Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T05:09:50.182Z Has data issue: false hasContentIssue false

16 - Optogenetic Mapping of Neuronal Connections and their Plasticity

from Part III - Optogenetics in Neurobiology, Brain Circuits, and Plasticity

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 224 - 238
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamantidis, A.R. et al., 2007. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature, 450(7168), pp.420–4.CrossRefGoogle ScholarPubMed
Anastasiades, P.G. et al., 2016. GABAergic interneurons form transient, layer-specific circuits in early postnatal neocortex. Nat Commun, 4, p.7.Google Scholar
Andrasfalvy, B.K. et al., 2010. Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc Natl Acad Sci U S A, 107(26), pp.11981–6.CrossRefGoogle ScholarPubMed
Bamann, C. et al., 2008. Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function. J Mol Biol, 375(3), pp.686–94.CrossRefGoogle ScholarPubMed
Bi, A. et al., 2006. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron, 50(1), pp.2333.CrossRefGoogle ScholarPubMed
Binzegger, T., Douglas, R.J. & Martin, K.A., 2004. A quantitative map of the circuit of cat primary visual cortex. J Neurosci, 24(39), pp.8441–53.CrossRefGoogle ScholarPubMed
Bliss, T.V.P. & Lømo, T., 1973. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. The Journal of Physiology, 232(2), pp.331–56.Google ScholarPubMed
Boyden, E.S. et al., 2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci, 8(9), pp.1263–8.CrossRefGoogle ScholarPubMed
Brill, J. & Huguenard, J.R., 2009. Robust short-latency perisomatic inhibition onto neocortical pyramidal cells detected by laser-scanning photostimulation. J Neurosci, 29(23), pp.7413–23.CrossRefGoogle ScholarPubMed
Brown, S.P. & Hestrin, S., 2009. Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature, 457(7233), pp.1133–6.CrossRefGoogle ScholarPubMed
Callaway, E.M. & Katz, L.C., 1993. Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc Natl Acad Sci U S A, 90(16), pp.7661–5.CrossRefGoogle ScholarPubMed
Clyne, J.D. & Miesenböck, G., 2008. Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell, 133(2), pp.354–63.CrossRefGoogle ScholarPubMed
Crick, F., 1999. The impact of molecular biology on neuroscience. Philos Trans R Soc Lond B, 354, pp.2021–5.CrossRefGoogle Scholar
Dantzker, J.L. & Callaway, E.M., 2000. Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons. Nat Neurosci, 3(7), pp.701–7.CrossRefGoogle ScholarPubMed
Deisseroth, K., 2014. Circuit dynamics of adaptive and maladaptive behaviour. Nature, 505(7483), pp.309–17.CrossRefGoogle ScholarPubMed
Denk, W., 1994. Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions. Proc Natl Acad Sci U S A, 91(14), pp.6629–33.CrossRefGoogle Scholar
Denk, W., Strickler, J.H. & Webb, W.W., 1990. Two-photon laser scanning fluorescence microscopy. Science, 248(4951), pp.73–6.CrossRefGoogle ScholarPubMed
Fino, E. & Yuste, R., 2011. Dense inhibitory connectivity in neocortex. Neuron, 69(6), pp.1188–203.CrossRefGoogle ScholarPubMed
Gu, Z. & Yakel, J.L., 2011. Timing-dependent septal cholinergic induction of dynamic hippocampal synaptic plasticity. Neuron, 71(1), pp.155–65.CrossRefGoogle ScholarPubMed
Gupta, A., Wang, Y. & Markram, H., 2000. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science, 287(5451), pp.273–8.CrossRefGoogle ScholarPubMed
Helmstaedter, M., Sakmann, B. & Feldmeyer, D., 2009a. L2/3 interneuron groups defined by multiparameter analysis of axonal projection, dendritic geometry, and electrical excitability. Cereb Cortex, 19(4), pp.951–62.Google ScholarPubMed
Helmstaedter, M., Sakmann, B. & Feldmeyer, D., 2009b. Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns. Cereb Cortex, 19(4), pp.926–37.CrossRefGoogle ScholarPubMed
Helmstaedter, M., Sakmann, B. & Feldmeyer, D., 2009c. The relation between dendritic geometry, electrical excitability, and axonal projections of L2/3 interneurons in rat barrel cortex. Cereb Cortex, 19(4), pp.938–50.Google ScholarPubMed
Katz, L.C. & Dalva, M.B., 1994. Scanning laser photostimulation: a new approach for analyzing brain circuits. J Neurosci Methods, 54(2), pp.205–18.CrossRefGoogle ScholarPubMed
Kätzel, D. et al., 2011. The columnar and laminar organization of inhibitory connections to neocortical excitatory cells. Nat Neurosci, 14(1), pp.100–7.CrossRefGoogle Scholar
Kätzel, D. & Miesenböck, G., 2014. Experience-dependent rewiring of specific inhibitory connections in adult neocortex. PLoS Biol, 12(2), p. e1001798.CrossRefGoogle ScholarPubMed
Kohl, M.M. et al., 2011. Hemisphere-specific optogenetic stimulation reveals left–right asymmetry of hippocampal plasticity. Nat Neurosci, 14, pp.1413–5.Google ScholarPubMed
Kozloski, J., Hamzei-Sichani, F. & Yuste, R., 2001. Stereotyped position of local synaptic targets in neocortex. Science, 293(5531), pp.868–72.CrossRefGoogle ScholarPubMed
Kuhlman, S.J. & Huang, Z.J., 2008. High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression. PLoS ONE, 3(4), p. e2005.CrossRefGoogle ScholarPubMed
Lesch, K.-P. & Waider, J., 2012. Serotonin in the modulation of neural plasticity and networks: implications for neurodevelopmental disorders. Neuron, 76(1), pp.175–91.CrossRefGoogle ScholarPubMed
Li, X. et al., 2005. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci U S A, 102(49), pp.17816–21.CrossRefGoogle ScholarPubMed
Lima, S.Q. & Miesenböck, G., 2005. Remote control of behavior through genetically targeted photostimulation of neurons. Cell, 121(1), pp.141–52.CrossRefGoogle ScholarPubMed
Madisen, L. et al., 2012. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci, 15(5), pp.793802.CrossRefGoogle ScholarPubMed
Martin, K.A.C., 2009. The road ahead for brain-circuit reconstruction. Nature, 462(7272), pp.411.CrossRefGoogle Scholar
Martin, S.J., Grimwood, P.D., & Morris, R.G., 2000. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci, 23(1), pp.649711.CrossRefGoogle ScholarPubMed
Matsuzaki, M. et al., 2001. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci, 4(11), pp.1086–92.CrossRefGoogle ScholarPubMed
Mohanty, S.K. et al., 2008. In-depth activation of channelrhodopsin 2-sensitized excitable cells with high spatial resolution using two-photon excitation with a near-infrared laser microbeam. Biophys J, 95(8), pp.3916–26.CrossRefGoogle ScholarPubMed
Monyer, H. & Markram, H., 2004. Interneuron diversity series: molecular and genetic tools to study GABAergic interneuron diversity and function. Trends Neurosci, 27(2), pp.90–7.CrossRefGoogle ScholarPubMed
Nabavi, S. et al., 2014. Engineering a memory with LTD and LTP. Nature, 511(7509), pp.348–52.CrossRefGoogle ScholarPubMed
Nagel, G. et al., 2003. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A, 100(24), pp.13940–5.CrossRefGoogle ScholarPubMed
Nagel, G. et al., 2005. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol, 15(24), pp.2279–84.CrossRefGoogle ScholarPubMed
Nikolenko, V. et al., 2008. SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators. Front Neural Circuits, 2, p. 5.CrossRefGoogle ScholarPubMed
Nikolenko, V., Poskanzer, K.E. & Yuste, R., 2007. Two-photon photostimulation and imaging of neural circuits. Nat Methods, 4(11), pp.943–50.CrossRefGoogle Scholar
Packer, A.M. et al., 2012. Two-photon optogenetics of dendritic spines and neural circuits in 3D. Nat Methods, 9(12), pp.1202–5.CrossRefGoogle Scholar
Packer, A.M. & Yuste, R., 2011. Dense, unspecific connectivity of neocortical parvalbumin-positive interneurons: a canonical microcircuit for inhibition? J Neurosci, 31(37), pp.13260–71.CrossRefGoogle ScholarPubMed
Papagiakoumou, E. et al., 2010. Scanless two-photon excitation of channelrhodopsin-2. Nat Methods, 7(10), pp.848–54.CrossRefGoogle Scholar
Pascoli, V., Turiault, M. & Luscher, C., 2012. Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour. Nature, 481(7379), pp.71–5.CrossRefGoogle Scholar
Petreanu, L. et al., 2007. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat Neurosci, 10(5), pp.663–8.CrossRefGoogle ScholarPubMed
Petreanu, L. et al., 2009. The subcellular organization of neocortical excitatory connections. Nature, 457(7233), pp.1142–5.CrossRefGoogle ScholarPubMed
Pignatelli, M. & Bonci, A., 2015. Role of dopamine neurons in reward and aversion: a synaptic plasticity perspective. Neuron, 86(5), pp.1145–57.CrossRefGoogle ScholarPubMed
Prakash, R. et al., 2012. Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat Methods, 9(12), pp.1171–9.CrossRefGoogle ScholarPubMed
Reijmers, L.G. et al., 2007. Localization of a stable neural correlate of associative memory. Science, 317(5842), pp.1230–3.CrossRefGoogle ScholarPubMed
Rickgauer, J.P. & Tank, D.W., 2009. Two-photon excitation of channelrhodopsin-2 at saturation. Proc Natl Acad Sci U S A, 106(35), pp.15025–30.CrossRefGoogle ScholarPubMed
Rosen, Z.B., Cheung, S. & Siegelbaum, S.A., 2015. Midbrain dopamine neurons bidirectionally regulate CA3–CA1 synaptic drive. Nat Neurosci, 18(12), pp.1763–71.CrossRefGoogle ScholarPubMed
Scanziani, M. & Häusser, M., 2009. Electrophysiology in the age of light. Nature, 461(7266), pp.930–9.CrossRefGoogle ScholarPubMed
Schubert, D. et al., 2001. Layer-specific intracolumnar and transcolumnar functional connectivity of layer V pyramidal cells in rat barrel cortex. J Neurosci, 21(10), pp.3580–92.CrossRefGoogle Scholar
Schubert, D., Kötter, R. & Staiger, J., 2007. Mapping functional connectivity in barrel-related columns reveals layer- and cell type-specific microcircuits. Brain Struct Funct, 212(2), pp.107–19.CrossRefGoogle ScholarPubMed
Seol, G.H. et al., 2007. Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron, 55(6), pp.919–29.CrossRefGoogle ScholarPubMed
Shepherd, G.M. et al., 2005. Geometric and functional organization of cortical circuits. Nat Neurosci, 8(6), pp.782–90.CrossRefGoogle ScholarPubMed
Shepherd, G.M. & Svoboda, K., 2005. Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex. J Neurosci, 25(24), pp.5670–9.CrossRefGoogle Scholar
Shipton, O.A. et al., 2014. Left–right dissociation of hippocampal memory processes in mice. Proc Natl Acad Sci U S A, 111(42), pp.15238–43.CrossRefGoogle ScholarPubMed
Teles-Grilo Ruivo, L. & Mellor, J., 2013. Cholinergic modulation of hippocampal network function. Front Synaptic Neurosci, 5, p. 2.CrossRefGoogle ScholarPubMed
Thomson, A.M. et al., 1996. Single axon IPSPs elicited in pyramidal cells by three classes of interneurones in slices of rat neocortex. J Physiol, 496(Pt 1), pp.81102.CrossRefGoogle ScholarPubMed
Thomson, A.M. et al., 2002. Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2–5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. Cereb Cortex, 12(9), pp.936–53.CrossRefGoogle Scholar
Thomson, A.M., Deuchars, J. & West, D.C., 1996. Neocortical local synaptic circuitry revealed with dual intracellular recordings and biocytin-filling. J Physiol Paris, 90(3–4), pp.211–5.CrossRefGoogle ScholarPubMed
Walker, J.W., McCray, J.A. & Hess, G.P., 1986. Photolabile protecting groups for an acetylcholine receptor ligand. Synthesis and photochemistry of a new class of o-nitrobenzyl derivatives and their effects on receptor function. Biochemistry, 25(7), pp.1799–805.CrossRefGoogle ScholarPubMed
Wang, Y. et al., 2004. Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J Physiol, 561(1), pp.6590.CrossRefGoogle ScholarPubMed
Weiler, N. et al., 2008. Top-down laminar organization of the excitatory network in motor cortex. Nat Neurosci, 11(3), pp.360–6.CrossRefGoogle ScholarPubMed
Wieboldt, R. et al., 1994a. Photolabile precursors of glutamate: synthesis, photochemical properties, and activation of glutamate receptors on a microsecond time scale. Proc Natl Acad Sci U S A, 91(19), pp.8752–6.CrossRefGoogle ScholarPubMed
Wieboldt, R. et al., 1994b. Synthesis and photochemistry of photolabile derivatives of gamma-aminobutyric acid for chemical kinetic investigations of the gamma-aminobutyric acid receptor in the millisecond time region. Biochemistry, 33(6), pp.1526–33.CrossRefGoogle ScholarPubMed
Wilcox, M. et al., 1990. Synthesis of photolabile precursors of amino acid neurotransmitters. J Org Chem, 55(5), pp.1585–9.CrossRefGoogle Scholar
Xiong, W. & Jin, X., 2012. Optogenetic field potential recording in cortical slices. J Neurosci Methods, 210(2), pp.119–24.CrossRefGoogle ScholarPubMed
Xu, X. & Callaway, E.M., 2009. Laminar specificity of functional input to distinct types of inhibitory cortical neurons. J Neurosci, 29(1), pp.7085.CrossRefGoogle Scholar
Yoshimura, Y. & Callaway, E.M., 2005. Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nat Neurosci, 8(11), pp.1552–9.CrossRefGoogle ScholarPubMed
Yoshimura, Y., Dantzker, J.L. & Callaway, E.M., 2005. Excitatory cortical neurons form fine-scale functional networks. Nature, 433(7028), pp.868–73.CrossRefGoogle ScholarPubMed
Zemelman, B.V. et al., 2003. Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proc Natl Acad Sci U S A, 100(3), pp.1352–7.CrossRefGoogle ScholarPubMed
Zemelman, B.V. et al., 2002. Selective photostimulation of genetically chARGed neurons. Neuron, 33(1), pp.1522.CrossRefGoogle ScholarPubMed
Zemelman, B.V. & Miesenböck, G., 2001. Genetic schemes and schemata in neurophysiology. Curr Opin Neurobiol, 11(4), pp.409–14.CrossRefGoogle ScholarPubMed
Zhu, P. et al., 2009. Optogenetic dissection of neuronal circuits in zebrafish using viral gene transfer and the Tet system. Front Neural Circuits, 3, p. 21.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×