Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T10:04:01.371Z Has data issue: false hasContentIssue false

Section 1 - Overview

Published online by Cambridge University Press:  02 April 2019

Robert T. Means Jr
Affiliation:
East Tennessee State University
Get access
Type
Chapter
Information
Nutritional Anemia
Scientific Principles, Clinical Practice, and Public Health
, pp. 1 - 50
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Greer, J. P., Arber, D. A., Glader, B., et al. Wintrobe's Clinical Hematology. 13th edn. Philadelphia: Wolters Klumer/Lippincott Williams & Wilkins, 2014.Google Scholar
Narla, M., Gallagher, P. G. Red cell membrane: past, present, and future. Blood. 2008;112(10):3939–48.Google Scholar
Daniels, G. Functions of red cell surface proteins. Vox Sang. 2007;93(4):331–40.CrossRefGoogle ScholarPubMed
Prchal, J. T., Gregg, X. T. Red cell enzymes. Hematology Am Soc Hematol Education Program. 2005:1923.CrossRefGoogle ScholarPubMed
van Wijk, R., van Solinge, W. W. The energy-less red blood cell is lost: erythrocyte enzyme abnormalities of glycolysis. Blood. 2005;106(13):4034–42.CrossRefGoogle ScholarPubMed
Yonetani, T., Park, S. I., Tsuneshige, A., Imai, K., Kanaori, K. Global allostery model of hemoglobin. Modulation of O(2) affinity, cooperativity, and Bohr effect by heterotropic allosteric effectors. J Biol Chem. 2002;277(37):34508–20.Google Scholar
Siems, W. G., Sommerburg, O., Grune, T. Erythrocyte free radical and energy metabolism. Clin Nephrol. 2000;53(1 Suppl):S917.Google ScholarPubMed
Joiner, C. H., Lauf, P. K. Ouabain binding and potassium transport in young and old populations of human red cells. Membr Biochem. 1978;1(3–4):187202.CrossRefGoogle Scholar
Nakahata, T., Ogawa, M. Identification in culture of a class of hematopoietic colony-forming units with extensive capability to self-renew and generate multipotential hemopoietic colonies. Proc Natl Acad Sci USA. 1982;79:3843–7.CrossRefGoogle ScholarPubMed
Leary, A. G., Ogawa, M., Strauss, L. C., Civin, C. I. Single cell origin of multilineage colonies in culture. Evidence that differentiation of multipotent progenitors and restriction of proliferative potential of monopotent progenitors are stochastic processes. J Clin Invest. 1984;74(6):2193–7.CrossRefGoogle ScholarPubMed
Eaves, A. C., Eaves, C. J. Erythropoiesis in culture. Clin Haematol. 1984;13:371–91.CrossRefGoogle ScholarPubMed
Koury, S. T., Koury, M. J., Bondurant, M. C. Cytoskeletal distribution and function during the maturation and enucleation of mammalian erythroblasts. J Cell Biol. 1989;109(6 Pt 1):3005–13.CrossRefGoogle ScholarPubMed
Muta, K., Krantz, S. B., Bondurant, M. C., Wickrema, A. Distinct roles of erythropoietin, insulin-like growth factor, and stem cell factor in the development of erythroid progenitor cells. J Clin Invest. 1994;94:3443.CrossRefGoogle ScholarPubMed
Hsia, C. C. Respiratory function of hemoglobin. N Engl J Med. 1998;338(4):239–47.CrossRefGoogle ScholarPubMed
Henry, E. R., Bettati, S., Hofrichter, J., Eaton, W. A. A tertiary two-state allosteric model for hemoglobin. Biophys Chem. 2002;98(1–2):149–64.CrossRefGoogle ScholarPubMed
Means, R. T. J. It all started in New Orleans: Wintrobe, the hematocrit and the definition of normal. Am J Med Sci. 2011;341(1):64–5.CrossRefGoogle ScholarPubMed
Nkrumah, B., Nguah, S. B., Sarpong, N., et al. Hemoglobin estimation by the HemoCue(R) portable hemoglobin photometer in a resource poor setting. BMC Clin Pathol. 2011;11(1):5.CrossRefGoogle Scholar
Riegger, L., Grumann, M., Steigert, J., et al. Single-step centrifugal hematocrit determination on a $10 processing device. Biomed Microdevices. 2007;9(6):795–9.CrossRefGoogle ScholarPubMed
Khusun, H., Yip, R., Schultink, W., Dillon, D. H. World Health Organization hemoglobin cut-off points for the detection of anemia are valid for an Indonesian population. J Nutr. 1999;129(9):1669–74.CrossRefGoogle ScholarPubMed
Wintrobe, M. M. The erythrocyte in man. Medicine. 1930;9(2):195.CrossRefGoogle Scholar
Dallman, P. R., Yip, R., Johnson, C. Prevalence and causes of anemia in the United States, 1976 to 1980. Am J Clin Nutr. 1984;39(3):437–45.Google ScholarPubMed
Guralnik, J. M., Eisenstaedt, R. S., Ferrucci, L., Klein, H. G., Woodman, R. C. Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia. Blood. 2004;104(8):2263–8.CrossRefGoogle ScholarPubMed
Lipschitz, D. A., Udupa, K. B., Milton, K. Y., Thompson, C. O. Effect of age on hematopoiesis in man. Blood. 1984;63(3):502–9.CrossRefGoogle ScholarPubMed
Yip, R., Johnson, C., Dallman, P. R. Age-related changes in laboratory values used in the diagnosis of anemia and iron deficiency. Am J Clin Nutr. 1984;39(3):427–36.Google ScholarPubMed
Ferrucci, L., Guralnik, J. M., Woodman, R. C., et al. Proinflammatory state and circulating erythropoietin in persons with and without anemia. Am J Med. 2005;118(11):1288.CrossRefGoogle ScholarPubMed
Ble, A., Fink, J. C., Woodman, R. C., et al. Renal function, erythropoietin, and anemia of older persons: the InCHIANTI study. Arch Intern Med. 2005;165(19):2222–7.CrossRefGoogle ScholarPubMed
Saarinen, U. M., Siimes, M. A. Developmental changes in red blood cell counts and indices of infants after exclusion of iron deficiency by laboratory criteria and continuous iron supplementation. J Pediatr. 1978;92(3):412–6.CrossRefGoogle ScholarPubMed
Card, R. T., Brain, M. C. The “anemia” of childhood: evidence for a physiologic response to hyperphosphatemia. N Engl J Med. 1973;288(8):388–92.CrossRefGoogle Scholar
Hows, J., Hussein, S., Hoffbrand, A. V., Wickramasinghe, S. N. Red cell indices and serum ferritin levels in children. J Clin Pathol. 1977;30(2):181–3.CrossRefGoogle ScholarPubMed
Gofin, R., Palti, H., Adler, B. Time trends of haemoglobin levels and anaemia prevalence in infancy in a total community. Public Health. 1992;106(1):11–8.CrossRefGoogle Scholar
Bao, W., Dalferes, E. R., Jr., Srinivasan, S. R., Webber, L. S., Berenson, G. S. Normative distribution of complete blood count from early childhood through adolescence: the Bogalusa Heart Study. Prev Med. 1993;22(6):825–37.CrossRefGoogle ScholarPubMed
Lund, C. J., Sisson, T. R. Blood volume and anemia of mother and baby. Am J Obstet Gynecol. 1958;76(5):1013–24.CrossRefGoogle ScholarPubMed
Griswold, J. A., Anglin, B. L., Love, R. T., Jr., Scott-Conner, C. Hypertonic saline resuscitation: efficacy in a community-based burn unit. South Med J. 1991;84(6):692–6.CrossRefGoogle Scholar
Fawcett, J. W. V. Effects of posture on plasma volume and some blood constituents. J Clin Pathol. 1960;13:304–10.CrossRefGoogle ScholarPubMed
Hillman, R. S. Characteristics of marrow production and reticulocyte maturation in normal man in response to anemia. J Clin Invest. 1969;48(3):443–53.CrossRefGoogle ScholarPubMed
Bessman, J. D., Gilmer, P. R., Jr., Gardner, F. H. Improved classification of anemias by MCV and RDW. Am J Clin Pathol. 1983;80(3):322–6.CrossRefGoogle ScholarPubMed
Bessman, J. D., Gilmer, P. R., Jr., Gardner, F. H. Too early to put down RDW for discriminating iron deficiency and thalassemia. Am J Clin Pathol. 1986;86(5):693–5.CrossRefGoogle ScholarPubMed
Ganzoni, A., Hillman, R. S., Finch, C. A. Maturation of the macroreticulocyte. Br J Haematol. 1969;16(1):119–35.CrossRefGoogle ScholarPubMed
Wiktor-Jedrzejczak, W., Szczylik, C., Siekierzynski, M., Rychowiecka, E. Critical evaluation of the usefulness of different reticulocyte parameters in monitoring the erythropoiesis reaction to cancer chemotherapy. Arch Geschwulstforsch. 1982;52(4):303–6.Google ScholarPubMed
Stabler, S. P., Allen, R. H., Savage, D. G., Lindenbaum, J. Clinical spectrum and diagnosis of cobalamin deficiency. Blood. 1990;76(5):871–81.CrossRefGoogle ScholarPubMed
Thompson, W. G., Cassino, C., Babitz, L., et al. Hypersegmented neutrophils and vitamin B12 deficiency. Hypersegmentation in B12 deficiency. Acta Haematol. 1989;81(4):186–91.CrossRefGoogle ScholarPubMed
Weintraub, L. R. The continuing saga of the sideroblast. N Engl J Med. 1970;283(9):486–7.CrossRefGoogle ScholarPubMed
Budde, R., Hellerich, U. Alcoholic dyshaematopoiesis: morphological features of alcohol-induced bone marrow damage in biopsy sections compared with aspiration smears. Acta Haematol. 1995;94(2):74–7.CrossRefGoogle ScholarPubMed
Smith, R. R., Spivak, J. L. Marrow cell necrosis in anorexia nervosa and involuntary starvation. Br J Haematol. 1985;60(3):525–30.CrossRefGoogle ScholarPubMed
Koca, E., Buyukasik, Y., Cetiner, D., et al. Copper deficiency with increased hematogones mimicking refractory anemia with excess blasts. Leuk Res. 2008;32(3):495–9.CrossRefGoogle ScholarPubMed
Spivak, J. L. Masked megaloblastic anemia. Arch Int Med. 1982;142:2111–4.CrossRefGoogle ScholarPubMed

References

de Benoist, B., McLean, E., Egil, I., Cogswell, M. Worldwide Prevalence of Anaemia 1993–2005: WHO Global Database on Anaemia. Geneva: World Health Organization, 2008.Google Scholar
World Health Organization. The World Health Report 2002: Reducing risks, promoting healthy life. Geneva: World Health Organization, 2002.Google Scholar
van Hensbroek, M. B., Jonker, F., Bates, I. Severe acquired anaemia in Africa: new concepts. Brit J Haematol 2011;154:690695.CrossRefGoogle ScholarPubMed
Luzzatto, L., Fasola, F., Tshilolo, L. Haematology in Africa. Brit J Haematol 2011;154:777782.CrossRefGoogle ScholarPubMed
Ettling, J. The Germ of Laziness: Rockefeller Philanthropy and Public Health in the New South. Cambridge: Harvard University Press, 1981.CrossRefGoogle Scholar
Resnick, B., Sabol, V., Galik, E., Gruber-Baldini, A. L. The impact of anemia on nursing home residents. Clin Nurs Res 2010;19:113130.CrossRefGoogle ScholarPubMed
Spence, R. K. The economic burden of anemia in heart failure. Heart Fail Clin 2010;6:373383.CrossRefGoogle ScholarPubMed
Ershler, W. B., Chen, K., Reyes, E. B., Dubois, R. Economic burden of patients with anemia in selected diseases. Value Health 2005;8:629638.CrossRefGoogle ScholarPubMed
Balarajan, Y., Ramakrishnan, U., Ozaltin, E., Shankar, A. H., Subramanian, S. V. Anaemia in low-income and middle-income countries. The Lancet 2011;378:2123–35.CrossRefGoogle ScholarPubMed
Tuntipopipat, S., Judprasong, K., Zeder, C., et al. Chili, but not turmeric, inhibits iron absorption in young women from an iron-fortified composite meal. J Nutr 2006;136:29702974.CrossRefGoogle Scholar
Zimmermann, M. B., Hurrell, R. F. Nutritional iron deficiency. Lancet 2007;370:511520.CrossRefGoogle ScholarPubMed
Haas, J. D., Brownlie, T. Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship. J Nutr 2001;131:676S–688S.CrossRefGoogle ScholarPubMed
Brownlie, T., Utermohlen, V., Hinton, P. S., Haas, J. D. Tissue iron deficiency without anemia impairs adaptation in endurance capacity after aerobic training in previously untrained women. Am J Clin Nutr 2004;79:437443.CrossRefGoogle ScholarPubMed
Brownlie, T., Utermohlen, V., Hinton, P. S., Giordano, C., Haas, J. D. Marginal iron deficiency without anemia impairs aerobic adaptation among previously untrained women. Am J Clin Nutr 2002;75:734742.CrossRefGoogle ScholarPubMed
Edgerton, V. R., Gardner, G. W., Ohira, Y., Gunawardena, K. A., Senewiratne, B. Iron-deficiency anaemia and its effect on worker productivity and activity patterns. Br Med J 1979;2:15461549.CrossRefGoogle ScholarPubMed
Li, R., Chen, X., Yan, H. et al. Functional consequences of iron supplementation in iron-deficient female cotton mill workers in Beijing, China. Am J Clin Nutr 1994;59:908913.CrossRefGoogle ScholarPubMed
Basta, S. S., Soekirman, S., Karyadi, D., Scrimshaw, N. S. Iron deficiency anemia and the productivity of adult males in Indonesia. Am J Clin Nutr 1979;32:916925.CrossRefGoogle ScholarPubMed
Horton, S., Ross, J. The economics of iron deficiency. Food Policy 2003;28:5175.CrossRefGoogle Scholar
Horton, S., Ross, J. Corrigendum to: “The economics of iron deficiency [Food Policy 28 (2003) 51–75].” Food Policy 2007;32:141143.CrossRefGoogle Scholar
Nissenson, A. R., Wade, S., Goodnough, T., Knight, K., Dubois, R. W. Economic burden of anemia in an insured population. J Manag Care Pharm 2005;11:565574.Google Scholar
Steketee, R. W., Nahlen, B. L., Parise, M. E., Menendez, C. The burden of malaria in pregnancy in malaria-endemic areas. Am J Trop Med Hyg 2001;64:2835.CrossRefGoogle ScholarPubMed
Brabin, B. J., Premji, Z., Verhoeff, F. An analysis of anemia and child mortality. J Nutr 2001;131:636S–648S.Google ScholarPubMed
Grantham-McGregor, S., Ani, C. A review of studies on the effect of iron deficiency on cognitive development in children. J Nutr 2001;131:649S–666S.CrossRefGoogle ScholarPubMed
Zakai, N. A., Katz, R., Hirsch, C. et al. A prospective study of anemia status, hemoglobin concentration, and mortality in an elderly cohort: the Cardiovascular Health Study. Arch Intern Med 2005;165:22142220.CrossRefGoogle Scholar
Sabol, V. K., Resnick, B., Galik, E. et al. Anemia and its impact on function in nursing home residents: what do we know? J Am Acad Nurse Pract 2010;22:316.CrossRefGoogle ScholarPubMed
Herzog, C. A., Muster, H. A., Li, S., Collins, A. J. Impact of congestive heart failure, chronic kidney disease, and anemia on survival in the Medicare population. J Card Fail 2004;10:467472.CrossRefGoogle ScholarPubMed
Morrison, J., Patel, S. T., Watson, W. et al. Assessment of the prevalence and impact of anemia on women hospitalized for gynecologic conditions associated with heavy uterine bleeding. J Reprod Med 2008;53:323330.Google ScholarPubMed
James, A. H., Patel, S. T., Watson, W. et al. An assessment of medical resource utilization and hospitalization cost associated with a diagnosis of anemia in women with obstetrical bleeding in the United States. J Womens Health (Larchmt) 2008;17:12791284.CrossRefGoogle ScholarPubMed
Musallam, K. M., Tamim, H. M., Richards, T. et al. Preoperative anaemia and postoperative outcomes in non-cardiac surgery: a retrospective cohort study. The Lancet 2011;378:13961407.CrossRefGoogle ScholarPubMed
Hess, G., Nordyke, R. J., Hill, J., Hulnick, S. Effect of reimbursement changes on erythropoiesis-stimulating agent utilization and transfusions. Am J Hematol 2010;85(11):838–43.CrossRefGoogle ScholarPubMed
Hebert, K., Horswell, R., Arcement, L., Hare, J., Stevenson, L. The effect of anemia on mortality in indigent patients with mild-to-moderate chronic heart failure. Congest Heart Fail 2006;12:7579.CrossRefGoogle ScholarPubMed
Brookhart, M. A., Schneeweiss, S., Avorn, J., et al. Comparative mortality risk of anemia management practices in incident hemodialysis patients. JAMA 2010;303:857864.CrossRefGoogle ScholarPubMed
Asare, K. Anemia of critical illness. Pharmacotherapy 2008;28:12671282.CrossRefGoogle ScholarPubMed
Dunn, A., Carter, J., Carter, H. Anemia at the end of life: prevalence, significance, and causes in patients receiving palliative care. J Pain Symptom Manage 2003;26:11321139.CrossRefGoogle ScholarPubMed
Glaspy, J. A. Cancer patient survival and erythropoietin. J Natl Compr Canc Netw 2005;3:796804.CrossRefGoogle ScholarPubMed

References

Hotz, C. and Gibson, R. S. (2001). “Assessment of home-based processing methods to reduce the phytate content and phytate/zinc molar ratio of white maize (Zea mays).J Agric Food Chem 49(2): 692698.CrossRefGoogle ScholarPubMed
Hotz, C. and Gibson, R. S. (2007). “Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets.J Nutr 137(4): 10971100.CrossRefGoogle ScholarPubMed
Gibson, R. S. and Anderson, V. P. (2009). “A review of interventions based on dietary diversification or modification strategies with the potential to enhance intakes of total and absorbable zinc.Food Nutr Bull 30(1): S108S143.CrossRefGoogle ScholarPubMed
Thompson, B. and Amoroso, L., Eds. (2010). Combating micronutrient deficiencies: Food based approaches, The Food and Agricultural Organization of the United Nations and CAB International.Google Scholar
Bushamuka, V. N., de Pee, S., et al. (2005). “Impact of a homestead gardening program on household food security and empowerment of women in Bangladesh.Food Nutr Bull 26(1): 1725.CrossRefGoogle ScholarPubMed
Olney, D. K., Talukder, A., et al. (2009). “Assessing impact and impact pathways of a homestead food production program on household and child nutrition in Cambodia.Food Nutr Bull 30(4): 355369.CrossRefGoogle ScholarPubMed
WHO. (2017). Nutritional anemias: tools for effective prevention and control. Geneva, World Health Organization.Google Scholar
WHO and FAO. (2006). Guidelines on food fortification with micronutrients. Geneva, World Health Organization.Google Scholar
Sazawal, S., Black, R. E., et al. (2006). “Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial.Lancet 367(9505): 133143.CrossRefGoogle Scholar
WHO and UNICEF (2006). Iron supplementation of young children in regions where malaria transmission is intense and infectious disease highly prevalent. Geneva.Google Scholar
WHO Secretariat on behalf of the participants to the Consultation (2007). “Conclusions and recommendations of the WHO Consultation on prevention and control of iron deficiency in infants and young children in malaria-endemic areas.Food Nutr Bull 28: S621627.CrossRefGoogle Scholar
Ojukwu, J. U., Okebe, J. U., et al. (2009). “Oral iron supplementation for preventing or treating anaemia among children in malaria-endemic areas.Cochrane Database Syst Rev (3): CD006589.Google ScholarPubMed
McCuskee, S, Brickley, E. B., et al. (2014). Malaria and macronutrient deficiency as correlates of anemia in young children: a systematic review of observational studies. Ann Glob Health 80(6):458–65. doi:10.1016/j.aogh.2015.01.003.Google ScholarPubMed
Pasricha, S.-R., Hayes, E., Kalumba, K., Biggs, B.-A. (2013). “Effect of daily iron supplementation on health in children aged 4–23 months: a systematic review and meta-analysis of randomised controlled trials.” Lancet Glob Health. 1(2):e77e86. doi:10.1016/s2214-109x(13)700.CrossRefGoogle ScholarPubMed
Suchdev, P. S., Leeds, I. L., et al. (2010). “Is it time to change guidelines for iron supplementation in malarial areas?J Nutr 140(4): 875876.CrossRefGoogle ScholarPubMed
Pfeiffer, W. H. and McClafferty, B. (2007). “HarvestPlus: breeding crops for better nutrition.Crop Sci 47: S88S105.CrossRefGoogle Scholar
Bouis, H. E. and Welch, R. M. (2010). “Biofortification–a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south.Crop Sci 50(2): S20S32.CrossRefGoogle Scholar
Hotz, C. and McClafferty, B. (2007). “From harvest to health: Challenges for developing biofortified staple foods and determining their impact on micronutrient status.Food Nutr Bull 28(2): S271S279.CrossRefGoogle ScholarPubMed
Haas, J. D., Beard, J. L., et al. (2005). “Iron-biofortified rice improves the iron stores of nonanemic Filipino women.J Nutr 135(12): 28232830.CrossRefGoogle ScholarPubMed
Finkelstein, J. L., Mehta, S., et al. (2015). A randomized trial of iron-biofortified pearl millet in school children in India. J. Nutr. 145(7): 15761581.CrossRefGoogle ScholarPubMed
Haas, J. D., Luna, S. V. et al. (2016). “Consuming iron-biofortified beans increases iron status in Rwandan women after 128 days in a randomized controlled feeding trial.” J. Nutr.; 146:15861592.CrossRefGoogle Scholar
Wirth, J., Poletti, S., et al. (2009). “Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin.Plant Biotechnol J 7(7): 631644.CrossRefGoogle ScholarPubMed
Meenakshi, J. V., Johnson, N. L., et al. (2010). “How cost-effective is biofortification in combating micronutrient malnutrition? An ex ante assessment.World Devel 38(1): 6475.CrossRefGoogle Scholar
WHO, FAO, et al. (2009). Recommendations on wheat and maize flour fortification; Meeting report: Interim consensus statement. Geneva, World Health Organization.Google Scholar
Hurrell, R., Ranum, P., et al. (2010). “Revised recommendations for iron fortification of wheat flour and an evaluation of the expected impact of current national wheat flour fortification programs.Food Nutr Bull 31(1): S7S21.CrossRefGoogle Scholar
Berry, R. J., Bailey, L., et al. (2010). “Fortification of flour with folic acid.” Food Nutr Bull 31(1 Suppl): S2235.CrossRefGoogle ScholarPubMed
Verhoef, P. (2011). “New insights on the lowest dose for mandatory folic acid fortification?” Am J Clin Nutr 93(1): 12.CrossRefGoogle ScholarPubMed
Dary, O. and Mora, J. O. (2002). “Food fortification to reduce vitamin A deficiency: International Vitamin A Consultative Group recommendations.J Nutr 132(9 Suppl): 2927S2933S.CrossRefGoogle ScholarPubMed
Klemm, R. D., West, K. P. Jr., et al. (2010). “Vitamin A fortification of wheat flour: considerations and current recommendations.Food Nutr Bull 31(1 Suppl): S4761.CrossRefGoogle ScholarPubMed
Allen, L. H., Rosenberg, I. H., et al. (2010). “Considering the case for vitamin B12 fortification of flour.” Food Nutr Bull 31(1 Suppl): S3646.CrossRefGoogle ScholarPubMed
Engle-Stone, R., Nankap, M. et al. (2017). “Iron, zinc, folate, and vitamin B-12 status increased among women and children in Yaounde and Douala, Cameroon, 1 year after introducing fortified wheat flour.J Nutr;147(7):1426–36. doi: 10.3945/jn.116.245076.CrossRefGoogle ScholarPubMed
Codex Alimentarius Commission, (1987). General Principles for the Addition of Essential Nutrients to Foods CAC/GL 09–1987 (amended 1989, 1991). Codex Alimentarius Commission Joint FAO/WHO Food Standards Programme. Rome.Google Scholar
WHO, ICCIDD, et al. (1996). Recommended iodine levels in salt and guidelines for monitoring their adequacy and effectiveness. Geneva, World Health Organization.Google Scholar
Nestel, P., Briend, A., et al. (2003). “Complementary food supplements to achieve micronutrient adequacy for infants and young children.J Pediatr Gastroenterol Nutr 36(3): 316328.CrossRefGoogle ScholarPubMed
Tondeur, W. C., Schauer, C. S., et al. (2004). “Determination of iron absorption from intrinsically labeled microencapsulated ferrous fumarate (sprinkles) in infants with different iron and hematologic status by using a dual-stable-isotope method.Am J Clin Nutr 80(5): 14361444.CrossRefGoogle ScholarPubMed
Troesch, B., Egli, I., et al. (2009). “Optimization of a phytase-containing micronutrient powder with low amounts of highly bioavailable iron for in-home fortification of complementary foods.Am J Clin Nutr 89(2): 539544.CrossRefGoogle ScholarPubMed
Zlotkin, S, Newton, S et al. (2013). Effect of iron fortification on malaria incidence in infants and young children in Ghana: a randomized trial. JAMA 310(9):938–47. doi: 10.1001/jama.2013.277129.CrossRefGoogle ScholarPubMed
Hurrell, R. F., Reddy, M. B., et al. (2000). “An evaluation of EDTA compounds for iron fortification of cereal-based foods.Br J Nutr 84(6): 903910.CrossRefGoogle ScholarPubMed
Walczyk, T., Tuntipopipat, S., et al. (2005). “Iron absorption by human subjects from different iron fortification compounds added to Thai fish sauce.Eur J Clin Nutr 59(5): 668674.CrossRefGoogle ScholarPubMed
Fritz, J. C., Pla, G. W., et al. (1974). “Collaborative study of the rat hemoglobin repletion test for bioavailability of iron.J Assoc Off Anal Chem 57(3): 513517.Google ScholarPubMed
Wegmuller, R., Zimmermann, M. B., et al. (2004). “Particle size reduction and encapsulation affect the bioavailability of ferric pyrophosphate in rats.J Nutr 134(12): 33013304.CrossRefGoogle ScholarPubMed
Hurrell, R. F. (2002). “Fortification: overcoming technical and practical barriers.J Nutr 132(4 Suppl): 806S–812S.CrossRefGoogle ScholarPubMed
Hurrell, R. and Egli, I. (2007). Optimizing the bioavailability of iron compounds for food fortification. Basel: Sight and Life Press.Google Scholar
Hurrell, R. (2010). “Use of ferrous fumarate to fortify foods for infants and young children.Nutr Rev 68(9): 522530.CrossRefGoogle ScholarPubMed
Hurrell, R. F. (2002). “How to ensure adequate iron absorption from iron-fortified food.Nutr Rev 60(7 Pt 2): S715.CrossRefGoogle ScholarPubMed
Bothwell, T. H. and MacPhail, A. P. (2004). “The potential role of NaFeEDTA as an iron fortificant.Int J Vit Nutr Res 74(6): 421434.CrossRefGoogle ScholarPubMed
Joint FAO/WHO Food Standards Programme Codex Committee on Food Additives, (2008). Matters of interest arising from FAO and WHO and from the 68th meeting of the joint FAO/WHO Expert Committee on Food Additives (JECFA). 40th Session. Beijing China: Joint FAO/WHO Food Standards Programme Codex Committee on Food Additives.Google Scholar
EFSA (2010). Scientific opinion on the use of ferric sodium EDTA as a source of iron added for nutritional purposes to foods for the general population (including food supplements) and to food for particular nutritional uses. Parma.Google Scholar
Conrad, M. E. and Schade, S. G. (1968). “Ascorbic acid chelates in iron absorption: a role for hydrochloric acid and bile.Gastroenterology 55(1): 3545.CrossRefGoogle ScholarPubMed
Lynch, S. R. and Cook, J. D. (1980). “Interaction of vitamin C and iron.Ann N Y Acad Sci 355: 3244.CrossRefGoogle ScholarPubMed
Stekel, A., Olivares, M., et al. (1986). “Absorption of fortification iron from milk formulas in infants.Am J Clin Nutr 43(6): 917922.CrossRefGoogle ScholarPubMed
Hallberg, L., Brune, M., et al. (1989). “Iron absorption in man: ascorbic acid and dose-dependent inhibition by phytate.Am J Clin Nutr 49(1): 140144.CrossRefGoogle ScholarPubMed
Siegenberg, D., Baynes, R. D., et al. (1991). “Ascorbic acid prevents the dose-dependent inhibitory effects of polyphenols and phytates on nonheme-iron absorption.Am J Clin Nutr 53(2): 537541.CrossRefGoogle ScholarPubMed
Walczyk, T., Muthayya, S. et al. (2014). “Inhibition of iron absorption by calcium is modest in an iron-fortified, casein- and whey-based drink in Indian children and is easily compensated for by addition of ascorbic acid.” J Nutr. 2014;144(11):1703–9.CrossRefGoogle Scholar
Bjorn-Rasmussen, E. and Hallberg, L. (1979). “Effect of animal proteins on the absorption of food iron in man.Nutr Metab 23(3): 192202.CrossRefGoogle ScholarPubMed
Baech, S. B., Hansen, M., et al. (2003). “Nonheme-iron absorption from a phytate-rich meal is increased by the addition of small amounts of pork meat.” Am J Clin Nutr 77(1): 173179.CrossRefGoogle ScholarPubMed
Bach Kristensen, M., Hels, O., et al. (2005). “Pork meat increases iron absorption from a 5-day fully controlled diet when compared to a vegetarian diet with similar vitamin C and phytic acid content.” Br J Nutr 94(1): 7883.CrossRefGoogle ScholarPubMed
Reddy, M. B., Hurrell, R. F., et al. (2006). “Meat consumption in a varied diet marginally influences nonheme iron absorption in normal individuals.J Nutr 136(3): 576581.CrossRefGoogle Scholar
Armah, C. N., Sharp, P., et al. (2008). “L-alpha-glycerophosphocholine contributes to meat's enhancement of nonheme iron absorption.” J Nutr 138(5): 873877.CrossRefGoogle ScholarPubMed
Hurrell, R. F., Juillerat, M. A., et al. (1992). “Soy protein, phytate, and iron-absorption in humans.Am J Clin Nutr 56(3): 573578.CrossRefGoogle ScholarPubMed
Egli, I., Davidsson, L., et al. (2003). “Phytic acid degradation in complementary foods using phytase naturally occurring in whole grain cereals.J Food Sci 68(5): 18551859.CrossRefGoogle Scholar
Sandberg, A. S., Hulthen, L. R., et al. (1996). “Dietary Aspergillus niger phytase increases iron absorption in humans.J Nutr 126(2): 476480.CrossRefGoogle ScholarPubMed
Troesch, B, H. Jing, H. et al. (2013). “Absorption studies show that phytase from Aspergillus niger significantly increases iron and zinc bioavailability from phytate-rich foods.” Food Nutr Bull, 34, S90101.CrossRefGoogle ScholarPubMed
Institute of Medicine Food and Nutrition Board (2003). Dietary Reference Intakes: applications in dietary planning. Washington, DC.Google Scholar
Hertrampf, E. (2002). “Iron fortification in the Americas.Nutr Rev 60(7 Pt 2): S2225.CrossRefGoogle ScholarPubMed
Food Fortification Initiative 2017, Global progress, Food Fortification Initiative. Available from: www.ffinetwork.org/global_progress/index.php. [17 April 2017].Google Scholar
Centers for Disease Control and Prevention (2008). “Trends in wheat-flour fortification with folic acid and iron--worldwide, 2004 and 2007.MMWR Morb Mortal Wkly Rep 57(1): 810.Google Scholar
Flour Fortification Initiative, (2004). Wheat flour fortification: Current knowledge and practical applications, Cuernavaca, Mexico.Google Scholar
Serdula, M. (2010). “The opportunity of flour fortification: building on the evidence to move forward.Food Nutr Bull 31(1 Suppl): S36.Google ScholarPubMed
Moretti, D., Biebinger, R. et al. (2014). Bioavailability of iron, zinc, folic acid, and vitamin A from fortified maize. Ann N Y Acad Sci.;1312:5465.CrossRefGoogle ScholarPubMed
WHO. (2016), WHO guideline: fortification of maize flour and corn meal with vitamins and minerals. Geneva: World Health Organization.Google Scholar
Dewey, K. G., Yang, Z. Y., et al. (2009). “Systematic review and meta-analysis of home fortification of complementary foods.Matern Child Nutr 5(4): 283321.CrossRefGoogle Scholar
Andersson, M., Theis, W., et al. (2010). “Random serial sampling to evaluate efficacy of iron fortification a randomized controlled trial of margarine fortification with ferric pyrophosphate or sodium iron edetate.” Am J Clin Nutr 92(5): 10941104.CrossRefGoogle ScholarPubMed
Glinz, , Hurrell, D. R. F. et al. (2015). “The effect of iron-fortified complementary food and intermittent preventive treatment of malaria on anaemia in 12- to 36-month-old children: a cluster-randomised controlled trial.” Malar J, 14, 347.CrossRefGoogle ScholarPubMed
Nemeth, E., Valore, E. V., et al. (2003). “Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein.Blood 101(7): 24612463.CrossRefGoogle Scholar
Rohner, F., Zimmermann, M. B., et al. (2010). “In a randomized controlled trial of iron fortification, anthelmintic treatment, and intermittent preventive treatment of malaria for anemia control in Ivorian children, only anthelmintic treatment shows modest benefit.J Nutr 140(3): 635641.CrossRefGoogle Scholar
Doherty, C. P., Cox, S. E., et al. (2008). “Iron incorporation and post-malaria anaemia.PLoS One 3(5): e2133.CrossRefGoogle ScholarPubMed
Cercamondi, C. I., Egli, I. M., et al. (2010). “Afebrile Plasmodium falciparum parasitemia decreases absorption of fortification iron but does not affect systemic iron utilization: a double stable-isotope study in young Beninese women.Am J Clin Nutr 92(6): 13851392.CrossRefGoogle Scholar
Nead, K. G., Halterman, J. S., et al. (2004). “Overweight children and adolescents: a risk group for iron deficiency.Pediatrics 114(1): 104108.CrossRefGoogle Scholar
Yanoff, L. B., Menzie, C. M., et al. (2007). “Inflammation and iron deficiency in the hypoferremia of obesity.Int J Obes (Lond) 31(9): 14121419.CrossRefGoogle ScholarPubMed
Zimmermann, M. B., Zeder, C., Muthayya, S., et al. (2008) Adiposity in women and children from transition countries predicts decreased iron absorption, iron deficiency and a reduced response to iron fortification. Int J Obes (Lond).;32(7):1098–104. doi: 10.1038/ijo.2008.43. Epub 2008 Apr 22.CrossRefGoogle Scholar
Roe, M. A., Collings, R., et al. (2009). “Plasma hepcidin concentrations significantly predict interindividual variation in iron absorption in healthy men.Am J Clin Nutr 89(4): 10881091.CrossRefGoogle ScholarPubMed
Young, M. F., Glahn, R. P., et al. (2009). “Serum hepcidin is significantly associated with iron absorption from food and supplemental sources in healthy young women.Am J Clin Nutr 89(2): 533538.CrossRefGoogle ScholarPubMed
Zimmermann, M. B., Troesch, B., et al. (2009). “Plasma hepcidin is a modest predictor of dietary iron bioavailability in humans, whereas oral iron loading, measured by stable-isotope appearance curves, increases plasma hepcidin.Am J Clin Nutr 90(5): 12801287.CrossRefGoogle ScholarPubMed
Sight and Life (2016). The #FutureFortified Global Summit on Food Fortification. Event Proceedings and recommendations for Food Fortification Programs. Basel, Switzerland: Sight and LifeGoogle Scholar
Barkley, J. S., Wheeler, K. S., et al. (2015). Anaemia prevalence may be reduced among countries that fortify flour. Br J Nutr. 114(2):265–73.CrossRefGoogle ScholarPubMed
Martorell, R, Ascencio, M. et al. (2015). Effectiveness evaluation of the food fortification program of Costa Rica: impact on anemia prevalence and hemoglobin concentrations in women and children. Am J Clin Nutr 101(1):210–7.CrossRefGoogle ScholarPubMed

References

WHO. The Global Prevalence of Anaemia in 2011. Geneva: World Health Organization, 2015.Google Scholar
Kassebaum, N. J. The global burden of anemia. Hematol Oncol Clin North Am 2016;30:247308.CrossRefGoogle ScholarPubMed
Tolentino, K., Friedman, J. F. An update on anemia in less developed countries. Am J Trop Med Hyg 2007;77:4451.CrossRefGoogle ScholarPubMed
Kumar, A., Rai, A. K., Basu, S., Dash, D. Singh, J. S. Cord blood and breast milk iron status in maternal anemia. Pediatrics 2008;121:e673–7.CrossRefGoogle ScholarPubMed
Hokama, T., Takenaka, S., Hirayama, K., et al. Iron status of newborns born to iron deficient anaemic mothers. J Trop Pediatr 1996;42:75–7.CrossRefGoogle ScholarPubMed
WHO. Iron Deficiency Anemia: Assessment, Prevention, and Control. In: WHO, ed. Geneva: World Health Organization and United Nations Children's Fund, 2001:1132.Google Scholar
van den Broek, N. R., Letsky, E. A. Etiology of anemia in pregnancy in south Malawi. Am J Clin Nutr 2000;72:247S256S.CrossRefGoogle ScholarPubMed
Friedman, J. F., Mital, P., Kanzaria, H. K., Olds, G. R., Kurtis, J. D. Schistosomiasis and pregnancy. Trends Parasitol 2007;23:159–64.CrossRefGoogle ScholarPubMed
Leenstra, T., Acosta, L. P., Langdon, G. C., et al. Schistosomiasis japonica, anemia, and iron status in children, adolescents, and young adults in Leyte, Philippines 1. Am J Clin Nutr 2006;83:371–9.CrossRefGoogle Scholar
Leenstra, T., Coutinho, H. M., Acosta, L. P., et al. Schistosoma japonicum reinfection after praziquantel treatment causes anemia associated with inflammation. Infect Immun 2006;74:6398–407.CrossRefGoogle ScholarPubMed
Richards, A. L. Tumour necrosis factor and associated cytokines in the host's response to malaria. Int J Parasitol 1997;27:1251–63.CrossRefGoogle ScholarPubMed
Kern, P., Hemmer, C. J., Gallati, H., et al. Soluble tumor necrosis factor receptors correlate with parasitemia and disease severity in human malaria. J Infect Dis 1992;166:930–4.CrossRefGoogle ScholarPubMed
Meda, N., Dao, B., Ouangre, A. HIV, maternal anemia and perinatal intervention using zidovudine. Ditrame study group (ANRS 049 clinical trial). Int J Gynaecol Obstet 1998;61:65–6.CrossRefGoogle Scholar
Ramon, R., Sawadogo, D., Koko, F. S., et al. Haematological characteristics and HIV status of pregnant women in Abidjan, côte d'ivoire, 1995–1996. Trans R Soc Trop Med Hyg 1999;93:419–22.CrossRefGoogle Scholar
Menendez, C., Fleming, A. F., Alonso, P. L. Malaria-related anaemia. Parasitol Today (Personal ed.) 2000;16:469–76.CrossRefGoogle ScholarPubMed
Global Burden of Disease Study. 2013 Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015;386:743800.Google Scholar
Trowbridge, F., Martorell, R. Forging effective strategies to combat iron deficiency. Summary and recommendations. J Nutr 2002;132:875S–9S.Google Scholar
Lopez, A., Cacoub, P., Macdougall, I. C., Peyrin-Biroulet, L. Iron deficiency anaemia. Lancet 2016;387:907–16.CrossRefGoogle ScholarPubMed
WHO. Global health risks: Mortality and burden of disease attributable to selected major risks. Geneva: Switzerland Wold Health Organization, 2009Google Scholar
Fomon, S. J., Nelson, S. E., Ziegler, E. E. Retention of iron by infants. Annu Rev Nutr 2000;20:273–90.CrossRefGoogle ScholarPubMed
Kretchmer, N., Beard, J. L., Carlson, S. The role of nutrition in the development of normal cognition. Am J Clin Nutr 1996;63:997S1001S.CrossRefGoogle ScholarPubMed
Stevens, G. A., Finucane, M. M., De-Regil, L. M., et al., Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: a systematic analysis of population-representative data. Lancet Glob Health 2013;1:e1625. PMCPMC4547326.CrossRefGoogle ScholarPubMed
Levy, J. E., Jin, O., Fujiwara, Y., Kuo, F. Andrews, N. C. Transferrin receptor is necessary for development of erythrocytes and the nervous system. Nat Genet 1999;21:396–9.CrossRefGoogle ScholarPubMed
Gambling, L., Danzeisen, R., Fosset, C., et al., Iron and copper interactions in development and the effect on pregnancy outcome. J Nutr 2003;133:1554S–6S.CrossRefGoogle ScholarPubMed
Rao, R, Georgieff, M. K. Neonatal iron nutrition. Semin Neonatol 2001;6:425–35.CrossRefGoogle ScholarPubMed
Georgieff, M. K., Wewerka, S. W., Nelson, C. A., Deregnier, R. A. Iron status at 9 months of infants with low iron stores at birth. J Pediatr 2002;141:405–9.CrossRefGoogle ScholarPubMed
Hay, G., Refsum, H., Whitelaw, A., et al. Predictors of serum ferritin and serum soluble transferrin receptor in newborns and their associations with iron status during the first 2 y of life. Am J Clin Nutr 2007;86:6473.CrossRefGoogle ScholarPubMed
Taylor, E. M., Morgan, E. H. Developmental changes in transferrin and iron uptake by the brain in the rat. Brain Res Dev Brain Res 1990;55:3542.CrossRefGoogle ScholarPubMed
Beard, J. L. Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr 2001;131:568S579S; discussion 580S.CrossRefGoogle ScholarPubMed
Lozoff, B., De Andraca, I., Castillo, M., et al. Behavioral and developmental effects of preventing iron-deficiency anemia in healthy full-term infants. Pediatrics 2003;112:846–54.CrossRefGoogle ScholarPubMed
Moffatt, M. E., Longstaffe, S., Besant, J., Dureski, C. Prevention of iron deficiency and psychomotor decline in high-risk infants through use of iron-fortified infant formula: a randomized clinical trial. J Pediatr 1994;125:527–34.CrossRefGoogle ScholarPubMed
Stoltzfus, R. J., Kvalsvig, J. D., Chwaya, H. M., et al. Effects of iron supplementation and anthelmintic treatment on motor and language development of preschool children in Zanzibar: double blind, placebo controlled study. BMJ 2001;323:1389–93. PMC60982.CrossRefGoogle ScholarPubMed
Lind, T., Lonnerdal, B., Stenlund, H., et al. A community-based randomized controlled trial of iron and zinc supplementation in Indonesian infants: effects on growth and development. Am J Clin Nutr 2004;80:729–36.CrossRefGoogle ScholarPubMed
Williams, J., Wolff, A., Daly, A., et al. Iron supplemented formula milk related to reduction in psychomotor decline in infants from inner city areas: randomised study. BMJ 1999;318:693–7.CrossRefGoogle ScholarPubMed
Grantham-McGregor, S., Ani, C. A review of studies on the effect of iron deficiency on cognitive development in children. J Nutr 2001;131:649S666S; discussion 666S–668S.CrossRefGoogle ScholarPubMed
Haas, J. D., Brownlie, T. Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship. J Nutr 2001;131:676S688S; discussion 688S–690S.CrossRefGoogle ScholarPubMed
Wang, J., Huo, J. S., Sun, J., Ning, Z. X. Physical performance of migrant schoolchildren with marginal and severe iron deficiency in the suburbs of Beijing. Biomed Environ Sci 2009;22:333–9.CrossRefGoogle ScholarPubMed
Ndamba, J., Makaza, N., Munjoma, M., Gomo, E., Kaondera, K. C. The physical fitness and work performance of agricultural workers infected with schistosoma mansoni in Zimbabwe. Ann Trop Med Parasitol 1993;87:553–61.CrossRefGoogle ScholarPubMed
Stephenson, L. S. Helminth parasites, a major factor in malnutrition. World Health Forum 1994;15:169–72.Google Scholar
de Silva, N. R., Brooker, S., Hotez, P. J., et al. Soil-transmitted helminth infections: updating the global picture. Trends Parasitol 2003;19:547–51.CrossRefGoogle ScholarPubMed
Loukas, A., Constant, S. L., Bethony, J. M. Immunobiology of hookworm infection. FEMS Immunol Med Microbiol 2005;43:115–24.CrossRefGoogle ScholarPubMed
Hotez, P. J., Alvarado, M., Basanez, M. G., et al. The global burden of disease study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl Trop Dis 2014;8:e2865. PMCPMC4109880.CrossRefGoogle ScholarPubMed
Stoltzfus, R. J., Chwaya, H. M., Tielsch, J. M., et al. Epidemiology of iron deficiency anemia in Zanzibari schoolchildren: the importance of hookworms. Am J Clin Nutr 1997;65:153–9.CrossRefGoogle ScholarPubMed
Crompton, D. W. The public health importance of hookworm disease. Parasitology 2000;121 Suppl:S3950.CrossRefGoogle ScholarPubMed
Gulani, A., Nagpal, J., Osmond, C., Sachdev, H. P. Effect of administration of intestinal anthelmintic drugs on haemoglobin: systematic review of randomised controlled trials. BMJ (Clinical research ed.) 2007;334:1095. PMCPMC1877955.CrossRefGoogle ScholarPubMed
Stoltzfus, R. J., Chway, H. M., Montresor, A., et al. Low dose daily iron supplementation improves iron status and appetite but not anemia, whereas quarterly anthelminthic treatment improves growth, appetite and anemia in Zanzibari preschool children. J Nutr 2004;134:348–56.Google Scholar
Casey, G. J., Jolley, D., Phuc, T. Q., et al. Long-term weekly iron-folic acid and de-worming is associated with stabilised haemoglobin and increasing iron stores in non-pregnant women in Vietnam. PLoS One 2010;5:e15691. PMCPMC3012714.CrossRefGoogle ScholarPubMed
Casey, G. J., Montresor, A., Cavalli-Sforza, L. T., et al. Elimination of iron deficiency anemia and soil transmitted helminth infection: evidence from a fifty-four month iron-folic acid and de-worming program. PLoS Negl Trop Dis 2013;7:e2146. PMCPMC3623698.CrossRefGoogle ScholarPubMed
Albonico, M., Stoltzfus, R. J., Savioli, L., et al. Epidemiological evidence for a differential effect of hookworm species, Ancylostoma duodenale or Necator americanus, on iron status of children. Int J Epidemiol 1998;27:530–7.CrossRefGoogle ScholarPubMed
Steketee, R. W. Pregnancy, nutrition and parasitic diseases. J Nutr 2003;133:1661S1667S.CrossRefGoogle ScholarPubMed
Hotez, P. J., Brooker, S., Bethony, J. M., et al. Hookworm infection. N Engl J Med 2004;351:799807.CrossRefGoogle ScholarPubMed
Opara, K. N., Udoidung, N. I., Opara, D. C., et al. The impact of intestinal parasitic infections on the nutritional status of rural and urban school-aged children in Nigeria. Int J MCH AIDS 2012;1:7382. PMCPMC4948163.CrossRefGoogle Scholar
Bethony, J., Brooker, S., Albonico, M., et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 2006;367:1521–32.CrossRefGoogle ScholarPubMed
Bethony, J., Chen, J., Lin, S., et al. Emerging patterns of hookworm infection: influence of aging on the intensity of Necator infection in Hainan Province, People's Republic of China. Clin Infect Dis 2002;35:1336–44.CrossRefGoogle ScholarPubMed
Geiger, S. M., Massara, C. L., Bethony, J., Soboslay, P. T., Correa-Oliveira, R. Cellular responses and cytokine production in post-treatment hookworm patients from an endemic area in Brazil. Clin Exp Immunol 2004;136:334–40.CrossRefGoogle ScholarPubMed
Passerini, L., Casey, G. J., Biggs, B. A., Increased birth weight associated with regular pre-pregnancy deworming and weekly iron-folic acid supplementation for Vietnamese women. PLoS Negl Trop Dis 2012;6:e1608.CrossRefGoogle ScholarPubMed
Ezeamama, A. E., Friedman, J. F., Acosta, L. P., et al. Helminth infection and cognitive impairment among Filipino children. Am J Trop Med Hyg 2005;72:540–8.CrossRefGoogle ScholarPubMed
Sakti, H., Nokes, C., Hertanto, W. S. Evidence for an association between hookworm infection and cognitive function in Indonesian school children. Trop Med Int Health 1999;4:322–34.CrossRefGoogle ScholarPubMed
Ebenezer, R., Gunawardena, K., Kumarendran, B. Cluster-randomised trial of the impact of school-based deworming and iron supplementation on the cognitive abilities of schoolchildren in Sri Lanka's plantation sector. Trop Med Int Health 2013;18:942–51.CrossRefGoogle ScholarPubMed
Simeon, D. T., Grantham-McGregor, S. M., Callender, J. E. Wong, M. S. Treatment of Trichuris trichiura infections improves growth, spelling scores and school attendance in some children. J Nutr 1995;125:1875–83.CrossRefGoogle ScholarPubMed
Nga, T. T., Winichagoon, P., Dijkhuizen, M. A. Decreased parasite load and improved cognitive outcomes caused by deworming and consumption of multi-micronutrient fortified biscuits in rural Vietnamese schoolchildren. AM J Trop Med Hyg 2011;85:333–40.CrossRefGoogle ScholarPubMed
Ndibazza, J., Mpairwe, H., Webb, E. L. Impact of anthelminthic treatment in pregnancy and childhood on immunisations, infections and eczema in childhood: a randomised controlled trial. PLoS One 2012;7:e50325.CrossRefGoogle ScholarPubMed
Campbell, S. J., Nery, S. V., Doi, S. A. Complexities and perplexities: a critical appraisal of the evidence for soil-transmitted helminth infection-related morbidity. PLoS Negl Trop Dis 2016;10:e0004566.CrossRefGoogle ScholarPubMed
Taylor-Robinson, D. C., Maayan, N., Soares-Weiser, K., Donegan, S., Garner, P. Deworming drugs for soil-transmitted intestinal worms in children: effects on nutritional indicators, haemoglobin, and school performance. Cochrane Database Syst Rev 2015:Cd000371.CrossRefGoogle ScholarPubMed
Liu, C., Luo, R., Yi, H. Soil-transmitted helminths in southwestern China: a cross-sectional study of links to cognitive ability, nutrition, and school performance among children. PLoS Negl Trop Dis 2015;9:e0003877.CrossRefGoogle Scholar
Ramdath, D. D., Simeon, D. T., Wong, M. S., Grantham-McGregor, S. M. Iron status of schoolchildren with varying intensities of trichuris trichiura infection. Parasitology 1995;110 (Pt 3):347–51.CrossRefGoogle ScholarPubMed
Lozoff, B., Jimenez, E., Hagen, J., Mollen, E., Wolf, A. W. Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics 2000;105:E51.CrossRefGoogle ScholarPubMed
Freeman, M. C., Strunz, E., Utzinger, J., Addiss, D. G. Interventions to improve water, sanitation, and hygiene for preventing soil-transmitted helminth infection. Cochrane Database Sys Rev 2016.CrossRefGoogle ScholarPubMed
Prual, A., Daouda, H., Develoux, M., et al. Consequences of Schistosoma haematobium infection on the iron status of schoolchildren in Niger. Am J Trop Med Hyg 1992;47:291–7.CrossRefGoogle ScholarPubMed
Mansour, M. M., Francis, W. M., Farid, Z. Prevalence of latent iron deficiency in patients with chronic S. mansoni infection. Trop Geogr Med 1985;37:124–8.Google ScholarPubMed
Yuesgeng, L., Dongbao, Y., Yi, L., Yang, X., Meng, X. Morbidity and health impact of Schistosomiasis japonica in Dongting lake area. A final report: WHO Collaborating Centre for Research and Control on Schistosomiasisis in Lake Region, 1992.Google Scholar
Tatala, S., Svanberg, U., Mduma, B. Low dietary iron availability is a major cause of anemia: a nutrition survey in the Lindi District of Tanzania. Am J Clin Nutr 1998;68:171–8.CrossRefGoogle Scholar
Friedman, J. F., Kanzaria, H. K., Acosta, L. P., et al. Relationship between Schistosoma japonicum and nutritional status among children and young adults in Leyte, the Philippines. Am J Trop Med Hyg 2005;72:527–33.CrossRefGoogle Scholar
Kanzaria, H., Acosta, L., Langdon, G., et al. Schistosoma japonicum and occult blood loss in endemic villages in Leyte, the Philippines. Am J Trop Med Hyg 2005;Vol 72:115118.CrossRefGoogle ScholarPubMed
Friedman, J. F., Kanzaria, H. K., McGarvey, S. T. Human schistosomiasis and anemia: the relationship and potential mechanisms. Trends Parasitol 2005;21:386–92.CrossRefGoogle ScholarPubMed
Leenstra, T., Acosta, L. P., Langdon, G. C. Schistosomiasis japonica, anemia, and iron status in children, adolescents, and young adults in Leyte, Philippines Am J Clin Nutr 2006;83:371–9.CrossRefGoogle Scholar
Tohon, Z. B., Mainassara, H. B., Garba, A., et al. Controlling schistosomiasis: significant decrease of anaemia prevalence one year after a single dose of praziquantel in Nigerian schoolchildren. PLoS Negl Trop Dis 2008;2:e241.CrossRefGoogle ScholarPubMed
Friis, H., Mwaniki, D., Omondi, B., et al. Effects on haemoglobin of multi-micronutrient supplementation and multi-helminth chemotherapy: a randomized, controlled trial in Kenyan school children. Eur J Clin Nutr 2003;57:573–9.CrossRefGoogle ScholarPubMed
Olds, G. R., King, C., Hewlett, J., et al. Double-blind placebo-controlled study of concurrent administration of albendazole and praziquantel in schoolchildren with schistosomiasis and geohelminths. J Infect Dis 1999;179:9961003.CrossRefGoogle ScholarPubMed
Taylor, M., Jinabhai, C. C., Couper, I., Kleinschmidt, I. Jogessar, V. B. The effect of different anthelmintic treatment regimens combined with iron supplementation on the nutritional status of schoolchildren in KwaZulu-Natal, South Africa: a randomized controlled trial. Trans R Soc Trop Med Hyg 2001;95:211–6.CrossRefGoogle ScholarPubMed
Kinung'hi, S. M., Magnussen, P., Kishamawe, C., Todd, J., Vennervald, B. J. The impact of anthelmintic treatment intervention on malaria infection and anaemia in school and preschool children in Magu district, Tanzania: an open label randomised intervention trial. BMC infectious diseases 2015;15:136.CrossRefGoogle ScholarPubMed
Beasley, N. M., Tomkins, A. M., Hall, A., et al. The impact of population level deworming on the haemoglobin levels of schoolchildren in Tanga, Tanzania. Trop Med Int Health 1999;4:744–50.CrossRefGoogle ScholarPubMed
Stephenson, L. S., Latham, M. C., Kinoti, S. N., Oduori, M.L. Regression of splenomegaly and hepatomegaly in children treated for schistosoma haematobium infection. Am J Trop Med Hyg 1985;34:119–23.CrossRefGoogle ScholarPubMed
Stephenson, L. S., Kinoti, S. N., Latham, M. C., Kurz, K. M., Kyobe, J. Single dose metrifonate or praziquantel treatment in Kenyan children. I. Effects on Schistosoma haematobium, hookworm, hemoglobin levels, splenomegaly, and hepatomegaly. Am J Trop Med Hyg 1989;41:436–44.Google ScholarPubMed
McGarvey, S. T., Aligui, G., Graham, K. K. et al. Schistosomiasis japonica and childhood nutritional status in northeastern Leyte, the Philippines: a randomized trial of praziquantel versus placebo. Am J Trop Med Hyg 1996;54:498502.CrossRefGoogle ScholarPubMed
Coutinho, H. M., Acosta, L. P., McGarvey, S. T., et al. Nutritional status improves after treatment of schistosoma japonicum-infected children and adolescents. J Nutr 2006;136:183–8.CrossRefGoogle ScholarPubMed
Warren, K. S., Su, D. L., Xu, Z. Y., et al. Morbidity in schistosomiasis japonica in relation to intensity of infection. A study of two rural brigades in Anhui Province, China. N Engl J Med 1983;309:1533–9.CrossRefGoogle ScholarPubMed
Coutinho, H. M., McGarvey, S. T., Acosta, L. P., et al. Nutritional status and serum cytokine profiles in children, adolescents, and young adults with Schistosoma japonicum-associated hepatic fibrosis, in Leyte, Philippines. J Infect Dis 2005;192:528–36.CrossRefGoogle Scholar
Means, R. T., Jr. The anaemia of infection. Baillieres Best Pract Res Clin Haematol 2000;13:151–62.CrossRefGoogle ScholarPubMed
Andrews, N. C. Forging a field: the golden age of iron biology. Blood 2008;112:219–30.CrossRefGoogle ScholarPubMed
Nemeth, E., Rivera, S., Gabayan, V., et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 2004;113:1271–6.CrossRefGoogle Scholar
Nicolas, G., Chauvet, C., Viatte, L., et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 2002;110:1037–44.CrossRefGoogle ScholarPubMed
Ganz, T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 2003;102:783–8.CrossRefGoogle ScholarPubMed
Ganz, T. Hepcidin and its role in regulating systemic iron metabolism. Hematology Am Soc Hematol Educ Program 2006:2935.CrossRefGoogle ScholarPubMed
Beguin, Y., Huebers, H. A., Weber, G., Eng, M. Finch, C. A. Hepatocyte iron release in rats. J Lab Clin Med 1989;113:346–54.Google ScholarPubMed
Hershko, C., Cook, J. D., Finch, C. A. Storage iron kinetics. VI. The effect of inflammation on iron exchange in the rat. Br J Haematol 1974;28:6775.CrossRefGoogle Scholar
Nicolas, G., Bennoun, M., Porteu, A., et al. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc Natl Acad Sci U S A 2002;99:4596–601.CrossRefGoogle ScholarPubMed
Antelman, G., Msamanga, G. I., Spiegelman, D., et al. Nutritional factors and infectious disease contribute to anemia among pregnant women with human immunodeficiency virus in Tanzania. J Nutr 2000;130:1950–7.CrossRefGoogle ScholarPubMed
Das, B. S., Devi, U., Mohan Rao, C., Srivastava, V. K., Rath, P. K. Effect of iron supplementation on mild to moderate anaemia in pulmonary tuberculosis. Br J Nutr 2003;90:541–50.Google ScholarPubMed
Pullan, R. L., Smith, J. L., Jasrasaria, R., Brooker, S. J. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors 2014;7:37.CrossRefGoogle ScholarPubMed
Robertson, L. J., Crompton, D. W., Sanjur, D., Nesheim, M. C. Haemoglobin concentrations and concomitant infections of hookworm and Trichuris trichiura in Panamanian primary schoolchildren. Trans R Soc Trop Med Hyg 1992;86:654–6.Google ScholarPubMed
Stephenson, L. S., Holland, C. V., Cooper, E. S. The public health significance of Trichuris trichiura. Parasitology 2000;121 Suppl:S7395.CrossRefGoogle ScholarPubMed
Duff, E. M., Anderson, N. M., Cooper, E. S. Plasma insulin-like growth factor-1, type 1 procollagen, and serum tumor necrosis factor alpha in children recovering from Trichuris dysentery syndrome. Pediatrics 1999;103:e69.CrossRefGoogle ScholarPubMed
Raj, S. M. Fecal occult blood testing on Trichuris-infected primary school children in northeastern peninsular Malaysia. Am J Trop Med Hyg 1999;60:165–6.CrossRefGoogle ScholarPubMed
Guyatt, H. L., Snow, R. W. Impact of malaria during pregnancy on low birth weight in sub-Saharan Africa. Clin Microbiol Rev 2004;17:760–9, table of contents.CrossRefGoogle ScholarPubMed
deMast, Q., Syafruddin, D., Keijmel, S., Increased serum hepcidin and alterations in blood iron parameters associated with asymptomatic P. Falciparum and P. Vivax malaria. Haematologica 2010;95:1068–74.Google Scholar
WHO, UNICEF, UNFPA, The World Bank. Maternal Mortality in 2005: Estimates Developed byWHO, UNICEF, UNFPA, and The World Bank. In: WHO, ed. Geneva, 2007Google Scholar
Alvarez, J. L., Gil, R., Hernandez, V., Gil, A. Factors associated with maternal mortality in Sub-Saharan Africa: an ecological study. BMC Public Health 2009;9:462. PMCPMC2801510.CrossRefGoogle ScholarPubMed
Dellicour, S., Tatem, A. J., Guerra, C. A., Snow, R. W., ter Kuile, F. O. Quantifying the number of pregnancies at risk of malaria in 2007: a demographic study. PLoS Med 2010;7:e1000221.CrossRefGoogle ScholarPubMed
Desai, M., ter Kuile, F. O., Nosten, F., et al. Epidemiology and burden of malaria in pregnancy. Lancet Infect Dis 2007;7:93104.CrossRefGoogle ScholarPubMed
WHO. Technical Expert Group Meeting on Intermittent Preventive Treatment in Pregnancy (IPTp). In: WHO, ed. Geneva: World Health Organization, 2007Google Scholar
WHO. Intermittent Preventive Treatment of Malaria in Pregnancy using Sulfadoxine-pyrimethamine(IPTp-sp). Geneva: World Health Organization, 2012.Google Scholar
Kayentao, K., Kodio, M., Newman, R. D., et al. Comparison of intermittent preventive treatment with chemoprophylaxis for the prevention of malaria during pregnancy in Mali. J Infect Dis 2005;191:109–16.CrossRefGoogle ScholarPubMed
Parise, M. E., Ayisi, J. G., Nahlen, B. L., et al. Efficacy of sulfadoxine-pyrimethamine for prevention of placental malaria in an area of Kenya with a high prevalence of malaria and human immunodeficiency virus infection. Am J Trop Med Hyg 1998;59:813–22.CrossRefGoogle Scholar
van Eijk, A. M., Ayisi, J. G., ter Kuile, F. O., et al. Effectiveness of intermittent preventive treatment with sulphadoxine-pyrimethamine for control of malaria in pregnancy in western Kenya: a hospital-based study. Trop Med Int Health 2004;9:351–60.Google Scholar
McClure, E. M., Goldenberg, R. L., Dent, A. E., Meshnick, S. R. A systematic review of the impact of malaria prevention in pregnancy on low birth weight and maternal anemia. Int J Gynaecol Obstet 2013;121:103–9.CrossRefGoogle ScholarPubMed
Shulman, C. E., Dorman, E. K., Cutts, F., et al. Intermittent sulphadoxine-pyrimethamine to prevent severe anaemia secondary to malaria in pregnancy: a randomised placebo-controlled trial. Lancet 1999;353:632–6.CrossRefGoogle ScholarPubMed
Guyatt, H. L., Snow, R. W. The epidemiology and burden of Plasmodium falciparum-related anemia among pregnant women in sub-Saharan Africa. Am J Trop Med Hyg 2001;64:3644.CrossRefGoogle ScholarPubMed
Harrington, W. E., Mutabingwa, T. K., Muehlenbachs, A., et al. Competitive facilitation of drug-resistant Plasmodium falciparum malaria parasites in pregnant women who receive preventive treatment. Proc Natl Acad Sci U S A 2009;106:9027–32.CrossRefGoogle ScholarPubMed
Kayentao, K., Garner, P., van Eijk, A. M., et al. Intermittent preventive therapy for malaria during pregnancy using 2 vs 3 or more doses of sulfadoxine-pyrimethamine and risk of low birth weight in africa: systematic review and meta-analysis. JAMA 2013;309:594604.CrossRefGoogle ScholarPubMed
Desai, M., Gutman, J., Taylor, S. M., et al. Impact of sulfadoxine-pyrimethamine resistance on effectiveness of intermittent preventive therapy for malaria in pregnancy at clearing infections and preventing low birth weight. Clin Infect Dis 2016;62:323–33.CrossRefGoogle ScholarPubMed
Kabyemela, E. R., Fried, M., Kurtis, J. D., Mutabingwa, T. K., Duffy, P. E. Decreased susceptibility to Plasmodium falciparum infection in pregnant women with iron deficiency. J Infect Dis 2008;198:163–6.CrossRefGoogle ScholarPubMed
Oppenheimer, S. J., Macfarlane, S. B., Moody, J. B., Harrison, C. Total dose iron infusion, malaria and pregnancy in Papua New Guinea. Trans R Soc Trop Med Hyg 1986;80:818–22.CrossRefGoogle ScholarPubMed
Sazawal, S., Black, R. E., Ramsan, M., et al. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet 2006;367:133–43.CrossRefGoogle Scholar
Sazawal, S., Black, R. E., Kabole, I., et al. Effect of iron/folic acid supplementation on the outcome of malaria episodes treated with sulfadoxine-pyrimethamine. Malar Res Treat;2014:625905.Google ScholarPubMed
Friedman, J. F., Kurtis, J. D., Kabyemela, E. R., Fried, M., Duffy, P. E. The iron trap: iron, malaria and anemia at the mother-child interface. Microbes Infect 2009;11:460–6.CrossRefGoogle ScholarPubMed
Etheredge, A. J., Premji, Z., Gunaratna, N. S., et al. Iron supplementation in iron-replete and nonanemic pregnant women in Tanzania: a randomized clinical trial. JAMA pediatr 2015;169:947–55. PMCPMC4904713.CrossRefGoogle ScholarPubMed
Christian, P., Black, R. E. Antenatal iron use in malaria endemic settings: evidence of safety? Jama 2015;314:1003–5.CrossRefGoogle ScholarPubMed
Nyakeriga, A. M., Troye-Blomberg, M., Dorfman, J. R., et al. Iron deficiency and malaria among children living on the coast of Kenya. J Infect Dis 2004;190:439–47.CrossRefGoogle ScholarPubMed
Oppenheimer, S. J., Gibson, F. D., Macfarlane, S. B., et al. Iron supplementation increases prevalence and effects of malaria: report on clinical studies in Papua New Guinea. Trans R Soc Trop Med Hyg 1986;80:603–12.Google ScholarPubMed
Verhoef, H., West, C. E., Nzyuko, S. M., et al. Intermittent administration of iron and sulfadoxine-pyrimethamine to control anaemia in Kenyan children: a randomised controlled trial. Lancet 2002;360:908–14.CrossRefGoogle ScholarPubMed
Neuberger, A., Okebe, J., Yahav, D., Paul, M. Oral iron supplements for children in malaria-endemic areas. Cochrane Database Syst Rev 2016;2:Cd006589.Google ScholarPubMed
World Health Organization. Conclusions and recommendations of the WHO consultation on prevention and control of iron deficiency in infants and young children in malaria-endemic areas. Food Nutr Bull 2007;28:S621–7.Google Scholar
WHO. Guideline: daily iron and folic acid supplementation in pregnant women. Geneva: World Health Organization, 2012.Google Scholar
Rasmussen, K. Is there a causal relationship between iron deficiency or iron-deficiency anemia and weight at birth, length of gestation and perinatal mortality? J Nutr 2001;131:590S601S; discussion 601S–603S.CrossRefGoogle ScholarPubMed
Reveiz, L., Gyte, G. M., Cuervo, L. G. Treatments for iron-deficiency anaemia in pregnancy. Cochrane Database Syst Rev 2007:CD003094.CrossRefGoogle ScholarPubMed
Pena-Rosas, J. P., Viteri, F. E. Effects and safety of preventive oral iron or iron+folic acid supplementation for women during pregnancy. Cochrane Database Syst Rev 2009:CD004736.CrossRefGoogle ScholarPubMed
Golub, M. S., Hogrefe, C. E., Tarantal, A. F., et al. Diet-induced iron deficiency anemia and pregnancy outcome in rhesus monkeys. Am J Clin Nutr 2006;83:647–56. PMC1538981.CrossRefGoogle ScholarPubMed
Pena-Rosas, J. P., De-Regil, L. M., Dowswell, T., Viteri, F. E. Daily oral iron supplementation during pregnancy. Cochrane Database Syst Rev 2012;12:Cd004736.Google ScholarPubMed
Haider, B. A., Olofin, I., Wang, M., et al. Anaemia, prenatal iron use, and risk of adverse pregnancy outcomes: systematic review and meta-analysis. BMJ (Clinical research ed.) 2013;346:f3443.CrossRefGoogle ScholarPubMed
Preziosi, P., Prual, A., Galan, P., et al. Effect of iron supplementation on the iron status of pregnant women: consequences for newborns. Am J Clin Nutr 1997;66:1178–82.CrossRefGoogle ScholarPubMed
Chaparro, C. M. Setting the stage for child health and development: prevention of iron deficiency in early infancy. J Nutr 2008;138:2529–33.CrossRefGoogle ScholarPubMed
Pasricha, S. R., Drakesmith, H., Black, J., Hipgrave, D., Biggs, B. A. Control of iron deficiency anemia in low- and middle-income countries. Blood 2013;121:2607–17.CrossRefGoogle ScholarPubMed
Tamura, T., Picciano, M. F. Folate and human reproduction. Am J Clin Nutr 2006;83:9931016.CrossRefGoogle ScholarPubMed
Lowensohn, R. I., Stadler, D. D., Naze, C. Current concepts of maternal nutrition. Obstet Gynecol Surv 2016;71:413–26.CrossRefGoogle ScholarPubMed
Munasinghe, S., van den Broek, N. Anaemia in pregnancy in Malawi- a review. Malawi Med J 2006;18:160–74.Google ScholarPubMed
Metz, J., Zalusky, R., Herbert, V. Folic acid binding by serum and milk. Am J Clin Nutr 1968;21:289–97.CrossRefGoogle ScholarPubMed
Metz, J. Folic acid metabolism and malaria. Food Nutr Bull 2007;28:S540–9.CrossRefGoogle ScholarPubMed
Fleming, A. F. The aetiology of severe anaemia in pregnancy in Ndola, Zambia. Ann Trop Med Parasitol 1989;83:3749.CrossRefGoogle ScholarPubMed
Fleming, A. F., Warrell, D. A., Dickmeiss, H. Letter: co-trimoxazole and the blood. Lancet 1974;2:284–5.Google ScholarPubMed
Nzila, A., Okombo, J., Molloy, A. M. Impact of folate supplementation on the efficacy of sulfadoxine/pyrimethamine in preventing malaria in pregnancy: the potential of 5-methyl-tetrahydrofolate. J Antimicrob Chemother 2014;69:323–30.CrossRefGoogle ScholarPubMed
Weksler, B. Hematology. In: Andreoli, T, Bennett, J, Carpentter, C, Plum, F and Smith, L, eds. Cecil Essentials of Medicine. Philadelphia: WB Saunders Company, 1993:351416Google Scholar
de Benoist, B. Conclusions of a WHO technical consultation on folate and vitamin B12 deficiencies. Food Nutr Bull 2008;29:S238–44.CrossRefGoogle ScholarPubMed
McLean, E., de Benoist, B., Allen, L. H. Review of the magnitude of folate and vitamin B12 deficiencies worldwide. Food Nutr Bull 2008;29:S3851.CrossRefGoogle ScholarPubMed
Siekmann, J. H., Allen, L. H., Bwibo, N. O., et al. Kenyan school children have multiple micronutrient deficiencies, but increased plasma vitamin B-12 is the only detectable micronutrient response to meat or milk supplementation. J Nutr 2003;133:3972S–3980S.CrossRefGoogle ScholarPubMed
Samuel, T. M., Duggan, C., Thomas, T., et al. Vitamin B(12) intake and status in early pregnancy among urban South Indian women. Ann Nutr Metabol 2013;62:113–22.CrossRefGoogle ScholarPubMed
Brito, A., Mujica-Coopman, M. F., Lopez de Romana, D., Cori, H., Allen, L. H. Folate and vitamin B12 status in Latin America and the Caribbean: an update. Food Nutr Bull 2015;36:S109–18.CrossRefGoogle ScholarPubMed
Stabler, S. P., Allen, R. H. Vitamin B12 deficiency as a worldwide problem. Annu Rev Nutr 2004;24:299326.CrossRefGoogle ScholarPubMed
Monagle, P. T., Tauro, G. P. Infantile megaloblastosis secondary to maternal vitamin B12 deficiency. Clin Lab Haematol 1997;19:23–5.CrossRefGoogle ScholarPubMed
Graham, S. M., Arvela, O. M., Wise, G. A. Long-term neurologic consequences of nutritional vitamin B12 deficiency in infants. J Pediatr 1992;121:710–4.CrossRefGoogle ScholarPubMed
WHO. Global prevalence of vitamin A deficiency in populations at risk 1995–2005. WHO Global Database on Vitamin A Deficiency. Geneva: World Health Organization, 2009Google Scholar
Fishman, S. M., Christian, P., West, K. P. The role of vitamins in the prevention and control of anaemia. Public Health Nutr 2000;3:125–50.CrossRefGoogle ScholarPubMed
Wolbach, S., Howe, P. Tissue changes following deprivation of fat soluble A vitamin. J Exp Med 1925;42:753–77.CrossRefGoogle ScholarPubMed
Findlay, G., Mackenzie, R. The bone marrow in deficiency diseases. J Pathology 1922;25:402–3.Google Scholar
Koessler, K., Maurer, S., Loughlin, R. The relation of anaemia, primary and secondary, to vitamin A deficiency. JAMA 1926;87.Google Scholar
Bloem, M. W., Wedel, M., Egger, R. J., et al. Iron metabolism and vitamin A deficiency in children in northeast Thailand. Am J Clin Nutr 1989;50:332–8.CrossRefGoogle ScholarPubMed
Olivares, M., Walter, T., Hertrampf, E., Pizarro, F. Anaemia and iron deficiency disease in children. Br Med Bull 1999;55:534–43.CrossRefGoogle ScholarPubMed
Garcia-Casal, M. N., Layrisse, M., Solano, L., et al. Vitamin A and beta-carotene can improve nonheme iron absorption from rice, wheat and corn by humans. J Nutr 1998;128:646–50.CrossRefGoogle ScholarPubMed
Bloem, M. W., Wedel, M., van Agtmaal, E. J., et al. Vitamin A intervention: short-term effects of a single, oral, massive dose on iron metabolism. Am J Clin Nutr 1990;51:76–9.CrossRefGoogle ScholarPubMed
Muhilal, , Permeisih, D., Idjradinata, Y. R., Muherdiyantiningsih, , Karyadi, D. Vitamin A-fortified monosodium glutamate and health, growth, and survival of children: a controlled field trial. Am J Clin Nutr 1988;48:1271–6.Google ScholarPubMed
Smith, J. C., Makdani, D., Hegar, A., Rao, D., Douglass, L. W. Vitamin A and zinc supplementation of preschool children. J Am Coll Nutr 1999;18:213–22.CrossRefGoogle ScholarPubMed
Mejia, L. A., Chew, F. Hematological effect of supplementing anemic children with vitamin A alone and in combination with iron. Am J Clin Nutr 1988;48:595600.CrossRefGoogle ScholarPubMed
Suharno, D., West, C. E., Muhilal, , Karyadi, D., Hautvast, J. G. Supplementation with vitamin A and iron for nutritional anaemia in pregnant women in West Java, Indonesia. Lancet 1993;342:1325–8.CrossRefGoogle ScholarPubMed
Panth, M., Shatrugna, V., Yasodhara, P., Sivakumar, B. Effect of vitamin A supplementation on haemoglobin and vitamin A levels during pregnancy. Br J Nutr 1990;64:351–8.CrossRefGoogle ScholarPubMed
van den Broek, N. R., White, S. A., Flowers, C., et al. Randomised trial of vitamin A supplementation in pregnant women in rural Malawi found to be anaemic on screening by HemoCue. Bjog 2006;113:569–76.CrossRefGoogle ScholarPubMed
Fawzi, W. W., Msamanga, G. I., Spiegelman, D., et al. Randomised trial of effects of vitamin supplements on pregnancy outcomes and T cell counts in HIV-1-infected women in Tanzania. Lancet 1998;351:1477–82.CrossRefGoogle Scholar
McCauley, M. E., van den Broek, N., Dou, L., Othman, M. Vitamin A supplementation during pregnancy for maternal and newborn outcomes. Cochrane Database Syst Rev 2015:Cd008666.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Overview
  • Edited by Robert T. Means Jr, East Tennessee State University
  • Book: Nutritional Anemia
  • Online publication: 02 April 2019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Overview
  • Edited by Robert T. Means Jr, East Tennessee State University
  • Book: Nutritional Anemia
  • Online publication: 02 April 2019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Overview
  • Edited by Robert T. Means Jr, East Tennessee State University
  • Book: Nutritional Anemia
  • Online publication: 02 April 2019
Available formats
×