Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T14:08:49.945Z Has data issue: false hasContentIssue false

16 - Olfaction in Psychosis

from Section III - Assessment and Disorders of Olfaction

Published online by Cambridge University Press:  17 August 2009

Warrick J. Brewer
Affiliation:
Mental Health Research Institute of Victoria, Melbourne
David Castle
Affiliation:
University of Melbourne
Christos Pantelis
Affiliation:
University of Melbourne
Get access

Summary

Introduction

Neuropsychological, structural and functional imaging studies converge in finding that patients with schizophrenia have selective impairments in the areas of memory, attention and executive function, and have neuroanatomic and physiologic abnormalities in the temporal and frontal lobe areas underlying these cognitive domains (Saykin et al., 1991; 1994; Turetsky et al., 1995). Efforts to precisely characterise these fronto-temporal deficits and their clinical correlates have employed a variety of methods and an array of neurobehavioural probes, including physiological assessments of declarative memory, working memory, executive function and vigilance (Berman et al., 1986; Bernstein et al., 1990; Calev, 1984; Weinberger et al., 1992). Little use has been made of olfactory probes, despite the fact that these may be ideal tools to assess limbic pathophysiology.

As outlined in Chapter 1, the olfactory system is unique among the sensory modalities, in that it does not utilise the thalamus as a central relay station (Price, 1987). Primary olfactory neurons arising in the nasal epithelium project unmyelinated afferent fibres through the cribriform plate into the brain cavity, where they terminate on mitral and tufted cells whose dendrites are clustered in glomeruli in the ipsilateral olfactory bulb (OB). Axons from these second order OB neurons form the olfactory tracts, which project directly to the ipsilateral pyriform and entorhinal cortices, the ventral striatum and the ventromedial hypothalamus, with essentially no crossover to the contralateral hemisphere (Eslinger et al., 1982).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amsterdam, J. D., Settle, R. G., Doty, R. L., et al. (1987) Taste and smell perception in depression. Biol Psychiatry, 22(12), 1481–5.Google Scholar
Anderson, A. K., Christoff, K., Stappen, I., et al. (2003) Dissociated neural representations of intensity and valence in human olfaction [comment]. Nat Neurosci, 6(2), 196–202.Google Scholar
Arnold, S. E. (1998) Olfactory neuroepithelium and bulb as a model system for studying developmental neuropathology in schizophrenia. Abst Soc Neurosci, 24.Google Scholar
Arnold, S. E. & Han, L. Y. (2001) Molecular markers of axon guidance and synaptogenesis in the olfactory bulb in schizophrenia. Soc Neurosci, 27, 254–5.Google Scholar
Arnold, S. E., Franz, B. R., Trojanowski, J. Q., et al. (1996) Glial fibrillary acidic protein-immunoreactive astrocytosis in elderly patients with schizophrenia and dementia. Acta Neuropathol, 91(3), 269–77.Google Scholar
Arnold, S. E., Smutzer, G. S., Trojanowski, J. Q., et al. (1998) Cellular and molecular neuropathology of the olfactory epithelium and central olfactory pathways in Alzheimer's disease and schizophrenia. Ann NY Acad Sci, 855, 762–75.Google Scholar
Arnold, S. E., Han, L. Y., Moberg, P. J., et al. (2001) Dysregulation of olfactory receptor neuron lineage in schizophrenia. Arch Gen Psychiatry, 58(9), 829–35.Google Scholar
Barinaga, M. (2001) Olfaction. Smell's course is predetermined. Science, 294(5545), 1269–71.Google Scholar
Barz, S., Hummel, T., Pauli, E., et al. (1997) Chemosensory event-related potentials in response to trigeminal and olfactory stimulation in idiopathic Parkinson's disease. Neurology, 49(5), 1424–31.Google Scholar
Becker, E., Hummel, T., Piel, E., et al. (1993) Olfactory event-related potentials in psychosis-prone subjects. Int J Psychophysiol, 15(1), 51–8.Google Scholar
Berman, K. F., Zec, R. F. & Weinberger, D. R. (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. II. Role of neuroleptic treatment, attention, and mental effort. Arch Gen Psychiatry, 43(2), 126–35.Google Scholar
Bernstein, A. S., Riedel, J. A., Graae, F., et al. (1990) The effects of prolonged stimulus repetition with repeated switching of target status on the orienting response in schizophrenia and depression. J Nerv Mental Dis, 178(2), 96–104.Google Scholar
Bertollo, D. N., Cowen, M. A. & Levy, A. V. (1996) Hypometabolism in olfactory cortical projection areas of male patients with schizophrenia: an initial positron emission tomography study. Psychiatry Res, 60(2–3), 113–6.Google Scholar
Bradley, E. A. (1984) Olfactory acuity to a pheromonal substance and psychotic illness. Biol Psychiatry, 19(6), 899–905.Google Scholar
Brewer, W. J., Edwards, J., Anderson, V., et al. (1996) Neuropsychological, olfactory, and hygiene deficits in men with negative symptom schizophrenia. Biol Psychiatry, 40(10), 1021–31.Google Scholar
Brewer, W. J., Pantelis, C., Anderson, V., et al. (2001) Stability of olfactory identification deficits in neuroleptic-naive patients with first-episode psychosis. Am J Psychiatry, 158(1), 107–115.Google Scholar
Brewer, W. J., Wood, S. J., McGorry, P. D., et al. (2003) Olfactory identification ability is impaired in individuals at ultra high-risk for psychosis who later develop schizophrenia. Am J Psychiatry, 160, 1790–4.Google Scholar
Calev, A. (1984) Recall and recognition in chronic nondemented schizophrenias: use of matched tasks. J Ab Psychology, 93(2), 172–7.Google Scholar
Campbell, I. & Gregson, R. A. M. (1972) Olfactory short term memory in normal, schizophrenia and brain-damaged cases. Austral J Psychol, 24, 179–185.Google Scholar
Cannon, T. D., Rosso, I. M., Hollister, J. M., et al. (2000) A prospective cohort study of genetic and perinatal influences in the etiology of schizophrenia. Schizophr Bull, 26(2), 351–66.Google Scholar
Clark, C., Kopala, L., Hurwitz, T., et al. (1991) Regional metabolism in microsmic patients with schizophrenia. Canad J Psychiatry – Revue Canadienne de Psychiatrie, 36(9), 645–50.Google Scholar
Crespo-Facorro, B., Paradiso, S., Andreasen, N. C., et al. (2001) Neural mechanisms of anhedonia in schizophrenia: a PET study of response to unpleasant and pleasant odors. JAMA, 286(4), 427–35.Google Scholar
Davidson, R. J. (1984) Affect, cognition and hemispheric specialization. In Physiologic Correlates of Human Behavior (eds Izard, C. E. & Zajonc, C. E.). London: Academic Press.
Dluzen, D. E. & Kreutzberg, J. D. (1996) Norepinephrine is lateralized within the olfactory bulbs of male mice. J Neurochem, 66(3), 1222–6.Google Scholar
Doty, R. (1991) Olfactory system. In Smell and Taste in Health and Disease (eds Getchell, T. V., Bartoshuk, L. M. & Snow, J. B.), pp. 175–203. New York: Raven Press.
Doty, R. & Kobal, G. (1995) Current trends in the measurement of olfactory function. In Handbook of Olfaction and Gustation (ed Doty, R. L.). New York: Marcel Dekker.
Doty, R. L., Bromley, S. M., Moberg, P. J., et al. (1987) Laterality in human nasal chemoreception. In Cerebral Asymmetries in Sensory and Perceptual Processing (ed Christman, S.), pp. 497–542. Amsterdam: North Holland Publishing Co.
Doty, R. L. (1997) Studies of human olfaction from the University of Pennsylvania Smell and Taste Center. Chemcial Senses, 22(5), 565–86.Google Scholar
Dryer, L. & Graziadei, P. P. (1994) Influence of the olfactory organ on brain development. Perspect Dev Neurobiol, 2, 163–74.Google Scholar
Dunn, T. P. & Weller, M. P. (1989) Olfaction in schizophrenia. Percep Mot Skills, 69(3 Pt 1), 833–4.Google Scholar
Eslinger, P. J., Damasio, A. R. & Hoesen, G. W. (1982) Olfactory dysfunction in man: anatomical and behavioral aspects. Brain & Cognition, 1(3), 259–85.Google Scholar
Evans, W. J., Cui, L. & Starr, A. (1995) Olfactory event-related potentials in normal human subjects: effects of age and gender. Electroencephalogr Clin Neurophysiol, 95(4), 293–301.Google Scholar
Farbman, A. I. (1991) Developmental Neurobiology of the Olfactory System. New York: Raven Press.
Farbman, A. I. (1994) Developmental biology of olfactory sensory neurons. Semin Cell Biol, 5, 3–10.Google Scholar
Gainotti, D. (1989) Disorders of emotions and affect in patients with unilateral brain damage. In Handbook of Neuropsychology Vol. 3, (ed Boller, F. G. J.). Amsterdam: Elsevier.
Gottfried, J. A., Deichmann, R., Winston, J. S., et al. (2002) Functional heterogeneity in human olfactory cortex: an event-related functional magnetic resonance imaging study. J Neurosci, 22(24), 10819–28.Google Scholar
Gross-Isseroff, R., Luca-Haimovici, K., Sasson, Y., et al. (1994) Olfactory sensitivity in major depressive disorder and obsessive compulsive disorder. Biol Psychiatry, 35(10), 798–802.Google Scholar
Gur, R. E., Mozley, P. D., Shtasel, D. L., et al. (1994) Clinical subtypes of schizophrenia: differences in brain and CSF volume. Am J Psychiatry, 151(3), 343–50.Google Scholar
Gur, R. E., Turetsky, B. I., Cowell, P. E., et al. (2000) Temporolimbic volume reductions in schizophrenia. Arch Gen Psychiatry, 57(8), 769–75.Google Scholar
Harrison, P. & Roberts, G. (2000) The Neuropathology of Schizophrenia. Oxford: Oxford University Press.
Heine, O. & Galaburda, A. M. (1986) Olfactory asymmetry in the rat brain. Exp Neurol, 91(2), 392–8.Google Scholar
Hollister, J. M., Laing, P. & Mednick, S. A. (1996) Rhesus incompatibility as a risk factor for schizophrenia in male adults. Arch Gen Psychiatry, 53(1), 19–24.Google Scholar
Hummel, T., Pauli, E., Schuler, P., et al. (1995) Chemosensory event-related potentials in patients with temporal lobe epilepsy. Epilepsia, 36(1), 79–85.Google Scholar
Hurwitz, T., Kopala, L., Clark, C., et al. (1988) Olfactory deficits in schizophrenia. Biol Psychiatry, 23(2), 123–8.Google Scholar
Insausti, R., Juottonen, K., Soininen, H., et al. (1998) MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. Am J Neuroradiol, 19(4), 659–71.Google Scholar
Jones-Gotman, M. & Zatorre, R. J. (1993) Odor recognition memory in humans: role of right temporal and orbitofrontal regions. Brain Cognit, 22(2), 182–98.Google Scholar
Kettenmann, B., Hummel, C., Stefan, H., et al. (1997) Multiple olfactory activity in the human neocortex identified by magnetic source imaging. Chem Senses, 22(5), 493–502.Google Scholar
Kobal, G. & Hummel, T. (1991) Olfactory evoked potentials in humans. In Smell and Taste in Health and Disease. (eds Getchell, T. V., Doty, R. L., Bartoshuk, L. M., et al.), pp. 255–75. New York: Raven Press.
Kopala, L. C. & Clark, C. (1990) Implications of olfactory agnosia for understanding sex differences in schizophrenia. Schizophr Bull, 16(2), 255–61.Google Scholar
Kopala, L., Clark, C. & Hurwitz, T. A. (1989) Sex differences in olfactory function in schizophrenia. Am J Psychiatry, 146(10), 1320–2.Google Scholar
Kopala, L., Clark, C. & Hurwitz, T. A. (1993) Olfactory deficits in neuroleptic naive patients with schizophrenia. Schizophr Res, 8(3), 245–50.Google Scholar
Kopala, L. C., Good, K. & Honer, W. G. (1994) Olfactory hallucinations and olfactory identification ability in patients with schizophrenia and other psychiatric disorders. Schizophr Res, 12(3), 205–11.Google Scholar
Kopala, L. C., Good, K. & Honer, W. G. (1995) Olfactory identification ability in pre- and postmenopausal women with schizophrenia. Biol Psychiatry, 38(1), 57–63.Google Scholar
Kopala, L. C., Lewine, R., Good, K. P., et al. (1997) Clinical features of schizophrenia in a woman with hyperandrogenism. J Psychiatry Neurosci, 22(1), 56–60.Google Scholar
Kopala, L. C., Good, K. P., Torrey, E. F., et al. (1998) Olfactory function in monozygotic twins discordant for schizophrenia. Am J Psychiatry, 155(1), 134–6.Google Scholar
Kopala, L. C., Good, K. P., Morrison, K., et al. (2001) Impaired olfactory identification in relatives of patients with familial schizophrenia. Am J Psychiatry, 158(8), 1286–90.Google Scholar
Kwapil, T. R., Chapman, J. P., Chapman, L. J., et al. (1996) Deviant olfactory experiences as indicators of risk for psychosis. Schizophr Bull, 22(2), 371–82.Google Scholar
Larsen, W. J. (2001) Human Embryology. New York: Churchill Livingstone.
Malaspina, D., Lignelli, A., Pererra, G., et al. (1996) SPECT brain activation by odor discrimination in schizophrenia and controls. In The 35th Ann Meet Acad Neuropsychopharmacol. San Juan, Puerto Rico.
Malaspina, D, Wray, A. D., Friedman, J. H., et al. (1994) Odor discrimination deficits in schizophrenia: association with eye movement dysfunction. J Neuropsychiatry Clin Neurosci, 6(3), 273–8.Google Scholar
Malloy, P., Bihrle, A., Duffy, J., et al. (1993) The orbitomedial frontal syndrome. Arch Clin Neuropsychology, 8, 185–201.Google Scholar
Mednick, S. A., Machon, R. A., Huttunen, M. O., et al. (1988) Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry, 45(2), 189–92.Google Scholar
Moberg, P. J., Doty, R. L., Turetsky, B. I., et al. (1996) Olfactory functioning in siblings discordant for schizophrenia (abstract). Biol Psychiatry, 39, 571–2.Google Scholar
Moberg, P. J., Doty, R. L., Turetsky, B. I., et al. (1997) Olfactory identification deficits in schizophrenia: correlation with duration of illness. Am J Psychiatry, 154(7), 1016–18.Google Scholar
Moberg, P. J., Agrin, R., Gur, R. E., et al. (1999) Olfactory dysfunction in schizophrenia: a qualitative and quantitative review. Neuropsychopharmacol, 21(3), 325–40.Google Scholar
Moberg, P. J., Arnold, S. E., Doty, R. L., et al. (2003) Impairment of odor hedonics in men with schizophrenia. Am J Psychiatry, 160, 1784–9.Google Scholar
Moberg, P., Roalf, D., Gur, R., et al. (2004) Smaller nasal volumes as stigmata of aberrant neurodevelopment in schizophrenia. Am J Psychiatry, 16(12), 2314–6.
Mohr, C., Hubener, F. & Laska, M. (2002) Deviant olfactory experiences, magical ideation, and olfactory sensitivity: a study with healthy German and Japanese subjects. Psychiatry Res, 111(1), 21–33.Google Scholar
Mohr, C., Rohrenbach, C. M., Laska, M., et al. (2001) Unilateral olfactory perception and magical ideation. Schizophr Res, 47(2–3), 255–64.Google Scholar
Nasrallah, H. A., Sharma, S. & Olson, S. C. (1997) The volume of the entorhinal cortex in schizophrenia: a controlled MRI study. Prog Neuropsychopharm Biol Psychiatry, 21(8), 1317–22.Google Scholar
O'Callaghan, E., Larkin, C., Kinsella, A., et al. (1991) Familial, obstetric, and other clinical correlates of minor physical anomalies in schizophrenia. Am J Psychiatry, 148(4), 479–83.Google Scholar
Park, S. & Schoppe, S. (1997) Olfactory identification deficit in relation to schizotypy. Schizophr Res, 26(2–3), 191–7.Google Scholar
Pause, B. M., Miranda, A., Goder, R., et al. (2001) Reduced olfactory performance in patients with major depression. J Psychiatric Res, 35(5), 271–7.Google Scholar
Pearlson, G. D., Barta, P. E., Powers, R. E., et al. (1996) Ziskind-Somerfeld Research Award 1996. Medial and superior temporal gyral volumes and cerebral asymmetry in schizophrenia versus bipolar disorder. Biol Psychiatry, 41(1), 1–14.Google Scholar
Postolache, T. T., Wehr, T. A., Doty, R. L., et al. (2002) Patients with seasonal affective disorder have lower odor detection thresholds than control subjects. Arch Gen Psychiatry, 59(12), 1119–22.Google Scholar
Prasada Rao, P. D. & Finger, T. E. (1984) Asymmetry of the olfactory system in the brain of the winter flounder, Pseudopleuronectes americanus. J Comp Neurol, 225(4), 492–510.Google Scholar
Price, J. (1987) The central olfactory and accessory olfactory systems. In Neurobiology of Taste and Smell (ed Finger, T. E.). New York: Wiley.
Puri, B. K., Davey, N. J., Ellaway, P. H., et al. (1996) An investigation of motor function in schizophrenia using transcranial magnetic stimulation of the motor cortex. Br J Psychiatry, 169, 690–5.Google Scholar
Rodriguez-Gomez, F. J., Rendon-Unceta, M. C., Sarasquete, C., et al. (2000) Localization of tyrosine hydroxylase-immunoreactivity in the brain of the Senegalese sole, Solea senegalensis. J Chem Neuroanat, 19(1), 17–32.Google Scholar
Sackeim, H. A., Gur, R. C. & Saucy, M. C. (1978) Emotions are expressed more intensely on the left side of the face. Science, 202(4366), 434–6.Google Scholar
Sackeim, H. A., Greenberg, M. S., Weiman, A. L., et al. (1982) Hemispheric asymmetry in the expression of positive and negative emotions. Neurologic evidence. Arch Neurol, 39(4), 210–8.Google Scholar
Saykin, A. J., Gur, R. C., Gur, R. E., et al. (1991) Neuropsychological function in schizophrenia. Selective impairment in memory and learning. Arch Gen Psychiatry, 48(7), 618–24.Google Scholar
Saykin, A. J., Shtasel, D. L., Gur, R. E., et al. (1994) Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. Arch Gen Psychiatry, 51(2), 124–31.Google Scholar
Scott, T. F., Price, T. R., George, M. S., et al. (1993) Midline cerebral malformations and schizophrenia. J Neuropsychiatry Clin Neurosci, 5(3), 287–93.Google Scholar
Seidman, L., Talbot, N. L., Kalinowski, A. G., et al. (1992) Neuropsychological probes of fronto-limbic dysfunction in schizophrenia: Olfactory identification and Wisconsin Card Sorting performance. Schizophr Res, 6, 55–6.Google Scholar
Serby, M., Larson, P. & Kalkstein, D. (1990a) Olfactory sense in psychoses. Biol Psychiatry, 28(9), 830.Google Scholar
Serby, M., Larson, P. & Kalkstein, D. (1990b) Olfactory sense in psychoses. [comment]. Biol Psychiatry, 28(9), 830.Google Scholar
Shenton, M. E., Dickey, C. C., Frumin, M., et al. (2001) A review of MRI findings in schizophrenia. Schizophr Res, 49(1–2), 1–52.Google Scholar
Striebel, K. M., Beyerstein, B., Remick, R. A., et al. (1999) Olfactory identification and psychosis. Biol Psychiatry, 45(11), 1419–25.Google Scholar
Takagi, S. (1969) Degeneration and regeneration of the sensory neuron: studies on the olfactory epithelium. Shinkei Kenkyu No Shimpo. Adv Neurolog Sci, 13(1), 152–63.Google Scholar
Tanabe, T., Yarita, H., Iino, M., et al. (1975) An olfactory projection area in orbitofrontal cortex of the monkey. J Neurophysiol, 38(5), 1269–83.Google Scholar
Tran, K. D., Smutzer, G. S., Doty, R. L., et al. (1998) Reduced Purkinje cell size in the cerebellar vermis of elderly patients with schizophrenia. Am J Psychiatry, 155, 1288–90.Google Scholar
Turetsky, B., Cowell, P. E., Gur, R. C., et al. (1995) Frontal and temporal lobe brain volumes in schizophrenia. Relationship to symptoms and clinical subtype. Arch Gen Psychiatry, 52(12), 1061–70.Google Scholar
Turetsky, B. I., Moberg, P. J., Yousem, D. M., et al. (2000) Reduced olfactory bulb volume in patients with schizophrenia. Am J Psychiatry, 157(5), 828–30.Google Scholar
Turetsky, B. I., Moberg, P. J., Arnold, S. A., et al. (2003) Low olfactory bulb volume in first-degree relatives of patients with schizophrenia. Am J Psychiatry, 160, 703–8.Google Scholar
Turetsky, B. I., Moberg, P. J., Johnson, S. C., et al. (2003a) Olfactory stimulus processing in patients with schizophrenia and their first-degree relatives: Evidence for a genetically mediated neurophysiological abnormality. Presented at the International Congress on Schizophrenia Research, Colorado Springs, CO.
Turetsky, B. I., Moberg, P. J., Owzar, K., et al. (2003b) Physiological impairment of olfactory stimulus processing in schizophrenia. Biol Psychiatry, 53, 403–11.Google Scholar
Turetsky, B. I., Moberg, P. J., Roalf, D. R., et al. (2003c) Anterior ventromedial temporal lobe volume decrements and olfactory dysfunction in schizophrenia. Arch Gen Psychiatry, 60, 1193–1200.Google Scholar
Warner, M. D., Peabody, C. A. & Csernansky, J. G. (1990a) Olfactory functioning in schizophrenia and depression. [comment]. Biol Psychiatry, 27(4), 457–8.Google Scholar
Warner, M. D., Peabody, C. A. & Csernansky, J. G. (1990b) Olfactory functioning in schizophrenia and depression. Biol Psychiatry, 27(4), 457–8.Google Scholar
Weinberger, D. R., Berman, K. F., Suddath, R., et al. (1992) Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am J Psychiatry, 149(7), 890–7.Google Scholar
Wray, S., Grant, P. & Gainer, H. (1989) Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. Proc Natl Acad Sci USA, 86, 8132–6.Google Scholar
Wu, J., Buchsbaum, M. S., Moy, K., et al. (1993) Olfactory memory in unmedicated schizophrenias. Schizophr Res, 9(1), 41–7.Google Scholar
Yousem, D. M., Geckle, R. J., Doty, R. L., et al. (1997a) Reproducibility and reliability of volumetric measurements of olfactory eloquent structures. Acad Radiol, 4(4), 264–9.Google Scholar
Yousem, D. M., Williams, S. C., Howard, R. O., et al. (1997b) Functional MR imaging during odor stimulation: preliminary data. Radiology, 204(3), 833–8.Google Scholar
Zald, D. H. & Pardo, J. V. (1997) Emotion, olfaction, and the human amygdala: amygdala activation during aversive olfactory stimulation. Proc Nat Acad Sci USA, 94(8), 4119–24.Google Scholar
Zatorre, R. J. & Jones-Gotman, M. (1990) Right-nostril advantage for discrimination of odors. Percept Psychophysics, 47(6), 526–31.Google Scholar
Zatorre, R. J., Jones-Gotman, M., Evans, A. C., et al. (1992) Functional localization and lateralization of human olfactory cortex. Nature, 360(6402), 339–40.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×