Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T06:56:03.804Z Has data issue: false hasContentIssue false

Chapter 5 - Immune Complex Mediated Glomerular Diseases

from Section 2 - Glomerular Diseases

Published online by Cambridge University Press:  10 August 2023

Helen Liapis
Affiliation:
Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
Get access

Summary

In many diseases, etiopathogenesis relies on dysregulation of the immune system – either secondary to a recognized underlying condition or primary due to an unknown cause ؘ– that will lead to a wide spectrum of glomerular disorders and a broad range of clinical symptoms from nephritic to nephrotic syndrome. This chapter outlines the most important clinicopathological entities related to immune-complex formation. Recent advances in our understanding of the role of complement in the pathogenesis of many immune-complex mediated diseases have led to the description of new diseases and novel classifications based more on the etiopathogenesis than on pure morphological findings. We briefly discuss the pathogenesis of immune-complex mediated diseases, now expanding to include genetics and/or genetic susceptibility, which are influencing patient management.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Noris, M., Remuzzi, G.. Genetics of immune-mediated glomerular diseases: Focus on complement. Semin Nephrol. 2017;37:447–63.Google Scholar
Couser, W. G.. Basic and translational concepts of immune-mediated glomerular diseases. J Am Soc Nephrol. 2012;23:381–99.Google Scholar
O’Shaughnessy, M. M., Hogan, S. L., Thompson, B. D., Coppo, R., Fogo, A. B., Jennette, J. C.. Glomerular disease frequencies by race, sex and region: Results from the International Kidney Biopsy Survey. Nephrol Dial Transplant. 2018;33:661–9.Google ScholarPubMed
Sugiyama, H., Yokoyama, H., Sato, H., et al. Japan Renal Biopsy Registry and Japan Kidney Disease Registry: Committee report for 2009 and 2010. Clin Exp Nephrol. 2013;17:15573.CrossRefGoogle ScholarPubMed
Cho, B. S., Hahn, W. H., Cheong, H. I., et al. A nationwide study of mass urine screening tests on Korean school children and implications for chronic kidney disease management. Clin Exp Nephrol. 2013;17:20510.Google Scholar
Shibano, T., Takagi, N., Maekawa, K., Mae, H., Hattori, M., Takeshima, Y., Tanizawa, T.. Epidemiological survey and clinical investigation of pediatric IgA nephropathy. Clin Exp Nephrol. 2016;20:111–17.Google Scholar
Mizerska-Wasiak, M., Turczyn, A., Such, A., et al. IgA nephropathy in children: a multicenter study in Poland. Adv Exp Med Biol. 2016;952:7584.Google Scholar
Coppo, R.. Pediatric IgA nephropathy in Europe. Kidney Dis (Basel). 2019;5:1828.Google Scholar
Gharavi, A. G., Kiryluk, K., Choi, M., et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet. 2011;43:321–7.Google Scholar
Rheault, M. N., Wenderfer, S. E.. Evolving epidemiology of pediatric glomerular disease. Clin J Am Soc Nephrol. 2018;13:977–8.Google Scholar
Yeo, S. C., Cheung, C. K., Barratt, J.. New insights into the pathogenesis of IgA nephropathy. Pediatr Nephrol. 2018;33:763–77.Google Scholar
Park, H. J., Hahn, W. H., Suh, J. S., et al. Association between toll-like receptor 10 (TLR10) gene polymorphisms and childhood IgA nephropathy. Eur J Pediatr. 2011;170:503–9.CrossRefGoogle ScholarPubMed
Donadio, M. E., Loiacono, E., Peruzzi, L., et al. Toll-like receptors, immunoproteasome and regulatory T cells in children with Henoch-Schönlein purpura and primary IgA nephropathy. Pediatr Nephrol. 2014;29:1545–51.Google Scholar
Coppo, R., Robert, T.. IgA nephropathy in children and in adults: Two separate entities or the same disease? J Nephrol. 2020;33:1219–29.CrossRefGoogle ScholarPubMed
Coppo, R., Lofaro, D., Camilla, R. R., et al. Risk factors for progression in children and young adults with IgA nephropathy: An analysis of 261 cases from the VALIGA European cohort. Pediatr Nephrol. 2017;32:139–50. Erratum in: Pediatr Nephrol. 2017;32:19394.Google Scholar
Espinosa, M., Ortega, R., Sánchez, M., et al. Association of C4d deposition with clinical outcomes in IgA nephropathy. Clin J Am Soc Nephrol. 2014;9:897904.Google Scholar
Fabiano, R. C. G., de Almeida, A. S., Bambirra, E. A., Oliveira, E. A., Silva, A. C. S. E., Pinheiro, S. V. B.. Mesangial C4d deposition may predict progression of kidney disease in pediatric patients with IgA nephropathy. Pediatr Nephrol. 2017;32:121120.Google Scholar
Suzuki, H., Ohsawa, I., Kodama, F., et al. Fluctuation of serum C3 levels reflects disease activity and metabolic background in patients with IgA nephropathy. J Nephrol. 2013;26:70815.Google Scholar
Coppo, R.. Pediatric IgA nephropathy in Europe. Kidney Dis (Basel). 2019;5:182–8.Google Scholar
Mizerska-Wasiak, M., Maldyk, J., Panczyk-Tomaszewska, M., et al. Increased serum IgA in children with IgA nephropathy, severity of kidney biopsy findings and long-term outcomes. Adv Exp Med Biol. 2015;873:7986.Google Scholar
Working Group of the International IgA Nephropathy Network and the Renal Pathology Society, Roberts, I. S., Cook, H. T., et al. The Oxford classification of IgA nephropathy: Pathology definitions, correlations, and reproducibility. Kidney Int. 2009;76:546–56.Google Scholar
Working Group of the International IgA Nephropathy Network and the Renal Pathology Society, Cattran, D.C., Coppo, R., et al., The Oxford classification of IgA nephropathy: Rationale, clinicopathological correlations, and classification. Kidney Int. 2009;76:534–45.Google Scholar
Rivera, F., López-Gómez, J. M., Pérez-García, R., Spanish Registry of Glomerulonephritis. Clinicopathologic correlations of renal pathology in Spain. Kidney Int. 2004;66:898904.Google Scholar
D’Arrigo, R Tripepi, G., Russo, M. L., et al. Is there long-term value of pathology scoring in immunoglobulin A nephropathy? A validation study of the Oxford Classification for IgA Nephropathy (VALIGA) update. Nephrol Dial Transplant. 2020;35:1002–9.Google Scholar
Roos, A., Rastaldi, M. P., Calvaresi, N., et al. Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol. 2006;17:1724–34.Google Scholar
Espinosa, M., Ortega, R., Sánchez, M., Segarra, A.: Spanish Group for Study of Glomerular Diseases (GLOSEN). Association of C4d deposition with clinical outcomes in IgA nephropathy. Clin J Am Soc Nephrol. 2014;9:897904.CrossRefGoogle ScholarPubMed
Lee, S. M. K., Rao, V. M., Franklin, W. A., et al. IgA nephropathy: Morphologic predictors of progressive renal disease. Hum Pathol. 1982;13:314–22. 23.Google Scholar
Haas, M.. Histologic subclassification of IgA nephropathy: A clinicopathologic study of 244 cases. Am J Kid Dis 1997; 29: 829–42.CrossRefGoogle ScholarPubMed
Haas, M., Verhave, J. C., Liu, Z. H., et al. A multicenter study of the predictive value of crescents in IgA nephropathy. J Am Soc Nephrol. 2017;28:691701. Published correction appears in J Am Soc Nephrol. 2017;28:1665.CrossRefGoogle ScholarPubMed
Roberts, I. S.. Pathology of IgA nephropathy. Nat Rev Nephrol. 2014;10:445–54.Google Scholar
Trimarchi, H., Barratt, J., Cattran, D. C., et al. Oxford Classification of IgA nephropathy 2016: An update from the IgA Nephropathy Classification Working Group. Kidney Int. 2017;91:1014–21.CrossRefGoogle ScholarPubMed
Hastings, M.C., Rizk, D. V., Kiryluk, K., et al. IgA vasculitis with nephritis: Update of pathogenesis with clinical implications. Pediatr Nephrol. 2022;37:719–33.Google Scholar
Blyth, C. C., Robertson, P. W., Rosenberg, A. R.. Post-streptococcal glomerulonephritis in Sydney: A 16-year retrospective review. J Paediatr Child Health. 2007;43:446.CrossRefGoogle Scholar
Kanjanabuch, T., Kittikowit, W., Eiam-Ong, S.. An update on acute postinfectious glomerulonephritis worldwide. Nat Rev Nephrol. 2009;5:259–69.Google Scholar
VanDeVoorde, R. G. 3rd. Acute poststreptococcal glomerulonephritis: The most common acute glomerulonephritis. Pediatr Rev. 2015;36:312.Google Scholar
Satoskar, A. A., Parikh, S. V., Nadasdy, T.. Epidemiology, pathogenesis, treatment and outcomes of infection-associated glomerulonephritis. Nat Rev Nephrol. 2020;16:3250.Google Scholar
Nast, C. C.. Infection-related glomerulonephritis: Changing demographics and outcomes. Adv Chronic Kidney Dis. 2012;19:6875.Google Scholar
Glassock, R. J., Alvarado, A., Prosek, J., et al. Staphylococcus-related glomerulonephritis and poststreptococcal glomerulonephritis: Why defining “post” is important in understanding and treating infection-related glomerulonephritis. Am J Kidney Dis. 2015;65:826–32.Google Scholar
Rodríguez-Iturbe, B., Batsford, S.. Pathogenesis of poststreptococcal glomerulonephritis a century after Clemens von Pirquet. Kidney Int. 2007;71:1094–104.CrossRefGoogle ScholarPubMed
Satoskar, A. A., Nadasdy, T. S. F., Silva, F. G.. Acute postinfectious glomerulonephritis and glomerulonephritis caused by persistent bacterial infection. In Jennette, J. C., Olson, J. L., Silva, F. G., D’Agati, V. D. (eds) Heptinstall’s Pathology of the Kidney. 7th ed. Philadelphia: Wolters Kluwer. 2014. P. 367436.Google Scholar
Kambham, N.. Postinfectious glomerulonephritis. Adv Anat Pathol. 2012;19:338–47.CrossRefGoogle ScholarPubMed
Sotsiou, F., Dimitriadis, G., Liapis, H.. Diagnostic dilemmas in atypical postinfectious glomerulonephritis. Semin Diagn Pathol. 2002;19:146–59.Google Scholar
Sethi, S., Fervenza, F. C., Zhang, Y., et al. Atypical postinfectious glomerulonephritis is associated with abnormalities in the alternative pathway of complement. Kidney Int. 2013;83;293–9.Google Scholar
Haas, M., Racusen, L. C., Bagnasco, S. M.. IgA-dominant postinfectious glomerulonephritis: A report of 13 cases with common ultrastructural features. Hum Pathol. 2008;39:1309–16.Google Scholar
Nasr, S. H., D’Agati, V. D.. IgA-dominant postinfectious glomerulonephritis: A new twist on an old disease. Nephron Clin Pract. 2011;119:c18c25; discussion c26.Google Scholar
Haffner, D., Schindera, F., Aschoff, A., et al. The clinical spectrum of shunt nephritis. Nephrol Dial Transplant. 1997;12:1143–8.Google Scholar
Zhou, X. J.. Membranoproliferative glomerulonephritis. In Jennette, J. C., Olson, J. L., Silva, F. G., D’Agati, V. D. (eds) Heptinstall’s Pathology of the Kidney. 7th ed. Philadelphia: Wolters Kluwer. 2014. P. 30139.Google Scholar
Sethi, S., Fervenza, F. C.. Membranoproliferative glomerulonephritis: A new look at an old entity. N Engl J Med. 2012;366:1119–31.Google Scholar
D’Agati, V. D., Bomback, A. S.. C3 glomerulopathy: What’s in a name? Kidney Int. 2012;82:37981.Google Scholar
Pickering, M. C., D’Agati, V. D., Nester, C. M., et al. C3 glomerulopathy: Consensus report. Kidney Int. 2013;84(6):1079–89.CrossRefGoogle ScholarPubMed
Servais, A., Noël, L. H., Frémeaux-Bacchi V & Lesavre P C3 glomerulopathy. Contrib Nephrol. 2013;181:185–93.Google ScholarPubMed
Fakhouri, F., Fremeaux-Bacchi, V., Noel, L. H., et al. C3 glomerulopathy: A new classification. Nat Rev Nephrol. 2010;6:494–9.Google Scholar
Sethi, S., Fervenza, F. C., Zhang, Y., et al. Proliferative glomerulonephritis secondary to dysfunction of the alternative pathway of complement. Clin J Am Soc Nephrol. 2011;6:1009–17.Google Scholar
Sethi, S., Nester, C. M., Smith, R. J.. Membranoproliferative glomerulonephritis and C3 glomerulopathy: Resolving the confusion. Kidney Int. 2012;81(5):434–41.Google Scholar
Hou, J., Markowitz, G. S., Herlitz, L. C., et al. Toward a working definition of C3 glomerulopathy by immunofluorescence. Kidney Int. 2014;85:450–6.Google Scholar
Smith, R. J. H., Appel, G. B., Blom, A. M., et al. C3 glomerulopathy - understanding a rare complement-driven renal disease. Nat Rev Nephrol. 2019;15:129–43.Google Scholar
Gale, D. P., de Jorge, E. G., Cook, H. T., et al. Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis. Lancet. 2010;376:794801.CrossRefGoogle ScholarPubMed
Appel, G. B., Cook, H. T., Hageman, G., et al. Membranoproliferative glomerulonephritis type II (dense deposit disease): An update. J Am Soc Nephrol. 2005;16:1392–403.Google Scholar
Walker, P. D., Ferrario, F., Joh, K., Bonsib, S. M.. Dense deposit disease is not a membranoproliferative glomerulonephritis. Mod Pathol. 2007;20:605–16.Google Scholar
Smith, R. J., Alexander, J., Barlow, P. N., Botto, M., et al. New approaches to the treatment of dense deposit disease. J Am Soc Nephrol. 2007;18:2447–56.Google Scholar
Nasr, S. H., Valeri, A. M., Appel, G. B., et al. Dense deposit disease: Clinicopathologic study of 32 pediatric and adult patients. Clin J Am Soc Nephrol. 2009;4:2232.Google Scholar
Lu, D. F., Moon, M., Lanning, L. D., McCarthy, A. M., Smith, R. J.. Clinical features and outcomes of 98 children and adults with dense deposit disease. Pediatr Nephrol. 2012;27:77381.Google Scholar
Prema, K. S. J., Kurien, A. A., Gopalakrishnan, N., Walker, P. D., Larsen, C. P.. Dense deposit disease: A greatly increased biopsy incidence in India versus the USA. Clin Kidney J. 2019;12:476–82.Google Scholar
Marinozzi, M. C., Roumenina, L. T., Chauvet, S., et al. Anti-factor B and anti-C3b autoantibodies in C3 glomerulopathy and Ig associated membranoproliferative GN. J Am Soc Nephrol. 2017;28:1603–13.Google Scholar
Bomback, A. S., Smith, R. J., Barile, G. R., et al. Eculizumab for dense deposit disease and C3 glomerulonephritis. Clin J Am Soc Nephrol. 2012;7:74876.Google Scholar
Zuber, J., Fakhouri, F., Roumenina, L. T., Loirat, C., Fremeaux-Bacchi, V.. Use of eculizumab for atypical haemolytic uraemic syndrome and C3 glomerulopathies. Nat Rev Nephrol. 2012;8:643–57.Google Scholar
Oosterveld, M. J., Garrelfs, M. R., Hoppe, B., et al. Eculizumab in pediatric dense deposit disease. Clin J Am Soc Nephrol. 2015;10:1773–82.Google Scholar
Kasahara, K., Gotoh, Y., Majima, H., Takeda, A., Mizuno, M.. Eculizumab for pediatric dense deposit disease: A case report and literature review. Clin Nephrol Case Stud. 2020;8:96102.Google Scholar
Zand, L., Lorenz, E. C., Cosio, F. G., et al. Clinical findings, pathology, and outcomes of C3GN after kidney transplantation. J Am Soc Nephrol. 2014;25:111017.Google Scholar
Hiraki, L. T., Benseler, S. M., Tyrrell, P. N., et al. Clinical and laboratory characteristics and long-term outcome of pediatric systemic lupus erythematosus: A longitudinal study. J Pediatr. 2008;152:550–6.CrossRefGoogle ScholarPubMed
Cooper, G. S., Parks, C. G., Treadwell, E. L., et al. Differences by race, sex and age in the clinical and immunologic features of recently diagnosed systemic lupus erythematosus patients in the southeastern United States. Lupus 2002;11:161–7.Google Scholar
Lehman, T. J., McCurdy, D. K., Bernstein, B. H., et al. Systemic lupus erythematosus in the first decade of life. Pediatrics. 1989;83:235–9.Google Scholar
Watson, B., Leone, V., Pilkington, C., et al. Disease activity, severity, and damage in the UK Juvenile-Onset Systemic Lupus Erythematosus Cohort. Arthritis Rheum. 2012;64:2356–65.CrossRefGoogle ScholarPubMed
das Chagas Medeiros, M. M., Bezerra, M. C., Braga, F. N., et al. Clinical and immunological aspects and outcome of a Brazilian cohort of 414 patients with systemic lupus erythematosus (SLE): Comparison between childhood-onset, adult-onset, and late-onset SLE. Lupus 2016;25:355–63.Google Scholar
Brunner, H. I., Gladman, D. D., Ibañez, D., et al. Difference in disease features between childhood-onset and adult-onset systemic lupus erythematosus. Arthritis Rheum. 2008;58:556–62.Google Scholar
Hersh, A. O., von Scheven, E., Yazdany, J., et al. Differences in long-term disease activity and treatment of adult patients with childhood- and adult-onset systemic lupus erythematosus. Arthritis Rheum. 2009;61:1320.CrossRefGoogle ScholarPubMed
Hoffman, I. E., Lauwerys, B. R., De Keyser, F., et al. Juvenile-onset systemic lupus erythematosus: Different clinical and serological pattern than adult-onset systemic lupus erythematosus. Ann Rheum Dis. 2009;68:412–15.Google Scholar
Barsalou, J., Levy, D. M., Silverman, E. D.. An update on childhood-onset systemic lupus erythematosus. Curr Opin Rheumatol. 2013;25:616–22.CrossRefGoogle ScholarPubMed
Bajema, I. M., Wilhelmus, S., Alpers, C. E., et al. Revision of the International Society of Nephrology/Renal Pathology Society classification for lupus nephritis: Clarification of definitions, and modified National Institutes of Health activity and chronicity indices. Kidney Int. 2018;93:789–96.Google Scholar
Sethi, S., Madden, B. J., Debiec, H., et al. Exotosin-1/exotosin-2 associated membranous nephropathy. J Am Soc Nephrol. 2019;30:1123–36.Google Scholar
Zappitelli, M., Duffy, C. M., Bernard, C., Gupta, I. R.. Evaluation of activity, chronicity and tubulointerstitial indices for childhood lupus nephritis. Pediatr Nephrol. 2008;23:83–91.Google Scholar
Mina, R., Abulaban, K., Klein-Gitelman, M. S., Eberhard, B. A.. Validation of the lupus nephritis clinical indices in childhood-onset systemic lupus erythematosus. Arthritis Care Res (Hoboken). 2016;68:195202.Google Scholar
Wenderfer, S. E., Eldin, K. I. W.. Lupus nephritis. Pediatr Clin North Am. 2019;66:8799.Google Scholar
Oliva-Damaso, N., Payan, J., Oliva-Damaso, E., Pereda, T., Bomback, A. S.. Lupus podocytopathy: An overview. Adv Chronic Kidney Dis. 2019;26:369–75.Google Scholar
Beck, L. H. Jr, Bonegio, R. G., Lambeau, G., et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med. 2009;361:1121.Google Scholar
Tomas, N. M., Beck, L. H. Jr, Meyer-Schwesinger, C., et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med. 2014;371:2277–87.Google Scholar
Sethi, S., Debiec, H., Madden, B., et al. Neural epidermal growth factor-like 1 protein (NELL-1) associated membranous nephropathy. Kidney Int. 2020;97:163–74.Google Scholar
Sethi, S., Madden, B. J., Debiec, H., et al. Exotosin-1/exotosin-2 associated membranous nephropathy. J Am Soc Nephrol. 2019;30:1123–36.Google Scholar
Sethi, S., Debiec, H., Madden, B., et al. Semaphorin 3B–associated membranous nephropathy is a distinct type of disease predominantly present in pediatric patients. Kidney Int. 2020;98:1253–64.CrossRefGoogle ScholarPubMed
Xu, X., Wang, G., Chen, N., et al. Long-term exposure to air pollution and increased risk of membranous nephropathy in China. J Am Soc Nephrol. 2016;27:3739–46.Google Scholar
Sanchez-Rodriguez, E., Southard, C. T., Kiryluk, K.. GWAS-based discoveries in IgA nephropathy, membranous nephropathy, and steroid-sensitive nephrotic syndrome. Clin J Am Soc Nephrol. 2021;16(3):458–66.Google Scholar
Vivarelli, M., Emma, F., Pellé, T., et al. Genetic homogeneity but IgG subclass-dependent clinical variability of alloimmune membranous nephropathy with anti-neutral endopeptidase antibodies. Kidney Int. 2015;87:602–9.Google Scholar
Debiec, H., Nauta, J., Coulet, F., et al. Role of truncating mutations in MME gene in fetomaternal alloimmunisation and antenatal glomerulopathies. Lancet. 2004;364(9441):1252–9.Google Scholar
Cossey, L. N., Walker, P. D., Larsen, C. P.. Phospholipase A2 receptor staining in pediatric idiopathic membranous glomerulopathy. Pediatr Nephrol. 2013;28:2307–11.CrossRefGoogle ScholarPubMed
Larsen, C. P., Boils, C. L., Cossey, L. N., Sharma, S. G., Walker, P. D.. Clinicopathologic features of membranous-like glomerulopathy with masked IgG kappa deposits. Kidney Int Rep. 2016;24:299305.Google Scholar
Makker, S. P.. Treatment of membranous nephropathy in children. Semin Nephrol. 2003;23:379–85.Google Scholar
Menon, S., Valentini, R. P.. Membranous nephropathy in children: Clinical presentation and therapeutic approach. Pediatr Nephrol. 2010;25:1419–28.Google Scholar
Malatesta-Muncher, R., Eldin, K. W., Beck, L. H. Jr, Michael, M.. Idiopathic membranous nephropathy in children treated with rituximab: Report of two cases. Pediatr Nephrol. 2018;33:1089–92.CrossRefGoogle ScholarPubMed
Swartz, S. J., Eldin, K. W., Hicks, M. J.,, et al. Minimal change disease with IgM+ immunofluorescence: A subtype of nephrotic syndrome. Pediatr Nephrol. 2009;24:1187–92.CrossRefGoogle ScholarPubMed
Zheng, L. P., Wang, H., Zhang, J. J.. Clinical-pathological characteristics of IgM nephropathy in 34 children. Zhongguo Dang Dai Er Ke Za Zhi. 2010;12:338–40.Google ScholarPubMed
Mubarak, M., Kazi, J. I, Shakeel, S., Lanewala, A, Hashmi, S., Akhter, F.. Clinicopathologic characteristics and steroid response of IgM nephropathy in children presenting with idiopathic nephrotic syndrome. APMIS. 2011;119:180–6.Google Scholar
Shakeel, S., Mubarak, M., Kazi, J. I., Lanewala, A.. The prevalence and clinicopathological profile of IgM nephropathy in children with steroid-resistant nephrotic syndrome at a single centre in Pakistan. J Clin Pathol. 2012;65:1072–6.Google Scholar
Juozapaite, S., Cerkauskiene, R., Laurinavicius, A., Jankauskiene, A.. The impact of IgM deposits on the outcome of nephrotic syndrome in children. BMC Nephrol. 2017;18:260.Google Scholar
Kanemoto, K., Ito, H., Anzai, M., et al. Clinical significance of IgM and C1q deposition in the mesangium in pediatric idiopathic nephrotic syndrome. J Nephrol. 2013;26:30614.CrossRefGoogle ScholarPubMed
Betjes, M. G., Roodnat, J. I.. Resolution of IgM nephropathy after rituximab treatment. Am J Kidney Dis. 2009;53:105962.Google Scholar
Myllymaki, J., Saha, H., Mustonen, J., et al. IgM nephropathy: Clinical picture and long-term prognosis. Am J Kidney Dis. 2003;41:343.Google Scholar
Jennette, J. C., Hipp, C. G.. C1q nephropathy: A distinct pathologic entity usually causing nephrotic syndrome. Am J Kidney Dis. 1985;6:103–10.Google Scholar
Jennette, J. C., Hipp, C. G.. Immunohistopathologic evaluation of C1q in 800 renal biopsy specimens. Am J Clin Pathol. 1985;83:415–20.Google Scholar
Markowitz, G. S., Schwimmer, J. A., Stokes, M. B., et al. C1q nephropathy: A variant of focal segmental glomerulosclerosis. Kidney Int. 2003;64:1232–40.Google Scholar
Vizjak, A., Ferluga, D., Rozic, M., et al. Pathology, clinical presentations, and outcomes of C1q nephropathy. J Am Soc Nephrol. 2008;19:2237–44.CrossRefGoogle ScholarPubMed
Srivastava, T., Chadha, V.. C1q nephropathy presenting as rapidly progressive crescentic glomerulonephritis. Clin Exp Nephrol. 2000;14:9769.Google Scholar
Mii, A., Shimizu, A., Masuda, Y., et al. Current status and issues of C1q nephropathy. Clin Exp Nephrol. 2009;13:263–74.Google Scholar
Hisano, S., Fukuma, Y., Segawa, Y., et al. Clinicopathologic correlation and outcome of C1q nephropathy. Clin J Am Soc Nephrol. 2008;3:1637–43.Google Scholar
Gunasekara, V. N., Sebire, N. J., Tullus, K.. C1q nephropathy in children: Clinical characteristics and outcome. Pediatr Nephrol. 2014;29:407–13.CrossRefGoogle ScholarPubMed
Sharman, A., Furness, P., Feehally, J.. Distinguishing C1q nephropathy from lupus nephritis. Nephrol Dial Transplant. 2004;19:14206.Google Scholar
Lau, K. K., Gaber, L. W., Santos, N. M. D., Wyatt, R. J.. C1q nephropathy: Features at presentation and outcome. Pediatr Nephrol. 2005;20:744–9.Google Scholar
Fukuma, Y., Hisano, S., Segawa, Y., et al. Clinicopathologic correlation of C1q nephropathy in children. Am J Kidney Dis. 2006;47:412–18.Google Scholar
Hashimoto, S., Ogawa, Y., Ishida, T., et al. Steroid-sensitive nephrotic syndrome associated with positive C1q immunofluorescence. Clin Exp Nephrol. 2004;8:266–9.Google Scholar
Fakhouri, F., Darré, S., Droz, D., et al. Mesangial IgG glomerulonephritis: A distinct type of primary glomerulonephritis. J Am Soc Nephrol. 2002;13:379–87.Google Scholar
Lim, B. J., Hong, S. W., Jeong, H. J.. IgG nephropathy - confusion and overlap with C1q nephropathy. Clin Nephrol. 2009;72:360–5.Google Scholar
Kharroubi, M., Ben Fatma, L., Rais, L., Jebali, H., Mami, I., Zouaghi, M. K.. Primary glomerulonephritis with predominant mesangial immunoglobulin G deposits. Tunis Med. 2018;96:442–4.Google Scholar
Jourde-Chiche, N., Moal, V., Daniel, L., Purgus, R.. Early IgG glomerulonephritis recurrence in a kidney transplant recipient. Clin Nephrol. 2008;70:340–3.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Immune Complex Mediated Glomerular Diseases
  • Edited by Helen Liapis, Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
  • Book: Pediatric Nephropathology & Childhood Kidney Tumors
  • Online publication: 10 August 2023
  • Chapter DOI: https://doi.org/10.1017/9781108907224.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Immune Complex Mediated Glomerular Diseases
  • Edited by Helen Liapis, Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
  • Book: Pediatric Nephropathology & Childhood Kidney Tumors
  • Online publication: 10 August 2023
  • Chapter DOI: https://doi.org/10.1017/9781108907224.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Immune Complex Mediated Glomerular Diseases
  • Edited by Helen Liapis, Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
  • Book: Pediatric Nephropathology & Childhood Kidney Tumors
  • Online publication: 10 August 2023
  • Chapter DOI: https://doi.org/10.1017/9781108907224.006
Available formats
×