Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T15:58:15.841Z Has data issue: false hasContentIssue false

7 - Relative Manin-Mumford for abelian varieties

Published online by Cambridge University Press:  05 August 2015

D. Masser
Affiliation:
None
G. O. Jones
Affiliation:
University of Manchester
A. J. Wilkie
Affiliation:
University of Manchester
Get access

Summary

Abstract

With an eye or two towards applications to Pell's equation and to Daven-port's work on integration of algebraic functions, Umberto Zannier and I have recently characterized torsion points on a fixed algebraic curve in a fixed abelian scheme of dimension bigger than one (when all is defined over the algebraic numbers): there are at most finitely many points provided the natural obstacles are absent. I sketch the proof as well as the applications.

A very simple problem of Manin-Mumford type is: find all roots of unity ƛ, μ with ƛ + μ = 1. Here the solution is easy: we have |ƛ| = |1 − ƛ| = 1 and so in the complex plane ƛ lies on the intersection of two circles; in fact ƛ must be one of the two primitive sixth roots of unity (the picture doesn't work too well in positive characteristic, and indeed any non-zero element of any finite field is already a root of unity, so from now on we stick to zero characteristic). This result has something to do with the multiplicative group Gm, which can be regarded as C*. Actually with and the “line” inside it parametrized by P = (ƛ, 1 − ƛ): we ask just that P is torsion.

Now it is easy to generalize, at least the problem, to other algebraic varieties in other commutative algebraic groups.

For example let E be the elliptic curve defined by y2 = x(x − 1)(x − 4). Asking for all complex ƛ such that the points

are both torsion amounts to asking for torsion points on a certain curve in the surface E2. But here the solution is much more difficult (and it is not clear to me that one can find all ƛ explicitly as above).

It was Hindry [H] who solved the general problem with any algebraic variety in any commutative algebraic group G. The outcome for a curve in G is that it contains at most finitely many torsion points unless one of its components is a connected one-dimensional “torsion coset”; that is, a translate P0 + H of an algebraic subgroup H of G by a torsion point P0. This H contains infinitely many torsion points and so P0 + H also.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×