias, E. (2014). Mortality in the United States, (178), 1–8. NCHS Data Brief. PMID: 25549183.Google Scholar
Kracke, W. (1979). Dreaming in Kagwahiv: Dream beliefs and their psychic uses in Amazonian culture. Psychoanalytical Study of Society, 8, 119171.Google Scholar
Krakow, B., & Zadra, A. (2010). Imagery rehearsal therapy: Principles and practice. Sleep Medicine Clinics, 4(2), 289298.Google Scholar
Kramer, M. (1993). The selective mood regulatory function of dreaming: An update and revision. In Moffit, A., Kramer, M., & Hoffman, R. (eds.), The Functions of Dreaming. Cambridge: State University of New York Press.Google Scholar
Kripke, D. F., Langer, R. D., Elliott, J. A., Klauber, M. R., & Rex, K. M. Mortality related to actigraphic long and short sleep. Sleep Medicine, 12,(1), 28–33.Google Scholar
Krueger, J. M., Obal, F., & Fang, J. (1999). Why we sleep: A theoretical view of sleep function. Sleep Medicine Reviews, 3(2), 119129.Google Scholar
Kuiken, D. L., & Sikora, S. (1993). The impact of dreams on waking thoughts and feelings. In Moffitt, A., Kramer, M., & Hoffman, R. (eds.), The Functions of Dreaming. Cambridge: State University of New York Press.Google Scholar
Kuiken, D. L., Nielsen, T. A., Thomas, S., & McTaggart, D. (1983). Comparisons of the story structure of archetypal dreams, mundane dreams, and myths. Sleep Research, 12, 196.Google Scholar
Kushida, C. A., Bergmann, B. M., & Rechtschaffen, A. (1989). Sleep deprivation in the rat: Paradoxical sleep deprivation. Sleep, 12, 2230.Google Scholar
LaBerge, S. P., Kahan, T. L., & Levitan, L. (1995). Cognition in dreaming and waking. Sleep Research, 24A, 239.Google Scholar
Lai, Y.-Y., & Siegel, J. (1999). Muscle atonia in REM sleep. In Inoue, S. (ed.), Rapid Eye Movement Sleep (pp. 6990). Cambridge: Dekker.Google Scholar
Lakoff, G. (2001). How metaphor structures dreams. The theory of conceptual metaphor applied to dream analysis. In Bulkeley, K. (ed.), Dreams: A Reader on Religious, Cultural and Psychological Dimensions of Dreaming (pp. 265284). Cambridge: Palgrave.Google Scholar
Laughlin, C. D. (2011). Communing with the Gods: Consciousness, Culture, and the Dreaming Brain. Cambridge: Daily Grail.Google Scholar
Ledoux, J. (ed.). (1996). The Emotional Brain. Cambridge: Simon and Schuster.Google Scholar
Li, W., Ma, L., Yang, G., & Gan, W. B. (2017). REM sleep selectively prunes and maintains new synapses in development and learning. Nature Neuroscience, 20(3), 427437. doi: 10.1038/nn.4479. Epub January 16, 2017. PMID: 28092659.Google Scholar
Lieberman, M. (2014) Social: Why Our Brains Are Wired to Connect. Cambridge: Broadway Books Inc.Google Scholar
Lincoln, J. S. (1935). The Dream in Primitive Cultures. Cambridge: Cresset Press.Google Scholar
Lohmann, R. (2003) Dream Travelers: Sleep Experiences and Culture in the Western Pacific. Cambridge: Palgrave Macmillan.CrossRefGoogle Scholar
Lyamin, O. I., Manger, P. R., Ridgeway, S. H., Mukhametov, L. M., & Siegel, J. M. (2008). Cetacean sleep: An unusual form of mammalian sleep. Neuroscience and Biobehavioral Reviews, 32, 14511484.Google Scholar
Lyamin, O. I. et al. (2016). Monoamine release during unihemispheric sleep and unihemispheric waking in the fur seal. Sleep, 39(3), 625636.Google Scholar
Lugaresi, E., Medori, R., Montagna, P., Baruzzi, A., Cortelli, P., Lugaresi, A., et al. (1986). Fatal familial insomnia and dysautonomia with selective degeneration of thalamic nuclei. New England Journal of Medicine, 315, 9971003.Google Scholar
Madsen, P. C., Holm, S., Vorstup, S., Friberg, L., Lassen, N. A. & Wildschiodtz, L. F. (1991) Human regional cerebral blood flow during rapid eye movement sleep. Journal of Cerebral Blood Flow and Metabolism, 11, 502507.Google Scholar
Mahowald, M. W., & Cramer Bornemann, M. A. (2011). Non-REM arousal parasomnias. In Kryger, M., Roth, T., & Dement, W. C. (eds.), Principles and Practice of Sleep Medicine (5th edn). Cambridge: W. B. Saunders Co.Google Scholar
Mahowald, M. W., & Schenck, C. H. (2011). REM sleep parasomnias. In Kryger, M., Roth, T., & Dement, W. C. (eds.), Principles and Practice of Sleep Medicine (5th edn). Cambridge: W. B. Saunders Co.Google Scholar
Manford, M., & Andermann, F. (1998) Complex visual hallucinations: Clinical and neurobiological insights. Brain, 121, 18191840.Google Scholar
Margoliash, D. (2005). Song learning and sleep. Nature Neuroscience, 8, 546548doi:10.1038/nn0505-546.Google Scholar
Maquet, P. (2000). Functional neuroimaging of normal human sleep by positron emission tomography. Journal of Sleep Research, 9, 207231.Google Scholar
Maquet, P., & Franck, G. (1997). REM sleep and amygdala. Molecular Psychiatry, 2(3), 195196.Google Scholar
Maquet, P., Smith, C., & Stickgold, R. (eds.) (2003). Sleep and Brain Plasticity. Cambridge: Oxford University Press.Google Scholar
Maquet, P., Degueldre, C., Delfiore, G., Aerts, J., Peters, J.M., Luxen, A., & Franck, G.(1997). Functional neuroanatomy of human slow wave sleep. The Journal of Neuroscience, 17, 28072812.Google Scholar
Maquet, P., Peters, J. M., Aerts, J., Delfiore, G., Degueldre, C., Luxen, A., & Franck, G. (1996). Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature, 383, 163–66.Google Scholar
Maquet, P., Ruby, P., Maudoux, A., Albouy, G., Sterpenich, V., Dang-Vu, T., Desseilles, M., Boly, M., Perrin, F., Peigneux, P., & Laureys, S. (2005). Human cognition during REM sleep and the activity profile within frontal and parietal cortices: A reappraisal of functional neuroimaging data. Progress in Brain Research, 150, 219227.Google Scholar
Maquet, P., Ruby, P., Schwartz, S., Laureys, S., Albouy, G., Dang-Vu, T., Desseilles, M., Boly, M., & Peigneux, P. (2004). Regional organisation of brain activity during paradoxical sleep (PS). Archives Italiennes de Biologie, 142(4), 413419.Google Scholar
Marks, G. A., Shaffrey, J. P., Oksenberg, A., Speciale, S. G., & Roffwarg, H. (1995). A functional role for REM sleep in brain maturation. Behavioural Brain Research, 69, 111.Google Scholar
Mars, R. B., Neubert, F. X., Noonan, M. P., Sallet, J., Toni, I., & Rushworth, M. F. (2012). On the relationship between the “default mode network” and the “social brain.”Frontiers in Human Neuroscience, 6, 189. doi: 10.3389/fnhum.2012.00189. eCollection 2012.Google Scholar
Matheson, E., & Hainer, B. L. (2017). Insomnia: Pharmacologic therapy. American Family Physician, 96(1), 2935. Review. PMID: 28671376.Google Scholar
McKenna, J. J., & Mosko, S. S. (1994). Sleep and arousal, synchrony and independence, among mothers and infants sleeping apart and together (same bed): An experiment in evolutionary medicine. Acta Paediatrica, 397, 94102.Google Scholar
McKenna, J. J., Mosko, S., Dungy, C., & McAninch, J. (1990). Sleep and arousal patterns of co-sleeping human mother/infant pairs: A preliminary physiological study with implications for the study of sudden infant death syndrome (SIDS). American Journal of Physical Anthropology, 83, 331347.Google Scholar
McKenna, J. J., Thoman, E. B., Anders, T. F., Sadeh, A., Schechtman, V. L., & Glotzbach, S. F. (1993). Infant- parent co-sleeping in an evolutionary perspective: Implications for understanding infant sleep development and the Sudden Infant Death Syndrome. Sleep, 16, 263282.Google Scholar
McNamara, K. (1997). Shapes of Time: The Evolution of Growth and Development. Cambridge: Johns Hopkins University Press.Google Scholar
McNamara, P. (2008). Nightmares: The Science and Solution of those Frightening Visions during Sleep. Cambridge: Praeger Perspectives.Google Scholar
McNamara, P. (2004). An Evolutionary Psychology of Sleep and Dreams. Cambridge: Praeger/Greenwood Press.Google Scholar
McNamara, P. (2000). Counterfactual thought in dreams. Dreaming, 10(4), 237246.Google Scholar
McNamara, P., Anderson, J., Clark, C., Zborowski, M., & Duffy, C. A. (2001). Impact of attachment styles on dream recall and dream content: A test of the attachment hypothesis of REM sleep. Journal of Sleep Research, 10, 117127.Google Scholar
McNamara, P., Ayala, R., & Minsky, A. (2014). REM sleep, dreams, and attachment themes across a single night of sleep: A pilot study. Dreaming, 24(4), 290.Google Scholar
McNamara, P., Belsky, J., & Fearon, P. (2003). Infant sleep disorders and attachment: Sleep problems in infants with insecure-resistant versus insecure-avoidant attachments to mother. Sleep and Hypnosis, 5(1), 716.Google Scholar
McNamara, P., Dowdall, J., & Auerbach, S. (2002). REM sleep, early experience, and the development of reproductive strategies. Human Nature, 13, 405435.Google Scholar
McNamara, P., Johnson, P., McLaren, D., Harris, E., Beauharnais, C., & Auerbach, S. (2010). REM and NREM sleep mentation. International Review of Neurobiology, 92, 6986.Google Scholar
McNamara, P., McLaren, D., Kowalczyk, S., & Pace-Schott, E. (2007). “Theory of Mind” in REM and NREM dreams. In Barrett, D. & McNamara, P. (eds.), The New Science of Dreaming: Volume I: Biological Aspects (pp. 201220). Cambridge: Praeger Perspectives.Google Scholar
McNamara, P., McLaren, D., Smith, D., Brown, A., & Stickgold, R. (2005). A “Jekyll and Hyde” within: Aggressive versus friendly social interactions in REM and NREM dreams. Psychological Science, 16(2), 130136. PMID: 15686579.Google Scholar
McNamara, P., Minsky, A., Pae, V., Harris, E., Pace-Schott, E., & Aurbach, S. (2015). Aggression in nightmares and unpleasant dreams and in people reporting recurrent nightmares. Dreaming, 25(3), 190205.Google Scholar
McNamara, P., Pace-Schott, E. F., Johnson, P., Harris, E., & Auerbach, S. (2011). Sleep architecture and sleep-related mentation in securely and insecurely attached young people. Attachment and Human Development, 13(2), 141154.Google Scholar
McNamara, P., Pae, V., Teed, B., Tripodis, Y., & Sebastian, A. (2016) Longitudinal studies of gender differences in cognitional process in dream content. Journal of Dream Research, 9(1). doi: hhtp://dx.doi.org/10.11.588/ijord.2016.Google Scholar
Merritt, J. M., Stickgold, R., Pace-Schott, E. F., Williams, J., & Hobson, J. A. (1994). Emotion profiles in the dreams of men and women. Consciousness and Cognition, 3, 4660.Google Scholar
Mikulincer, M., Shaver, P. R., & Avihou-Kanza, N. (2011). Individual differences in adult attachment are systematically related to dream narratives. Attachment & Human development, 13(2), 105123. doi:10.1080/14616734.2011.553918.Google Scholar
Mikulincer, M., Shaver, P. R., Sapir-Lavid, Y., & Avihou-Kanza, N. (2009). What’s inside the minds of securely and insecurely attached people? The secure-base script and its associations with attachment-style dimensions. Journal of Personality and Social Psychology, 97(4), 615. doi:10.1037/a0015649.Google Scholar
Mirmiran, M. (1995). The function of fetal/neonatal rapid eye movement sleep. Behavioural Brain Research, 69(1–2), 1322.Google Scholar
Mirmiran, M., Scholtens, J., van de Poll, N. E., Uylings, H. B., van der Gugten, J., & Boer, G. J. (1983). Effects of experimental suppression of active (REM) sleep during early development upon adult brain and behavior in the rat. Brain Research, 283, 277286.Google Scholar
Montangero, J., & Cavallero, C. (2015). What renders dreams more or less narrative? A microstructural study of REM and stage 2 dreams reported upon morning awakening. International Journal of Dream Research, 8(2), 105119.Google Scholar
Morrell, J., & Steele, H. (2003). The role of attachment security, temperament, maternal perception, and care-giving behavior in persistent infant sleeping problems. Infant Mental Health, 24(5), 447468.Google Scholar
Muzur, A., Pace-Schott, E. F., & Hobson, J. A. (2002) The prefrontal cortex in sleep. Trends in Cognitive Sciences, 16, 475481.Google Scholar
Nathanielsz, P. W. (1996). Life Before Birth: The Challenges of Fetal Development. Cambridge: W. H. Freeman.Google Scholar
Nielsen, T. A. (2000). A review of mentation in REM and NREM sleep: “Covert” REM sleep as a possible reconciliation of two opposing models. Behavioral and Brain Sciences, 23(6), 851866; discussion 904–1121.Google Scholar
Nielsen, T. A., Deslauriers, D., & Baylor, G. W. (1991). Emotions in dream and waking event reports. Dreaming, 1, 287300.Google Scholar
Nielsen, T. A., Kuiken, D., Hoffman, R., & Moffitt, A. (2001). REM and NREM sleep mentation differences: A question of story structure?Sleep and Hypnosis, 3(1), 917.Google Scholar
Nielsen, T. A., Kuiken, D., Alain, G., Stenstrom, P., & Powell, R. A. (2004). Immediate and delayed incorporations of events into dreams: Further replication and implications for dream function. Journal of Sleep Research, 13(4), 327336.Google Scholar
Nielsen, T. A., & Levin, R. (2007). Nightmares: A new neurocognitive model. Sleep Medicine Reviews, 11, 295310.Google Scholar
Nir, Y., & Tononi, G. (2010). Dreaming and the brain: From phenomenology to neurophysiology. Trends in Cognitive Science, 14(2), 88100. doi: 10.1016/j.tics.2009.12.001. Epub January 14, 2010.Google Scholar
Nofzinger, E. A., Buysse, D. J., Miewald, J. M., Meltzer, C. C., Price, J. C., Sembrat, R. C., Ombao, H., Reynolds, C. F., Monk, T. H., Hall, M., Kupfer, D. J., & Moore, R. Y. (2002) Human regional cerebral glucose metabolism during non-rapid eye movement sleep in relation to waking. Brain, 125, 11051115.Google Scholar
Nunn, C. L., McNamara, P., Capellini, I., Preston, B. T., & Barton, R. A. (2010). Primate sleep in phylogenetic perspective. In McNamara, P., Barton, R. A., & Nunn, C. L. (eds.), Evolution of Sleep: Phylogenetic and Functional Perspectives (pp. 123144). Cambridge: Cambridge University Press.Google Scholar
Nunn, C. L., Samson, D. R., & Krystal, A. D. (2016). Shining evolutionary light on human sleep and sleep disorders. Evolution, Medicine, and Public Health, (1), 227–243. doi: 10.1093/emph/eow018. Print 2016. Review. PMID: 27470330.Google Scholar
Oberst, U., Charles, C., & Chamarro, A. (2005). Influence of gender and age in aggressive dream content of Spanish children and adolescents. Dreaming, (15), 170–177.Google Scholar
Offenkrantz, W., & Rechtschaffen, A. (1963). Clinical studies of sequential dreams: A patient in psychotherapy. Archives of General Psychiatry, 8, 497508.Google Scholar
Ohayon, M. M., Carskadon, M. A., Guilleminault, C., & Vitiello, M. V. Meta-Analysis of quantitative sleep parameters from childhood to old age in healthy individuals: Developing normative sleep values across the human lifespan. Sleep, 27(7), 1255–1273.Google Scholar
Ohayon, M. M., Morselli, P. L., & Guilleminault, C. (1997). Prevalence of nightmares and their relationship to psychopathology and daytime functioning in insomnia subjects. Sleep, 20, 340348.Google Scholar
Oksenberg, A., Shaffery, J. P., Marks, G. A., Speciale, S. G., Mihailoff, G., & Roffwarg, H. P. (1996). Rapid eye movement sleep deprivation in kittens amplifies LGN cell-size disparity induced by monocular deprivation. Brain Research: Developmental Brain Research, 97, 5161.Google Scholar
Opp, M. R., & Krueger, J. M. (2015). Sleep and immunity: A growing field with clinical impact. Brain, Behavior, and Immunity, 47, 13. doi: 10.1016/j.bbi.2015.03.011. Epub April 4, 2015. PMID:25849976.Google Scholar
Oudiette, D., Dealberto, M. J., Uguccioni, G., Golmard, J. L., Merino-Andreu, M., Tafti, M., Garma, L., Schwartz, S., & Arnulf, I. (2012). Dreaming without REM sleep. Consciousness and Cognition, 21(3), 11291140. doi: 10.1016/j.concog.2012.04.010. Epub May 29.PMID:22647346.Google Scholar
Pace-Schott, E. F., & Picchioni, D. (2017). Neurobiology of dreaming. In Kryger, M., Roth, T., & Dement, W. C. (eds.)Principles and Practice of Sleep Medicine (6th edn, pp. 529538). Cambridge: Elsevier.Google Scholar
Pace-Schott, E. F. (2013). Dreaming as a story-telling instinct. Frontiers in Psychology, 4, 159. doi: 10.3389/fpsyg.2013.00159.Google Scholar
Pace-Schott, E. F., & Hobson, J. A. The neurobiology of sleep: Genetics, cellular physiology and subcortical networks. Nature Reviews Neuroscience, 3, 591–605.Google Scholar
Pack, A. I. (1995). The prevalence of work-related sleep problems. Journal of General Internal Medicine, 10(1), 57. PMID: 7699486.Google Scholar
Parker, J. D., & Blackmore, S. (2002). Comparing the contents of sleep paralysis and dream reports. Dreaming, 12(1), 4559.Google Scholar
Peluso, D. M. (2004). “That which I dream is true”: Dream narratives in an Amazonian community. Dreaming, 14(2–3), 107119.Google Scholar
Peña, M. M., Rifas-Shiman, S. L., Gillman, M. W., Redline, S., & Taveras, E. M. (2016). Racial/ethnic and socio-contextual correlates of chronic sleep curtailment in childhood. Sleep, 39(9), 16531661.Google Scholar
Perogamvrosa, L., & Schwartz, S. (2012). The roles of the reward system in sleep and dreaming. Neuroscience and Biobehavioral Reviews, 36, 19341951.Google Scholar
Plihal, W., & Born, J. (1997). Effects of early and late nocturnal sleep on declarative and procedural memory. Journal of Cognitive Neuroscience, 9, 534547.Google Scholar
Preston, B. T., Capellini, I., McNamara, P., Barton, R. A., & Nunn, C. L. (2009). Parasite resistance and the adaptive significance of sleep. BMC Evolutionary Biology, 9(7). PMID: 19134175.Google Scholar
Proud, L. (2009). Dark Intrusions. Cambridge: Anomalist Books.Google Scholar
Rattenborg, N. C., Amlaner, C. J., & Lima, S. L. (2000). Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neuroscience and Biobehavioral Reviews, 24, 817842.Google Scholar
Rattenborg, N. C., Martinez-Gonzalez, D., & Lesku, J. A. Avian sleep homeostasis: Convergent evolution of complex brains, cognition and sleep functions in mammals and birds. Neuroscience and Biobehavioral Reviews, 33, 253–270.Google Scholar
Rechtschaffen, A., Bergmann, B. M., Everson, C. A., Kushida, C. A., & Gilliland, M. A. Sleep deprivation in the rat. Sleep, 12(1), 68–87.Google Scholar
Reite, M., & Short, R. (1978). Nocturnal sleep in separated monkey infants. Archives of General Psychiatry, 35, 12471253.Google Scholar
Reite, M., Stynes, A. J., Vaughn, L., Pauley, J. D., & Short, R. A. (1976). Sleep in infant monkeys: Normal values and behavioral correlates. Physiology and Behavior, 16(3), 245251.Google Scholar
Resnick, J., Stickgold, R., Rittenhouse, C. D., & Hobson, J. A. (1994) Self-representation and bizarreness in children’s dream reports collected in the home setting. Consciousness and Cognition, 3, 3045.Google Scholar
Revonsuo, A. (2000). The reinterpretation of dreams: An evolutionary hypothesis of the function of dreaming. Behavioral and Brain Sciences, 23, 877901; discussion 904–1121.Google Scholar
Revonsuo, A., Tuominen, J. & Valli, K. (2015). The avatars in the machine- dreaming as a simulation of social reality. In Metzinger, T. & Windt, J. M. (eds), Open MIND: 32(T) (pp. 128). Cambridge. doi: 10.15502/9783958570375.Google Scholar
Runyan, M. (2010). Do twins dream twin dreams? A quantitative comparison with singles’ dreams (UMI Number: 3389215 ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106–1346).Google Scholar
Sándor, P., Szakadát, S., & Bódizs, R. (2014). Ontogeny of dreaming: A review of empirical studies. Sleep Medicine Reviews. 18(5), 435449. doi: 10.1016/j.smrv.2014.02.001. Epub February 12, 2014. Review. PMID: 24629827.Google Scholar
Sagi, A., van Ijzendoorn, M. H., Aviezer, O., Donnell, F., & Mayseless, O. (1994). Sleeping out of home in a Kibbutz communal arrangement: It makes a difference for infant-mother attachment. Child Development, 65(4), 9921004.Google Scholar
Salzarulo, P., & Ficca, G. (eds.). (2002). Awakening and Sleep Cycle across Development. Cambridge: John Benjamins.Google Scholar
Samson, D. R., Crittenden, A. N., Mabulla, I. A., Mabulla, A. Z., & Nunn, C. L. (2017). Hadza sleep biology: Evidence for flexible sleep-wake patterns in hunter-gatherers. American Journal of Physical Anthropology, 162(3), 573582. doi: 10.1002/ajpa.23160. Epub January 7, 2017. PMID: 28063234.Google Scholar
Samson, D. R., & Nunn, C. L. (2015). Sleep intensity and the evolution of human cognition. Evolutionary Anthropology, 24(6), 225237. doi: 10.1002/evan.21464. PMID: 26662946.Google Scholar
Saper, C. B., Scammell, T. E., & Lu, J. (2005). Hypothalamic regulation of sleep and circadian rhythms. Nature, 437(7063), 12571263.Google Scholar
Scher, A. (2001). Attachment and sleep: a study of night waking in 12-month-old infants. Development Psychobiology, 38(4), 274–85.Google Scholar
Schouten, D.I., Pereira, S. I., Tops, M., & Louzada, F. M. (2017). State of the art on targeted memory reactivation: Sleep your way to enhanced cognition. Sleep Medicine Reviews, 32, 123131. doi: 10.1016/j.smrv.2016.04.002. Epub April 21, 2016. Review. PMID: 27296303.Google Scholar
Schredl, M., & Hofmann, F. (2003). Continuity between waking activities and dream activities. Consciousness and Cognition, 12(2), 298308. 10.1016/S1053–8100(02)00072–7.Google Scholar
Schwartz, S., & Maquet, P. (2002). Sleep imaging and the neuro-psychological assessment of dreams. Trends in Cognitive Science, 6(1), 2330. PMID:11849612.Google Scholar
Schweickert, R. (2007). Social networks of characters in dreams. In Barrett, D. & McNamara, P. (eds.), The New Science of Dreaming. Cambridge: Praeger.Google Scholar
Sejnowski, T. J., & Destexhe, A. (2000). Why do we sleep?Brain Research, 886(1–2), 208223.Google Scholar
Selterman, D. F., Apetroaia, A. I., Riela, S., & Aron, A. (2014). Dreaming of you: Behavior and emotion in dreams of significant others predict subsequent relational behavior. Social Psychological and Personality Science, 5(1), 111118. doi: 10.1177/1948550613486678.Google Scholar
Selterman, D., Apetroaia, A., & Waters, E. (2012). Script-like attachment representations in dreams containing current romantic partners. Attachment and Human Development, 14, 501515. doi:10.1080/14616734.2012.706395.Google Scholar
Selterman, D., & Drigotas, S. (2009). Attachment styles and emotional content, stress, and conflict in dreams of romantic partners. Dreaming, 19, 135151. doi: 10.1037/a0017087.Google Scholar
Shein-Idelson, M., Ondracek, J., Liaw, H.-P., Reiter, S., & Laurent, G. (2016). Slow waves, sharp-waves, ripples and REM in sleeping dragons. Science, 29.Google Scholar
Siclari, F., Khatami, R., Urbaniok, F., Nobili, L., Mahowald, M. W., Schenck, C. H., Cramer Bornemann, M. A., & Bassetti, C. L. (2010). Violence in sleep. Brain, 133(12), 34943509. doi: 10.1093/brain/awq296.Google Scholar
Siclari, F., Baird, B., Perogmvros, L., Bernardi1, G., LaRocque, J., Riedner, B., Boly, M., Postle, B., & Tononi, G. (2017). The neural correlates of dreaming. Nature Neuroscience; published online April 10, 2017; doi:10.1038/nn.4545.Google Scholar
Siegel, J. M. (2008). Do all animals sleep?Trends in Neuroscience, 31(4), 208213.Google Scholar
Siegel, J. M. (2005). Clues to the functions of mammalian sleep. Nature, 437, 12641271.Google Scholar
Simard, V., Chevalier, V., & Bédard, M. M. (2017). Sleep and attachment in early childhood: a series of meta-analyses. Attachment and Human Development, 19(3), 298321. doi: 10.1080/14616734.2017.1293703. Epub February 20, 2017. PMID: 28277095.Google Scholar
Smith, C. (1995). Sleep states and memory processes. Behavioural Brain Research, 69(1–2), 137145.Google Scholar
Smith, C. (1996). Sleep states, memory processes and synaptic plasticity. Behavioural Brain Research, 78, 4956.Google Scholar
Smith, M. R., Antrobus, J. S., Gordon, E., Tucker, M. A., Hirota, Y., Wamsley, E. J., Ross, L., Doan, T., Chaklader, A., & Emery, R. N. (2004). Motivation and affect in REM sleep and the mentation reporting process. Conscious and Cognition, 13(3), 501511.Google Scholar
Solms, M. (1997). The Neuropsychology of Dreams. Cambridge: Lawrence Erlbaum.Google Scholar
Solms, M. (2000). Dreaming and REM sleep are controlled by different brain mechanisms. Behavioral and Brain Sciences, 23, 843850; discussion 904–1121.Google Scholar
Spoormaker, V. I., Schredl, M., & van den Bout, J. (2006). Nightmares: From anxiety symptom to sleep disorder. Sleep Medicine Reviews, 10(1), 1931.Google Scholar
Spoormaker, V. (2008). A cognitive model of recurrent nightmares. International Journal of Dream Research, 1(1), 1522.Google Scholar
Stepansky, R., Holzinger, B., Schmeiser-Rieder, A., Saletu, B., Kunze, M., & Zeitlhofer, J. (1998). Austrian dream behavior: Results of a representative population survey. Dreaming, 8, 2330.Google Scholar
Stickgold, R. (2013). Parsing the role of sleep in memory processing. Current opinion in neurobiology, 23(5), 847853.Google Scholar
Stickgold, R. (2005). Sleep-dependent memory consolidation. Nature, 437, 12721278.Google Scholar
Stickgold, R., Scott, L., Fosse, R., & Hobson, J. A. (2001). Brain-mind states: Longitudinal field study of wake-sleep factors influencing mentation report length. Sleep, 24(2), 171179.Google Scholar
Stickgold, R., Scott, L., Rittenhouse, C., & Hobson, J. A. (1998). Sleep induced changes in associative memory. Journal of Cognitive Neuroscience, 11, 182193.Google Scholar
Stickgold, R, & Walker, M. P. (2005). Memory consolidation and reconsolidation: What is the role of sleep?Trends in Neuroscience, 28(8), 408145. Review. PMID: 15979164.Google Scholar
Stickgold, R., & Walker, M. P. (2013). Sleep-dependent memory triage: evolving generalization through selective processing. Nature Neuroscience, 16(2), 139145. doi: 10.1038/nn.3303. Epub January 28, 2013. Review. PMID: 23354387.Google Scholar
Stranges, S., Tigbe, W., Gómez-Olivé, F. X., Thorogood, M., & Kandala, N. B. (2012). Sleep problems: An emerging global epidemic?Sleep, 35(8), 11731181. doi: 10.5665/sleep.2012. PMID: 22851813.Google Scholar
Strauch, I. (2005) REM dreaming in the transition from late childhood to adolescence: a longitudinal study. Dreaming, 15, 155169.Google Scholar
Strauch, I., & Meier, B. (1996). In Search of Dreams: Results of Experimental Dream Research. Cambridge: State University of New York PressGoogle Scholar
Steiger, A. (2003). Sleep and endocrinology. Journal of Internal Medicine, 254, 1322.Google Scholar
Stearns, S. (1992). The evolution of life histories. Cambridge: Oxford University Press.Google Scholar
Strecker, R. E., Basheer, R., McKenna, J. T, & McCarley, R. W. (2006). Another chapter in the adenosine story. Sleep, 29(4), 426428.Google Scholar
Tafti, M., & Franken, P. (2002). Invited review: Genetic dissection of sleep. Journal of Applied Physiology, 92, 13391347.Google Scholar
Tedlock, B. (1987). Dreaming and dream research. In Tedlock, B. (ed.), Dreaming: Anthropological and Psychological Interpretations (pp. 130). Cambridge: Cambridge University Press.Google Scholar
Tedlock, B. (1992). Dreaming: Anthropological and Psychological Interpretations. Cambridge: School of America Research Press.Google Scholar
Terzano, M. G., Mancia, D., Salati, M. R., Costani, G., Decembrino, A., & Parrino, L. (1985). The cyclic alternating pattern as a physiologic component of normal NREM sleep. Sleep, 8(2), 137145.Google Scholar
Tononi, G., & Cirelli, C. (2006). Sleep function and synaptic homeostasis. Sleep Medicine Reviews, 10(2006), 4962.Google Scholar
Trivers, R. L. (1974). Parent offspring conflict. American Zoologist, 14, 249264.Google Scholar
Trosman, H., Rechtschaffen, A., Offenkrantz, W., & Wolpert, E. (1960). Studies in psychophysiology of dreams: Relations among dreams in sequence. Archives of General Psychiatry, 3, 602607.Google Scholar
Troxel, W. M. (2010). It’s more than sex: Exploring the dyadic nature of sleep and implications for health. Psychosomatic Medicine, 72(6), 578586. doi: 10.1097/PSY.0b013e3181de7ff8. Epub May 13, 2010. Review. PMID: 20467000.Google Scholar
Troxel, W. M., Trentacosta, C. J., Forbes, E. E., & Campbell, S. B. (2013). Negative emotionality moderates associations among attachment, toddler sleep, and later problem behaviors. Journal of Family Psychology, 27(1), 127136.Google Scholar
Tucci, V. (2016) Genomic imprinting: A new epigenetic perspective of sleep regulation. PLOS Genetics, 12(5), e1006004. https://doi.org/10.1371/journal.pgen.1006004.Google Scholar
Ubeda, F., & Gardner, A. (2010). A model for genomic imprinting in the social brain: Juveniles. Evolution, 64, 25872600.Google Scholar
Ubeda, F., & Gardner, A. (2011). A model for genomic imprinting in the social brain: Adults. Evolution, 65, 462475.Google Scholar
Uguccioni, G., Golmard, J.-L., de Fontréaux, A. N., Leu-Semenescu, S., Brion, A., & Arnulf, I. (2013). Fight or flight? Dream content during sleepwalking/sleep terrors vs. rapid eye movement sleep behavior disorder. Sleep Medicine, 14(5), 391398.Google Scholar
Van de Castle, R. (1994). Our Dreaming Mind. Cambridge: Ballantine.Google Scholar
Van de Castle, R. (1970). Temporal patterns of dreams. In Hartmann, E. (ed.), Sleep and Dreaming (pp. 171181). Cambridge: Little, Brown.Google Scholar
Van der Helm, E., & Walker, M. P. (2011a). Sleep and emotional memory processing. Sleep Medicine Clinics, 6(1), 3143. PMID:25285060.Google Scholar
van der Helm, E., Yao, J., Dutt, S., Rao, V., Saletin, J. M., & Walker, M. P. (2011b) REM sleep de-potentiates amygdala activity to previous emotional experiences. Current Biology, 21(23), 20292032.Google Scholar
Vela-Bueno, A., Kales, A., Soldatos, C. R., Dobladez-Blanco, B., Campos-Castello, J., Espino-Hurtado, P., et al. (1984). Sleep in the Prader-Willi syndrome: Clinical and polygraphic findings. Archives of Neurology, 41(3), 294296.Google Scholar
Velasquez-Moctezuma, J., Salazar, E. D., & Retana-Marquez, S. (1996). Effects of short- and long-term sleep deprivation on sexual behavior in male rats. Physiology and Behavior, 59, 277281.Google Scholar
Verdone, P. (1965). Temporal reference of manifest dream content. Perceptual and Motor Skills, 20, 12531268.Google Scholar
Verrier, R. L., Muller, J. E., & Hobson, J. A. (1996). Sleep, dreams, and sudden death: The case for sleep as an autonomic stress test for the heart. Cardiovascular Research, 31(2), 181211. Review. PMID: 8730394.Google Scholar
Vgontzas, A. N., Kales, A., Seip, J., Mascari, M. J., Bixler, E. O., Myers, D. C., et al. (1996). Relationship of sleep abnormalities to patient genotypes in Prader-Willi syndrome. American Journal of Medical Genetics, 67, 478482.Google Scholar
Vogel, G., & Hagler, M. (1996). Effects of neonatally administered iprindole on adult behaviors of rats. Pharmacology, Biochemistry, and Behavior, 55(1), 157161.Google Scholar
Vogel, G. W. (1999). REM sleep deprivation and behavioral changes. In Inoue, S. (ed.), Rapid Eye Movement sleep (pp. 355366). Cambridge: Dekker.Google Scholar
Wagner, U., Gais, S., & Born, J. (2001). Emotional memory formation is enhanced across sleep intervals with high amounts of rapid eye movement sleep. Learning and Memory, 8(2), 112119.Google Scholar
Wagner, U., Gais, S., Haider, H., Verleger, R., & Born, J. (2004). Sleep inspires insight. Nature, 427, 352355.Google Scholar
Walker, M. P. (2005). A refined model of sleep and the time course of memory formation. Behavioral and Brain Sciences, 28(1), 5164; discussion 64–104. Review. PMID:16047457.Google Scholar
Walker, M. P., & Stickgold, R. Sleep-dependent learning and memory consolidation. Neuron, 44, 121–133.Google Scholar
Walker, M. P., & Stickgold, R. (2006). Sleep, memory, and plasticity. Annual Review of Psychology, 57, 139166. Review. PMID: 16318592.Google Scholar
Walker, M. P., Brakefield, T., Morgan, A., Hobson, J. A.,& Stickgold, R. (2002). Practice with sleep makes perfect: Sleep-dependent motor skill learning. Neuron, 35, 205211.Google Scholar
Werth, E., Achermann, P., & Borbely, A. A. (1996). Brain topography of the human sleep EEG: Antero-posterior shifts of spectral power. NeuroReport, 8, 123127.Google Scholar
Werth, E., Achermann, P., & Borbely, A. A. (1997). Fronto-occipital EEG power gradients in human sleep. Journal of Sleep Research, 6, 102112.Google Scholar
White, H. (1999). Figural Realism: Studies in Mimesis Effect. Cambridge: Johns Hopkins University Press.Google Scholar
Wilson, M. A., & McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science, 265, 676679.Google Scholar
Windt, J. M. (2015). Dreaming: A Conceptual Framework for Philosophy of Mind and Empirical Research. Cambridge: MIT Press.Google Scholar
Winget, C., & Kramer, M. (1979). Dimensions of the Dream. Cambridge: University of Florida Press.Google Scholar
Winson, J. (1985). Brain and Psyche. Cambridge: Doubleday.Google Scholar
Yetish, G., Kaplan, H., Gurven, M., et al. (2015) Natural sleep and its seasonal variations in three pre-industrial societies. Current Biology, 25, 28622868.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Patrick McNamara, Boston University
  • Book: The Neuroscience of Sleep and Dreams
  • Online publication: 15 February 2019
  • Chapter DOI: https://doi.org/10.1017/9781316817094.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Patrick McNamara, Boston University
  • Book: The Neuroscience of Sleep and Dreams
  • Online publication: 15 February 2019
  • Chapter DOI: https://doi.org/10.1017/9781316817094.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Patrick McNamara, Boston University
  • Book: The Neuroscience of Sleep and Dreams
  • Online publication: 15 February 2019
  • Chapter DOI: https://doi.org/10.1017/9781316817094.016
Available formats
×