Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T21:49:37.119Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  18 December 2013

Hans-Peter Gail
Affiliation:
Ruprecht-Karls-Universität Heidelberg, Germany
Erwin Sedlmayr
Affiliation:
Technische Universität Berlin
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agúndez, M., and Cernicharo, J. (2006). Oxygen chemistry in the circumstellar envelope of the carbon-rich star IRC+10216. ApJ 650:374–393.Google Scholar
Alexander, D. R., Rypma, R. L., and Johnson, H. R. (1983). Effect of molecules and grains on Rosseland mean opacities. ApJ 272:773–780.Google Scholar
Alexander, J. B., Andrews, P. J., Catchpole, R. M., Feast, M. W., Lloyd Evans, T., Menzies, J. W., Wisse, P. N. J., and Wisse, M. (1972). A spectroscopic and photometric study of the pulsating R Coronae Borealis type variable RY Sagittarii. MNRAS 158:305–360.Google Scholar
Amari, S., Anders, E., Virag, A., and Zinner, E. (1990). Interstellar graphite in meteorites. Nature 345:238–240.Google Scholar
Amari, S., Zinner, E., and Lewis, R. S. (1993). Interstellar graphite in Murchison: Carbon isotopic distributions correlate with morphologies and a grain from a supernova. Meteoritics 28:316–317.Google Scholar
Anders, E., and Grevesse, N. (1989). Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 53:197–214.Google Scholar
Andersen, A. C., Höfner, S., and Gautschy-Loidl, R. (2003). Dust formation in winds of long-period variables. V: The influence of micro-physical dust properties in carbon stars. A&A 400:981–992.Google Scholar
Appel, J., Bockhorn, H., and Frenklach, M. (2000). Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of C2 hydrocarbons. Combust. and Flame 121:122–136.Google Scholar
Armentroud, P. B. (2001). Reactions and thermochemistry of small transition metal cluster ions. Ann. Rev. Phys. Chem. 52:423–61.Google Scholar
Arndt, T. U., Fleischer, A. J., and Sedlmayr, E. (1997). Circumstellar dust shells around long-period variables. VI: An approximative formula for the mass loss rate of C-rich stars. A&A 327:614–619.Google Scholar
Asplund, M. (1997). Evolution and variability of the R Coronae Borealis stars. Ph.D. thesis, Uppsala University, Acta Universitatis Upsaliensis, Uppsala.
Asplund, M. (2000). The Eddington limit, radiative instabilities and the declines of R Coronae Borealis stars. In Wing, R. F., ed., The Carbon Star Phenomenon, Vol. 177 of IAU Symposium, p. 521.
Asplund, M., Grevesse, N., Sauval, A. J., and Scott, P. (2009). The chemical composition of the sun. ARA&A 47:481–522.Google Scholar
Atkins, P. W., and de Paula, J. (2010). Physical Chemistry, 9th ed. Oxford University Press, Oxford, UK.
Atkinson, K. (1989). An Introduction to Numerical Analysis. Wiley, New York.
Ayres, T. R., and Wiedemann, G. R. (1989). Non-LTE CO, revisited. ApJ 338:1033–1046.Google Scholar
Barin, I. (1995). Thermochemical Data of Pure Substances., Vols. I and II, 3rd ed. VCH Verlagsgesellschaft, Weinheim.
Baschek, B., Scholz, M., and Wehrse, R. (1991). The parameter R and Teff in stellar models and observations. A&A 246:374–382.Google Scholar
Baulch, D. L., Cobos, C. J., Cox, R. A., Esser, C., Franck, P., Just, T., Ker, J. A., Pilling, M. J., Troe, J., Walker, R. W., and Warnatz, J. (1992). Evaluated kinetic data for combustion modelling. J. Phys. Chem. Ref. Data 21:411.Google Scholar
Beck, H. K. B., Gail, H.-P., Henkel, R., and Sedlmayr, E. (1992). Chemistry in circumstellar shells. I: Chromospheric radiation fields and dust formation in optically thin shells of M-giants. A&A 265:626–642.Google Scholar
Becker, R., and Döring, W. (1935). Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Annalen d. Physik Annalend. Physical 25:719–752.Google Scholar
Begemann, B., Dorschner, J., Henning, T., Mutschke, H., and Thamm, E. (1994). A laboratory approach to the interstellar sulfide dust problem. ApJ 423:L71–L74.Google Scholar
Benson, S. W. (1976). Thermochemical Kinetics. Methods for the Estimation of Thermochemical Data and Rate Parameters, 2nd ed. Wiley, New York.
Bergeat, J., and Chevallier, L. (2005). The mass loss of C-rich giants. A&A 429:235–246.Google Scholar
Bergeat, J., Knapik, A., and Rutily, B. (2002). Carbon-rich giants in the HR diagram and their luminosity function. A&A 390:967–986.Google Scholar
Bernatowicz, T., Coswik, R., Gibbons, P. C., Lodders, K., Fegley, B. Jr., Amari, S., and Lewis, R. (1996). Constraints on stellar grain formation from presolar graphite in the Murchison meteorite. ApJ 472:760–782.Google Scholar
Bernatowicz, T., Fraundorf, G., Tang, M., Anders, E., Wopenka, B., Zinner, E., and Fraundorf, P. (1987). Evidence for interstellar SiC in the Murray carbonaceous meteorite. Nature 330:728–730.Google Scholar
Bernatowicz, T. J., Akande, O. W., Croat, T. K., and Coswik, R. (2005). Constraints on grain formation around carbon stars from laboratory studies of presolar graphite. ApJ 631:988–1000.Google Scholar
Berruyer, N., and Frisch, H. (1983). Dust-driven winds. I: A two-fluid model and its numerical solution. A&A 126:269–277.Google Scholar
Bertschinger, E. (1986). On the structure and stability of radiative shock waves. ApJ 304:154–177.Google Scholar
Bertschinger, E. (1989). The evolution of cooling flows: Self-similar cooling waves. ApJ 340:666–678.Google Scholar
Bertschinger, E., and Chevalier, R. (1985). A periodic shock wave model for Mira variable atmospheres. ApJ 299:167–190.Google Scholar
Blanco, V. (1989). Carbon stars. Rev. Mex. Astr. Astrophys. 19:25–27.Google Scholar
Blöcker, T. (1995a). Stellar evolution of low- and intermediate-mass stars. II. Post-AGB evolution. A&A 299:755–769.Google Scholar
Blöcker, T. (1995b). Stellar evolution of low and intermediate-mass stars. I. Mass loss on the AGB and its consequences for stellar evolution. A&A 297:727–738.Google Scholar
Blöcker, T. (2001). Evolution on the AGB and beyond: On the formation of H-deficient post-AGB stars. Ap&SS 275:1–14.Google Scholar
Blöcker, T., and Schönberner, D. (1993). On the fading of AGB remnants. In Weinberger, R., and Acker, A., eds., Planetary Nebulae, IAU Symposium 155. Kluwer, Dordrecht, p. 479.
Blum, J. (2004). Grain growth and coagulation. In Witt, A. N., Clayton, G. C., and Draine, B. T., eds., Astrophysics of Dust, pp. 369–391. Astronomical Society of the Pacific, San Francisco.
Bockhorn, H., Fettig, F., and Wenz, H. W. (1983). Ber. Bunsengesellschaft Phys. Chem. 87:1067–1073.
Bohren, C. F., and Huffman, D. R. (1983). Absorption and Scattering of Light by Small Particles. Wiley, New York.
Bojanic, J. (2005). Numerical analysis of the 1D satellite beam equation. Ph.D. thesis, Vienna University of Technology.
Boothroyd, A. I., and Sackmann, I.-J. (1988). Low-mass stars. III. Low-mass stars with steady mass loss: Up to the asymptotic giant branch and through the final thermal pulses. ApJ 328:653–670.Google Scholar
Boothroyd, A. I., and Sackmann, I.-J. (1999). The CNO isotopes: Deep circulation in red giants and first and second dredge-up. ApJ 510:232–250.Google Scholar
Bowen, G. (1988a). Dynamical modelling of long-period variable star atmospheres. ApJ 329:299–317.Google Scholar
Bowen, G. (1988b). The mechanism of mass loss from pulsating cool stars. In Stalio, R., and Willson, L., eds., Pulsation and Mass Loss in Stars, pp. 3–25. Kluwer, Dordrecht.
Bowen, G. (1990). Dynamical phenomena in pulsating star atmospheres. In Buchler, J. R., ed., The Numerical Modelling of Nonlinear Stellar Pulsations, pp. 155–171. Kluwer, Dordrecht.
Bowen, G., and Willson, L. (1991). From wind to superwind: The evolution of mass-loss rates for Mira models. ApJ 375:L53–L56.Google Scholar
Bradley, J. (2003). The astromineralogy of interplanetary dust particles. In Henning, T. K., ed., Astromineralogy, Vol. 609 of Lecture Notes in Physics, pp. 217–235.
Brendel, R., and Bormann, D. (1992). An infrared dielectric function model for amorphous solids. J. Applied Phys. 71:1–6.Google Scholar
Brucato, J., Colangeli, L., Mennella, V. P., Palumbo, V., and Bussoletti, E. (1999). Mid-infrared spectral evolution of thermally annealed amorphous pyroxene. A&A 348:1012–1019.Google Scholar
Busso, M., Gallino, R., and Wasserburg, G. J. (1999). Nucleosynthesis in asymptotic giant branch stars: Relevance for galactic enrichment and solar system formation. ARA&A 37:239–309.Google Scholar
Caffau, E., Bonifacio, P., Faraggiana, R., Francois, P., Gratton, R. G., and Barbieri, M. (2005). Sulphur abundance in galactic stars. A&A 441:533–548.Google Scholar
Castor, J., Abbott, D., and Klein, R. (1975). Radiation-driven winds in of stars. ApJ 195:157–174.Google Scholar
Chakraborty, S. (1997). Rates and mechanisms of Fe-Mg interdiffusion in olivine at 980-1300°C. J. Geophys. Res. 102:12317–12331.Google Scholar
Chase, M. W. (1998). NIST-JANAF Thermodynamic Tables, 4th ed. (number 9 in J. Phys. Chem. Ref. Data monograph). National Bureau of Standards, Washington, DC.
Chen, Y. Q., Nissen, P. E., Zhao, G., Zhang, H. W., and Benoni, T. (2000). Chemical composition of 90 F and G disk dwarfs. A&AS 141:491–506.Google Scholar
Cherchneff, I. (2006). A chemical study of the inner winds of asymptotic giant branch stars. A&A 456:1001–1012.Google Scholar
Cherchneff, I., and Barker, J. R. (1992). Polycyclic aromatic hydrocarbons and molecular equilibria in carbon-rich star. ApJ 394:703–716.Google Scholar
Cherchneff, I., Barker, J. R., and Tielens, A. G. G. (1992). Polycyclic aromatic hydrocarbon formation in carbon-rich stellar envelopes. ApJ 401:269–287.Google Scholar
Chigai, T., Yamamoto, T., and Kozasa, T. (1999). Formation condition of presolar TiC core-graphite mantle spherules in the murchison meteorite. ApJ 510:999–1010.Google Scholar
Choi, B., Huss, G. R., and Wasserburg, G. J. (1998). Presolar corundum and spinel from the Bishunpur and Semarkona ordinary chondrites. Lunar and Planetary Institute Conference 29:1898.Google Scholar
Choi, B.-G., Wasserburg, G. J., and Huss, G. R. (1999). Circumstellar hibonite and corundum and nucleosynthesis in asymptotic giant branch stars. ApJ 522:L133–L136.Google Scholar
Chorin, A., and Marsden, J. (1979). A Mathematical Introduction to Fluid Mechanics. Springer, Berlin.
Claussen, M. J., Kleinmann, S. G., Joyce, R. R., and Jura, M. (1987). A flux-limited sample of galactic carbon stars. ApJS 65:385–404.Google Scholar
Clayton, G. C., Whitney, B. A., Stanford, S. A., and Drilling, J. S. (1992). Observations of R Coronae Borealis stars in decline: Empirical arguments for dust formation near the stellar surface. ApJ 397:652–663.Google Scholar
Clegg, R. E. S. (1985). CNO in planetary nebulae. In Danziger, I. J., Mateucci, F., and Kjaer, K., eds., Production and Distribution of C,N,O Elements, ESO Conference and Workshop Proceedings, pp. 261–274.
Cohen, M. (1979). Circumstellar envelopes and the evolution of carbon stars. MNRAS 186:837–852.Google Scholar
Cohen, N., and Westberg, K. R. (1983). Chemical kinetic data sheets for high-temperature chemical reactions. J. Phys. Chem. Ref. Data 12:531–590.Google Scholar
Colangeli, L., Henning, T., Brucato, J. R., Clément, D., Fabian, D., Guillois, O., and 14 other authors (2003). The role of laboratory experiments in the characterisation of silicon-based cosmic material. Rev. Astron. Astrophys. 11:97–152.Google Scholar
Courant, R., Friedrichs, K., and Lewy, H. (1928). Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen 100:32–74.Google Scholar
Croat, T. K., Stadermann, F. J., and Bernatowicz, T. J. (2005). Presolar graphite from AGB stars: Microstructure and s-process enrichment. ApJ 631:976–987.Google Scholar
Danchi, W. C., Bester, M., Degiacomi, C. G., Greenhill, L. J., and Townes, C. H. (1994). Characteristics of dust shells around 13 late-type stars. AJ 107:1469–1513.Google Scholar
Daulton, T. L., Bernatowicz, T. J., Lewis, R. S., Messenger, S., Stadermann, F. J., and Amari, S. (2003). Polytype distribution of circumstellar silicon carbide: Microstructural characterization by transmission electron microscopy. Geochim. Cosmochim. Acta 67:4743–4767.Google Scholar
Davy, J. G., and Somorjai, G. A. (1971). Studies of the vaporisation mechanism of ice single crystals. GJCP 55:3624–3636.Google Scholar
de Jager, C. (1983). Mass Loss from astronomical objects: A summary. Highlights of Astronomy 6:603–617.Google Scholar
de Jager, C., Nieuwenhuijzen, H., and van der Hucht, K. A. (1988). Mass loss rates in the Hertzsprung-Russell diagram. A&AS 72:259–289.Google Scholar
Deguchi, S. (1980). Grain formation in cool stellar envelopes. ApJ 236:567–576.Google Scholar
Dijkstra, C., Dominik, C., Bouwman, J., and de Koter, A. (2006). Water ice growth around evolved stars. II. Modeling infrared spectra. A&A 449:1101–1116.Google Scholar
Dominik, C., Gail, H.-P., and Sedlmayr, E. (1989). The size distribution of dust particles in a dust-driven wind. A&A 223:227–236.Google Scholar
Dominik, C., Gail, H.-P., Sedlmayr, E., and Winters, J. M. (1990). HR diagrams for dust driven winds around C-stars. A&A 240:365–375.Google Scholar
Donn, B. (1978). Condensation processes and the formation of cosmic grains. In Gehrels, T., ed., Protostars and Planets I, pp. 100–111. Tucson University Press, Tucson.
Donn, B., and Nuth, J. A. (1985). Does nucleation theory apply to the formation of refractory circumstellar grains. ApJ 288:187–190.Google Scholar
Dorfi, E. (1999). Implicit radiation hydrodynamics for 1D problems. J. Comp. Appl. Math. 109:153–171.Google Scholar
Dorfi, E., and Feuchtinger, M. (1991). Nonlinear stellar pulsations. I. Numerical methods, basic physics, initial models and first results. A&A 249:417–427.Google Scholar
Dorfi, E., and Höfner, S. (1991). Dust formation in winds of long-period variables. I: Equations, method of solution, simple examples. A&A 248:105–114.Google Scholar
Dorfi, E. A., and Drury, L. O. (1987). Simple adaptive grids for 1-D initial value problems. J. Comput. Phys. 69:175–195.Google Scholar
Dorschner, J. (2003). From dust astrophysics towards dust mineralogy: A historical review. In Henning, T., ed., Astromineralogy, Vol. 609 of Lecture Note in Physics, pp. 1–54.
Dorschner, J., Begemann, B., Henning, T., Jäger, C., and Mutschke, H. (1995). Steps toward interstellar silicate mineralogy. II. Study of Fe-Mg silicate glasses of varable composition. A&A 300:503–520.Google Scholar
Draine, B. (1979). Time-dependent nucleation theory and the formation of interstellar grains. Ap&SS 65:313–335.Google Scholar
Draine, B. (1980). Interstellar shock waves with magnetic precursors. ApJ 241:1021–1038.Google Scholar
Draine, B. (1985). Tabulated optical properties of graphite and silicate grains. ApJS 57:587–594.Google Scholar
Draine, B. (1986). Multicomponent, reacting MHD flows. MNRAS 220:133–148.Google Scholar
Draine, B., and Salpeter, E. E. (1977). Time-dependent nucleation theory. J. Chem. Phys. 67:2230–2235.Google Scholar
Draine, B. T. (1981). Infrared emission from dust in shocked gas. ApJ 245:880–890.Google Scholar
Draine, B. T., and Lee, H. M. (1984). Optical properties of interstellar graphite and silicate grains. ApJ 285:89–108.Google Scholar
Dreyer, C. (2010). Dust-induced non-linear dynamics in C-rich AGB star envelopes. Ph.D. thesis, Technical University of Berlin, Berlin.
Dreyer, C., Hegmann, M., and Sedlmayr, E. (2009). Circumstellar dust shells around long-period variables. IX. Dynamics of C-rich AGB star shells dominated by the exterior k-mechanism. A&A 499:765–771.Google Scholar
Drinkwater, M., and Wood, P. (1985). Pulsation, mass loss and grain formation in cool giants. In Morris, M., and Zuckerman, B., eds., Mass Loss from Red Giants, pp. 257–260. Reidel, Dordrecht.
Drude, P. (1900). Zur Elektronentheorie der Metalle. Anna Phys. 1:566–613.Google Scholar
Duley, W., and Williams, D. (1984). Interstellar chemistry. UniversiteXt. Academic Press.
Edvardsson, B., Andersen, J., Gustafsson, B., Lambert, D. L., Nissen, P. E., and Tomkin, J. (1993). The chemical evolution of the galactic disk. I: Analysis and results. A&A 275:101–152.Google Scholar
Efimov, Y. S. (1988). Variation of the photometric and colorimetric characteristics of eruptive stars during formation of circumstellar dust shells: R-Coronae. Soviet Astronomy 32:512–516.Google Scholar
Eggleton, P. P. (1971). The evolution of low mass stars. MNRAS 151:351–364.Google Scholar
Eggleton, P. P. (1972). Composition changes during stellar evolution. MNRAS 156:361–376.Google Scholar
Eggleton, P. P. (1973). A numerical treatment of double shell source stars. MNRAS 163:279–284.Google Scholar
Eglitis, I. (1993). Abundance ratio C/O in the atmospheres of carbon stars. Ap&SS 202:155–160.Google Scholar
Elitzur, M. (1991). Astronomical Masers. Kluwer, Dordrecht.
Erickson, J., Guoy, D., Sullivan, J., and Üngör, A. (2002). Building space-time meshes over arbitrary spatial domains. In Proc. 11th Int. Meshing Roundtable, pages 391–402. Sandia National Laboratory.
Fabian, D., Jäger, C., Henning, T., Dorschner, J., and Mutschke, H. (2000). Steps toward interstellar silicate mineralogy. V: Thermal evolution of amorphous magnesium silicates and silica. A&A 364:282–292.Google Scholar
Feast, M. W., Glass, I. S., Whitelock, P. A., and Catchpole, R. M. (1989). A period-luminosity-colour relation for Mira variables. MNRAS 241:375–392.Google Scholar
Feautrier, P. (1964). Sur le résolution numérique de l'équation de transfert. Comptes Rendus 258:3189–3199.Google Scholar
Ferrarotti, A. S., and Gail, H.-P. (2001). Mineral formation in stellar winds. II. Effects of Mg/Si abundance variations on dust composition in AGB stars. A&A 371:133–151.Google Scholar
Ferrarotti, A. S., and Gail, H.-P. (2002). Mineral formation in stellar winds. III. Dust formation in S stars. A&A 382:256–281.Google Scholar
Ferrarotti, A. S., and Gail, H.-P. (2003). Mineral formation in stellar winds. IV. Formation of magnesiowüstite. A&A 398:1029–1039.Google Scholar
Ferrarotti, A. S., and Gail, H.-P. (2006). Composition and quantities of dust produced by AGB-stars and returned to the interstellar medium. A&A 447:553–576.Google Scholar
Ferziger, J., and Kaper, H. (1972). Mathematical Theory of Transport Processes in Gases. North-Holland, Amsterdam.
Feuchtinger, M., Dorfi, E., and Höfner, S. (1993). Radiation hydrodynamics in atmospheres of long-period variables. A&A 273:513–523.Google Scholar
Fleischer, A. J., Gauger, A., and Sedlmayr, E. (1992). Circumstellar dust shells around long-period variables. I. Dynamical models of C-stars including dust formation, growth and evaporation. A&A 266:321–339.Google Scholar
Fleischer, A. J., Gauger, A., and Sedlmayr, E. (1995). Circumstellar dust shells around long-period variables. III. Instability due to an exterior k-mechanism caused by dust formation. A&A 297:543–555.Google Scholar
Fleischer, A. J., Gauger, A., Sedlmayr, E., and Gail, H.-P. (1990). Dynamical models of dust shells around Mira variables. In Cacciari, C., and Clementini, G., eds., ASP Conf. Ser. 11: Confrontation Between Stellar Pulsation and Evolution, pp. 431–434.
Forrest, W. J., Gillett, F. C., and Stein, W. A. (1971). Variability of radiation from circumstellar grains surrounding R Coronae Borealis. ApJL 170:L29–L31.Google Scholar
Forrest, W. J., Gillett, F. C., and Stein, W. A. (1972). Infrared measurements of R Coronae Borealis through its 1972 March-June minimum. ApJL 178:L129–L132.Google Scholar
Fox, M., and Wood, P. (1982). Theoretical growth rates, periods, and pulsation constants for long-period variables. ApJ 259:198.Google Scholar
Frantsman, Y. L., and Eglitis, I. E. (1988). The C/O-ratio in N stars: Observations and theory. Soviet Astronomy 14:L109–L111.Google Scholar
Frenklach, M., Clary, D. W., Gardiner, W. C., and Stein, S. E. (1985). Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. Proc. Combust. Inst. 20:887–901.Google Scholar
Frenklach, M., and Feigelson, E. D. (1989). Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes. ApJ 341:372–384.Google Scholar
Friedemann, C. (1969). Siliziumkarbid als möglicher Bestandteil des interstellaren Staubes. Astron. Nachr. 291:177–186.Google Scholar
Fuchs, R. (1975). Theory of the optical properties ofionic crystal cubes. Phys.Rev.B 11:1732–1740.Google Scholar
Fujita, Y. (1970). Interpretation of Spectra and Atmospheric Structure in Cool Stars. University of Tokyo Press, Tokyo.
Gail, H., and Sedlmayr, E. (1998). Inorganic dust formation in astrophysical environments. Chemistry and Physics of Molecules and Grains in Space (Faraday Discussions No. 109). Faraday Division of the Royal Society of Chemistry, London, pp. 303–319.
Gail, H.-P. (1990). Winds of late-type Stars. Rev. Mod. Astron. 3:156–173.Google Scholar
Gail, H.-P. (1998). Chemical reactions in protoplanetary accretion disks. IV. Multicomponent dust mixture. A&A 332:1099–1122.Google Scholar
Gail, H.-P. (2003). Formation and evolution of minerals in accretion disks and stellar outflows. In Henning, T., ed., Astromineralogy, pp. 55–120. Springer, Heidelberg.
Gail, H.-P., Keller, R., and Sedlmayr, E. (1984). Dust formation in stellar winds. I. A rapid computational method and application to graphite condensation. A&A 133:320–332.Google Scholar
Gail, H.-P., and Sedlmayr, E. (1984). Formation of crystalline and amorphous carbon grains. A&A 132:163–167.Google Scholar
Gail, H.-P., and Sedlmayr, E. (1985). Dust formation in stellar winds. II. Carbon condensation in stationary, spherically expanding winds. A&A 148:183–190.Google Scholar
Gail, H.-P., and Sedlmayr, E. (1986a). The maximum possible mass loss rate for dust-driven winds. A&A 161:201–202.Google Scholar
Gail, H.-P., and Sedlmayr, E. (1986b). The primary condensation process for dust around late M-type stars. A&A 166:225–236.Google Scholar
Gail, H.-P., and Sedlmayr, E. (1987a). Dust formation in stellar winds. In Morfill, G. E., and Scholer, M., ed., Physical Processes in Interstellar Clouds, pp. 275–303. Reidel, Dordrecht.
Gail, H.-P., and Sedlmayr, E. (1987b). Dust formation in stellar winds. III. Self-consistent models for dust-driven winds around C-stars. A&A 171:197–204.Google Scholar
Gail, H.-P., and Sedlmayr, E. (1987c). Dust formation in stellar winds. V. The minimum mass loss rate for dust-driven winds. A&A 177:186–192.Google Scholar
Gail, H.-P., and Sedlmayr, E. (1988). Dust formation in stellar winds. IV. Heteromolecular carbon grain formation and growth. A&A 206:153–168.Google Scholar
Gail, H.-P., and Sedlmayr, E. (1998). Dust formation in M stars. In Hartquist, T. W., and Williams, D. A., eds., The Molecular Astrophysics of Stars and Galaxies, pp. 285–312. Oxford University Press, Oxford, UK.
Gail, H.-P., and Sedlmayr, E. (1999). Mineral formation in stellar winds. I. Condensation sequence of silicate and iron grains in stationary oxygen-rich outflows. A&A 347:594–616.Google Scholar
Gail, H.-P., Zhukovska, S. V., Hoppe, P., and Trieloff, M. (2009). Stardust from asymptotic giant branch stars. ApJ 698:1136–1154.Google Scholar
Gardiner, W. C. (2000). Combustion Chemistry. Springer, New York.
Gauger, A., Sedlmayr, E., and Gail, H.-P. (1990). Dust formation, growth and evaporation in a cool pulsating circumstellar shell. A&A 235:345–361.Google Scholar
Gehrz, R. D. (1989). Sources of stardust in the galaxy. In Allamandola, L. J., and Tielens, A. G. G. M., eds., Interstellar Dust, pp. 445–453, Kluwer, Dordrecht.
Gehrz, R. D., and Woolf, N. J. (1971). Mass loss from M stars. ApJ 165:285–294.Google Scholar
Gilman, R. C. (1969). On the composition of circumstellar grains. ApJ 155:L185–L187.Google Scholar
Gilman, R. C. (1972). On the coupling of Grains to the gas in circumstellar envelopes. ApJ 178:423–426.Google Scholar
Girardi, L., Bressan, A., Bertelli, G., and Chiosi, C. (2000). Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 M0, and from Z = 0.0004 to 0.03. A&A 141:371–383.Google Scholar
Glass, G., and Kironde, S. (1982). Vibrational relaxation of carbon monoxide in collisions with atomic hydrogen. J. Phys. Chem. 86:908–913.Google Scholar
Glassgold, A. E. (1999). Circumstellar chemistry of AGB winds. In le Bertre, T., Lèbre, A., and Waelkens, C., eds., Asymptotic Giant Branch Stars., IAU Symposium 191, pp. 337–346.
Glassgold, A. E., Lucas, R., and Omont, A. (1986). Molecular ions in the circumstellar envelope of IRC+10216. A&A 157:35–48.Google Scholar
Goeres, A. (1992). Staubbildung in den Hüllen von Kohlenstoffsternen: R Coronae Borealis. Ph.D. Thesis, Technical University of Berlin.
Goeres, A. (1993). The formation of PAHs in C-type star environments. In G., Klare, ed., Reviews in Modern Astronomy, Vol. 6 of Reviews in Modern Astronomy, pp. 165–178.
Goeres, A., and Sedlmayr, E. (1992). The envelopes of R Coronae Borealis stars. I. A physical model of the decline events due to dust formation. A&A 265:216–236.Google Scholar
Goldreich, P., and Scoville, N. (1976). OH-IR stars. I: Physical properties of circumstellar envelopes. ApJ 205:144–154.Google Scholar
Goncharova, R. I. (1985). The 1983-1984 minimum of R Coronae Borealis. Soviet Astronomy Lett. 11:362–364.Google Scholar
Goncharova, R. I., Koval'Chuk, G. U., and F., P. A. (1983). Cyclic variations of the light of RCrB and their connection with the nonperiodic fadings of brightness. Astrophysics 19:161–168.Google Scholar
Gonzalez-Alfonso, E., and Cernicharo, J. (1999). The water vapor abundance in circumstellar envelopes. ApJ 525:845–862.Google Scholar
Gow, C. (1977). Spectrophotometry of cool carbon stars. PASP 89:510–518.Google Scholar
Gräfener, G., and Hamann, W.-R. (2005). Hydrodynamic model atmospheres for WR stars: Self-consistent modeling of a WC star wind. A&A 432:633–645.Google Scholar
Gratton, R. G., Carretta, E., Claudi, R., Lucatello, S., and Barbieri, M. (2003). Abundances for metal-poor stars with accurate parallaxes. I. Basic data. A&A 404:187–210.Google Scholar
Gratton, R. G., and Sneden, C. (1988). Abundances in extremely metal-poor stars. A&A 204:193–218.Google Scholar
Greenberg, M. J. (1989). The core-mantle model of interstellar grains and the cosmic dust connection. In Allamandola, L. J., and Tielens, A. G. G. M., eds., Interstellar Dust, pp. 345–355.
Grevesse, N., and Sauval, A. J. (1998). Standard solar composition. Space Sci. Rev. 85:161–174.Google Scholar
Griffin, I. (1990). A model for the infrared and radio spectral energy distribution of IRC+10216. MNRAS 247:591–605.Google Scholar
Grinin, V. P. (1988). On the blue emission visible during deep minima of young irregular variables. Soviet Astronomy Lett. 14:27–28.Google Scholar
Groenewegen, M. A. T., and Marigo, P. (2004). Synthetic AGB evolution. In Habing, H. J., and Olofsson, H., eds., Asymptotic Giant Branch Stars, pp. 105–148. Springer, New York.
Groenewegen, M. A. T., van den Hoek, L., and de Jong, T. (1995). The evolution of galactic carbon stars. A&A 293:381–395.Google Scholar
Groenewegen, M. A. T., and Whitelock, P. A. (1996). A revised period-luminosity relation for carbon Miras. MNRAS 281:1347–1351.Google Scholar
Grossman, L. (1972). Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta 36:597–619.Google Scholar
Gustafson, B. A. S., Greenberg, J. M., Kolokolova, L., Xu, Y.-L., and Stognienko, R. (2001). Interactions with electromagnetic radiation: Theory and laboratory simulations. In Grün, E., Gustafson, B. A. S., Dermott, S. F., and Fechtig, H., eds., Interplanetary Dust, pp. 509–567. Springer, Berlin.
Gustafsson, B., Bell, R. A., Eriksson, K., and Nordlund, A. (1975). A grid of model atmospheres for metal-deficient giant stars, I. A&A 42:407–432.Google Scholar
Gustafsson, B., and Höfner, S. (2003). Atmospheres of AGB stars. In Habing, H., and Olofsson, H., eds., Asymptotic Giant Branch Stars, pp. 149–245. Springer. Berlin.
Gustafsson, B., Lambert, D. L., Hinkle, K. H., and Eriksson, K. (1985). CNO Abundances and 12C/13C ratios in 30 galactic N stars. In Danziger, I. J., Mateucci, F., and Kjaer, K., eds., Production and Distribution of C,N,O Elements: ESO Conference and Workshop Proceedings, pp. 151–154.
Habing, H. (1987). IRAS results on circumstellar shells. In Appenzeller, I., and Jordan, C., eds., Circumstellar Matter, pp. 197–213. Reidel, Dordrecht.
Habing, H. (1990). The evolution of red giants to white dwarfs: A review of the observational evidence. In Mennessier, M. O., and Omont, A., eds., From Miras to Planetary Nebulae: Which Path for Stellar Evolution? pp. 16–40. Editions Frontières, Gif sur Yvette Cedex, France.
Habing, H. (1996). Circumstellar envelopes and asymptotic giant branch stars. A&A Rev. 7:97–207.Google Scholar
Habing, H., Tignon, J., and Tielens, A. (1994). Calculations of the outflow velocity of envelopes of cool giants. A&A 286:523–534.Google Scholar
Habing, H., and Whitelock, P. A. (2003). AGB stars as tracer of stellar populations. In Habing, H., and Olofsson, H., eds., Asymptotic Giant Branch Stars pp. 411–460. Springer, Berlin.
Habing, H. J., and Olofsson, H., eds. (2003). Asymptotic Giant Branch Stars. Springer, Berlin.
Hallenbeck, S. L., Nuth, J. A., and Daukantas, P. L. (1998). Mid-infrared spectral evolution of amorphous magnesium silicate smokes annealed in vacuum: Comparison to cometary spectra. Icarus 131:198–209.Google Scholar
Hallenbeck, S. L., Nuth, J. A., and Nelson, R. N. (2000). Evolving optical properties of annealing silicate grains: From amorphous condensate to crystalline mineral. ApJ 535:247–255.Google Scholar
Harpaz, A., and Kovetz, A. (1981). Evolution of 1.2 solar mass star and the formation of planetary nebulae. A&A 93:200–203.Google Scholar
Hartmann, L., and MacGregor, K. B. (1980). Momentum and energy deposition in late-type stellar atmospheres and winds. ApJ 242:260–282.Google Scholar
Hashimoto, A. (1990). Evaporation kinetics of forsterite and implications for the early solar nebula. Nature 347:53–55.Google Scholar
Hashimoto, A. (1998). Absolute reaction rates of hydrogen with condensed phases in the nebula. Meteoritics 33:A65.Google Scholar
Hashimoto, O. (1995). Infrared properties of circumstellar dust envelopes of oxygen-rich asymptotic giant branch stars. ApJ 442:286–295.Google Scholar
Hauschildt, P. H., Allard, F., Baron, E., Aufdenberg, J., and Schweitzer, A. (2003). Stellar atmospheres and synthetic spectra for GAIA. In Munari, U., ed., GAIA Spectroscopy: Science and Technology, Vol. 298 of Astr. Soc. Pacific Conf. Ser., pp. 179–188.
Hearn, A. G. (1990). The physics of mass loss from AGB stars. In Mennessier, M. O., and Omont, A., eds., From Miras to Planetary Nebulae: Which Path for Stellar Evolution? pp. 121–130.
Helling, C., Winters, J. M., and Sedlmayr, E. (2000). Circumstellar dust shells around long-period variables. VII: The role of molecular opacities. A&A 358:651–664.Google Scholar
Helling, C., and Woitke, P. (2006). Dust in brown dwarfs. V. Growth and evaporation of dirty dust grains. A&A 455:325–338.Google Scholar
Henning, T., Begemann, B., Mutschke, H., and Dorschner, J. (1995). Optical properties of oxide dust grains. A&AS 112:143–149.Google Scholar
Henning, T., Jäger, C., and Mutschke, H. (2004). Laboratory studies of carbonaceous dust analogues. In Witt, A. N., Clayton, C., and Draine, B. T., eds., Astrophysics of Dust, ASP Conf. Ser., Vol. 309, pp. 603–628.
Henning, T., and Stognienko, R. (1996). Dust opacities for protoplanetary accretion disks: influence of dust aggregates. A&A 311:291–303.Google Scholar
Herbst, U. (2009). Über die AGB-Entwicklung metallfreier und extrem metallarmer Sterne mittlerer Masse. Ph.D. Thesis, Universität Heidelberg.
Herwig, F. (2001). Internal mixing and surface abundance of [WC]-CSPN. Ap&SS 275:15–26.Google Scholar
Herwig, F. (2006). Evolution of asymptotic giant branch stars. ARA&A 43:435–479.Google Scholar
Herzberg, G. (1950). Spectra of Diatomic Molecules. New York.
Hill, S., and Willson, L. (1979). Theoretical velocity structures of long-period variables star photospheres. ApJ 229:1029–1045.Google Scholar
Hirschfelder, J., Curtiss, C., and Bird, R. (1954). Molecular Theory of Gases and Liquids. Wiley, New York.
Hoffmeister, C., Richter, G., and Wenzel, W. (1990). Veränderliche Sterne, 3rd ed. Barth, Leipzig.
Höfner, S., and Dorfi, E. A. (1997). Dust formation in winds of long-period variables. IV. Atmospheric dynamics and mass loss. A&A 319:648–654.Google Scholar
Höfner, S., Feuchtinger, M. U., and Dorfi, E. A. (1995). Dust formation in winds of long-period variables. III. Dynamical models and confirmation of a dust-induced k-mechanism. A&A 297:815–827.Google Scholar
Höfner, S., Fleischer, A. J.Gauger, A., Feuchtinger, M. U., Dorfi, E. A., Winters, J. M., and Sedlmayr, E. (1996). Dynamical models of atmospheres of long-period variables: A comparative study. A&A 314:204–208.Google Scholar
Höfner, S., Gautschy-Loidl, R., Aringer, B., and Jørgensen, U. G. (2003). Dynamic model atmospheres of AGB stars. III. Effects of frequency-dependent radiative transfer. A&A 399:589–601.Google Scholar
Hollenbach, D., and McKee, F. (1979). Molecule formation and infrared emission in fast interstellar shocks. I. Physical processes. ApJS 41:555–592.Google Scholar
Holzer, T., Flå, T., and Leer, E. (1983). Alfvén waves in stellar winds. ApJ 275:808–835.Google Scholar
Holzer, T. E., and MacGregor, K. B. (1985). Mass loss mechanisms for cool, low-gravity stars. In Morris, M., and Zuckerman, B., eds., Mass Loss from Red Giants, pp. 229–255. Reidel, Dordrecht.
Hony, S., Waters, L. B. F. M., and Tielens, A. G. G. M. (2002). The carrier of the 30 μm emission feature in evolved stars. A simple model using magnesium sulfide. A&A 390:533–553.Google Scholar
Hoyle, F., and Wickramasinghe, N. C. (1962). On graphite particles as interstellar grains. MNRAS 124:417–433.Google Scholar
Hoyle, F., and Wickramasinghe, N. C. (1970). Dust in supernova explosions. Nature 226:62–63.Google Scholar
Huffman, D. R., and Stapp, J.-L. (1973). Optical measurements on solids of possible interstellar importance. In Greenberg, J. M., and van de Hulst, H. C., eds., Interstellar Dust and Related Topics, IAU Symposium 52, pp. 297–301. Reidel, Dordrecht.
Hughes, S. M. G. (1989). Long-period variables in the Large Magellanic Cloud. I: Search and discovery. AJ 97:1634–1687.Google Scholar
Hughes, S. M. G., and Wood, P. R. (1990). Long-period variables in the Large Magellanic Cloud. II: Infrared photometry, spectral classification, AGB evolution, and spatial distribution. AJ 99:784–816.Google Scholar
Hutcheon, I. D., Huss, G. R., Fahey, A. J., and Wasserburg, G. J. (1994). Extreme 26Mg and 170 enrichments in Orgueil corundum: Identification of a presolar oxide grain. ApJ 425:L97–L100.Google Scholar
Inaba, H., Tachibana, S., Nagahara, H., and Ozawa, K. (2001). Condensation kinetics of forsterite. 32nd Lunar and Planetary Institute Conference p. 1837.
Israelian, G., Ecuvillon, A., Rebolo, R., García-López, R., Bonifacio, P., and Molaro, P. (2004). Galactic evolution of nitrogen. A&A 421:649–658.Google Scholar
Jäger, C., Mutschke, H., Begemann, B., Dorschner, J., and Henning, T. (1994). Steps toward interstellar silicate mineralogy I. Laboratory results of a silicate glass of mean cosmic composition. A&A 292:641–655.Google Scholar
Jäger, C., Mutschke, H., and Henning, T. (1998). Optical properties of cabonaceous dust analogues. A&A 332:291–299.Google Scholar
Jaschek, K., and Jaschek, M. (1987). The Classification of Stars. Cambridge University Press, Cambridge, UK.
Jeong, K. S. (2000). Dust shells around oxygen-rich Miras and long-period variables. Ph.D. Thesis, Technical University of Berlin.
Jeong, K. S., Chang, C., Sedlmayr, E., and Suelzle, D. (2000). Electronic structure investigation of neutral titanium oxide molecules TixOy. J. Phys. B 33:3417–3430.Google Scholar
Jeong, K. S., Winters, J. M., Le Bertre, T., and Sedlmayr, E. (2003). Self-consistent modeling of the outflow from the O-rich Mira IRC-20197. A&A 407:191–206.Google Scholar
Jones, A. P. (2004). Dust destruction processes. In Witt, A. N., Clayton, G. C., and Draine, B. T., eds., Astrophysics of Dust, pp. 347–367. Astronomical Society of the Pacific, San Francisco.
Jones, A. P., Tielens, A. G. G. M., and Hollenbach, D. J. (1996). Grain shattering in shocks: The interstellar grain size distribution. ApJ 469:740–764.Google Scholar
Jones, T. J., Hyland, A. R., and Gatley, I. (1983). Type II OH/IR masers. III: The database. ApJ 273:660–668.Google Scholar
Jones, T. W., and Merrill, K. M. (1976). Model Dust Envelopes around late-type stars. ApJ 209:509–524.Google Scholar
Jonsell, K., Edvardsson, B., Gustafsson, B., Magain, P., Nissen, P. E., and Asplund, M. (2005). Chemical abundances in 43 metal-poor stars. A&A 440:321–343.Google Scholar
Jørgensen, U., and Johnson, H. (1992). Radiative force on molecules and its possible role for mass loss in evolved AGB stars. A&A 265:168–176.Google Scholar
Jura, M. (1983). The dust around the carbon star IRC +10216. ApJ 267:647–652.Google Scholar
Jura, M. (1984). Multiple circumstellar shells and radiation pressure on grains in the outflows from late-type giants. ApJ 282:200–205.Google Scholar
Jura, M. (1986). Mass loss from carbon stars. ApJ 303:327–332.Google Scholar
Jura, M. (1994). The particle-size distribution in the dust ejected from IRC+10216. ApJ 434:713–718.Google Scholar
Jura, M. (1996). Dust particle size distributions around oxygen-rich mass-losing red giants. ApJ 472:806–811.Google Scholar
Justtanont, K., Olofsson, G., Dijkstra, C., and Meyer, A. W. (2006). Near-infrared observations of water-ice in OH/IR stars. A&A 450:1051–1059.Google Scholar
Karakas, A. I., Latanzio, J. C., and Pols, O. (2002). Parameterising the third dredge-up in asymptotic giant branch stars. Pub. Astron. Soc. Australia 19:515–526.Google Scholar
Keady, J. J., Hall, D. N. B., and Ridgway, S. T. (1988). The IRC+10216 circumstellar envelope. I: Models for the dust and gas. ApJ 326:832–842.Google Scholar
Keeley, D. (1970). Dynamical models of long-period variable stars. ApJ 161:657–667.Google Scholar
Keller, R. (1987). Polyaromatic hydrocarbons and the condensation of carbon in stellar winds. In Leger, A., D'Hendecourt, L., and Boccara, N., eds., NATO ASIC Proc. 191: Polycyclic Aromatic Hydrocarbons and Astrophysics, pp. 387–397.
Kerschbaum, F., and Hron, J. (1992). Semiregular variables of type SRa and SRb. Basic properties in the visual and the IRAS range. A&A 263:97–112.Google Scholar
Kerschbaum, F., Olofsson, H., Posch, T., González Delgado, D., Bergman, P., Mutschke, H., Jäger, C., Dorschner, J., and Schöier, F. (2003). Gas and dust mass loss of O-rich AGB stars. In Schielicke, R. E., ed., Reviews in Modern Astronomy, 16:171–189.
Kholopov, P., Samus, N., Frolov, M., Goranskij, V., Gorynya, N., Karitskaya, E., Kazarovets, E., Kireeva, N., Kukarkina, N., Kurochkin, N., Medvedeva, G., Pastukhova, E., Perova, N., Rastorguev, A., and Shugarov, S. (1985-1988). General Catalogue of Variable Stars, Vols Annalen. I-III, 4th ed. Nauka, Moscow.
Kimura, Y., and Kaito, C. (2003). Titanium carbide particles as pre-solar grains. MNRAS 343:385–389.Google Scholar
Kippenhahn, R., and Weigert, A. (1990). Stellar Structure and Evolution. Springer-Verlag, Berlin.
Knabener, P., and Angermann, L. (2003). Numerical Methods for Elliptic and Parabolic Partial Differential Equations. Springer-Verlag, New York.
Knapp, G., Phillips, T., Leighton, R., Lo, K., Wannier, P., Wootten, H., and Huggins, P. (1982). Mass loss from evolved stars. I: Observations of 17 stars in the CO/2-1/line. ApJ 252:616–634.Google Scholar
Knapp, G. R. (1985). Mass loss from evolved stars. IV: The dust-to-gas ratio in the envelopes of Mira variables and carbon stars. ApJ 293:273–280.Google Scholar
Knapp, G. R. (1986). Mass loss from evolved stars. VI: Mass-loss mechanisms and luminosity evolution. ApJ 311:731–741.Google Scholar
Knapp, G. R. (1987). Mass loss from carbon stars: Observations of the CO millimeter wavelength rotational lines. In Kwok, S., and Pottasch, S. R., eds., Late Stages of Stellar Evolution, pp. 103–118. Reidel, Dordrecht.
Knapp, G. R., and Morris, M. (1985). Mass loss from evolved stars. III: Mass loss rates for 50 stars from CO J = 1 - 0 observations. ApJ 292:640–669.Google Scholar
Koike, C., Hasegawa, H., and Manabe, A. (1980). Extinction coefficients of amorphous carbon grains from 2100 A to 340 microns. ApSS 67:495–502.Google Scholar
Koike, C., Kaito, C., Yamamoto, T., Shibai, H., Kimura, S., and Suto, H. (1995). Extinction spectra of corundum in the wavelengths from UV to FIR. Icarus 114:203–214.Google Scholar
Koninx, J., and Hearn, A. (1992). The role of sound waves in Be-star winds. A&A 263:208–218.Google Scholar
Koninx, J.-P., and Pijpers, F. (1992). The applicability of the linearized theory of sound wave driven winds. A&A 265:183–194.Google Scholar
Koros, R. M., Deckers, J. M., Andres, R. P., and Boudart, M. (1966). The sticking probability of water on ice. Chem. Eng. Sci. 21:941–950.Google Scholar
Kozasa, T., and Hasegawa, (1988). Formation of iron-bearing materials in a cooling gas of solar composition. Icarus 73:180–190.Google Scholar
Kozasa, T., Hasegawa, H., and Nomoto, K. (1989). Formation of dust grains in the ejecta of SN 1987A. ApJ 344:325–331.Google Scholar
Kozasa, T., Hasegawa, H., and Seki, J. (1984). Grain formation in the expanding gas flow around cool luminous stars. Ap&SS 98:61–79.Google Scholar
Kretz, R. (1983). Symbols for rock-forming minerals. Am. Mineralog. 68:277–279.Google Scholar
Krügel, E. (2003). The Physics of Interstellar Dust. Institute of Physics (IOP), Bristol, UK.
Krüger, D., Gauger, A., and Sedlmayr, E. (1994). Two-fluid models for stationary dust-driven winds. I: Momentum and energy balance. A&A 290:573–589.Google Scholar
Krüger, D., and Sedlmayr, E. (1997). Two-fluid models for stationary dust driven winds. II: The grain size distribution in consideration of drift. A&A 321:557–567.Google Scholar
Kruszewski, A., Gehrels, T., and Serkowski, K. (1968). Wavelength dependence of polarization. XII: Red variables. AJ 73:677–687.Google Scholar
Kudritzki, R., and Puls, J. (2000). Winds from hot stars. ARA&A 38:613–666.Google Scholar
Kwok, S. (1975). Radiation pressure on grains as a mechanism for mass loss in red giants. ApJ 198:583–591.Google Scholar
Kwok, S. (1981). From red giants to planetary nebulae. In Iben, I. Jr., and Renzini, A., eds., Physical Processes in Red Giants, Vol. 88 of Astrophysics and Space Science Library, pp. 421–425.
Lafon, J.-P., and Berruyer, N. (1991). Mass loss mechanisms in evolved stars. A&A Rev. 2:249–289.Google Scholar
Lambert, D., Gustafsson, B., Eriksson, K., and Hinkle, K. H. (1986). The chemical composition of carbon stars. I: Carbon, nitrogen, and oxygen in 30 cool carbon stars in the galactic disk. ApJS 62:373–425.Google Scholar
Lamers, H. J. G. L. M., and Cassinelli, J. P. (1999). Introduction to Stellar Winds. Cambridge University Press, Cambridge, UK.
Landau, L. D., and Lifshitz, E. M. (1960). Electrodynamics of Continuous Media, Vol. VIII of Course of Theoretical Physics. Pergamon Press, Oxford, UK.
Landau, L. D., and Lifshitz, E. M. (1987). Fluid Mechanics, 2nd ed., Vol. VI of Course of Theoretical Physics. Pergamon Press, Oxford, UK.
Laor, A., and Draine, B. T. (1993). Spectroscopic constraints on the properties of dust in active galactic nuclei. ApJ 402:441–468.Google Scholar
Lattanzio, C., and Wood, P. (2003). Evolution, nucleosynthesis and pulsation of AGB stars. In Habing, H., and Olofsson, H., eds., Asymptotic Giant Branch Stars, pp. 23–104. Springer, Berlin.
Lattimer, J. M., Schramm, D. N., and Grossman, L. (1978). Condensation in supernova ejecta and isotopic anomalies in meteorites. ApJ 219:230–249.Google Scholar
Le Bertre, T. (1997). Optical and infrared observations of 23 carbon-rich stars. Modelling of the circumstellar shells. A&A 324:1059–1070.Google Scholar
Le Bertre, T., Gougeon, S., and Le Sidaner, P. (1995). The properties of the dust in the circumstellar environment of GL 3068. A&A 299:791–802.Google Scholar
Le Bertre, T., Tanaka, M., Yamamura, I., and Murakami, H. (2003). Galactic mass-losing AGB stars probed with the IRTS, II. A&A 403:943–954.Google Scholar
Le Bertre, T., and Winters, J. M. (1998). On the relations between infrared colors and mass loss rates for Mira stars. A&A 334:173–180.Google Scholar
Le Sidaner, P., and Le Bertre, T. (1993). Optical and infrared observations of two oxygen-rich Miras: Dust shell modelling as a function of phase. A&A 278:167–178.Google Scholar
Le Sidaner, P., and Le Bertre, T. (1996). Optical and infrared observations of 27 oxygen-rich stars: Modelling of the circumstellar dust shells. A&A 314:896–908.Google Scholar
Lebzelter, T., Posch, T., Hinkle, K., Wood, P. R., and Bouwman, J. (2006). Tracing the development of dust around evolved stars: The case of 47 Tuc. ApJ 653:L145–L148.Google Scholar
Lewis, R., Tang, M., Wacker, J., Anders, E., and Steel, E. (1987). Interstelllar diamonds in meteorites. Nature 326:160–162.Google Scholar
Li, A. (2005). On the absorption and emission properties of interstellar grains. In The Spectral Energy Distributions of Gas-Rich Galaxies: Confronting Models with Data, AIP Conf. Proc. 761, pp. 123–133.Google Scholar
Li, J., Zhao, Z., Kazakov, A., and Dryer, F. L. (2004). An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 36:566–575.Google Scholar
Lichtenegger, H. I. M., and Kömle, N. I. (1991). Heating and evaporation of icy particles in the vicinity of comets. Icarus 90:319–325.Google Scholar
Lide, R. (1995). CRC Handbook of Chemistry and Physics, 78th ed. CRC Press, Boca Raton, FL.
Liffman, K., and Clayton, D. D. (1989). Stochastic evolution of refractory interstellar dust during the chemical evolution of a two-phase interstellar medium. ApJ 340:853–868.Google Scholar
Lodders, K., and Amari, S. (2005). Presolar grains from meteorites: Remnants from the early times of the solar system. Chemie der Erde 65:93–166.Google Scholar
Lorentz, H. A. (1906). Versuch einer Theorie der Electrischen und Optischen Erscheinungen in bewegten Körpern. Teubner, Leipzig.
Loreta, E. (1934). Nota sulle stelle variabili R Coronidi. Astron. Nachr. 254:151.Google Scholar
Loup, C., Forveille, T., Omont, A., and Paul, J. F. (1993). CO and HCN observations of circumstellar envelopes. A catalogue—Mass loss rates and distributions. A&A 99:291–377.Google Scholar
Lucy, I. B., Robertson, J. A., and Sharp, C. M. (1986). Hayashi limits for carbon stars and the onset of dust-driven winds. A&A 154:267–273.Google Scholar
Lucy, L. B. (1971). The formation of resonance lines in extended atmospheres. ApJ 163:95–110.Google Scholar
Lucy, L. B., (1976). Mass loss by cool carbon stars. ApJ 205:482–491.Google Scholar
Lynch, D. K. (1996). A new model for the infrared dielectric function of amorphous materials. ApJ 467:894–898.Google Scholar
MacGregor, K. B., and Stencel, R. E. (1992). On the interaction between dust and gas in late-type stellar atmospheres and winds. ApJ 397:644–651.Google Scholar
MacKay, D. D. S., and Charnley, S. B. (1999). The silicon chemistry of IRC+100216. MNRAS 302:793–800.Google Scholar
Maeder, A., and Meynet, G. (1989). Grids of evolutionary models from 0.85 to 120 MQ: Observational tests and the mass limits. A&A 210:155–173.Google Scholar
Magain, P. (1989). The chemical composition of the extreme halo stars. I: Blue spectra of 20 dwarfs. A&A 209:211–225.Google Scholar
Mamon, G. A., and Glassgold, A. E. (1987). Photochemistry and molecular ions in oxygen-rich circumstellar envelopes. ApJ 323:306–315.Google Scholar
Marinov, N. M., Pitz, W., Westbrook, C. K., Castaldi, M., and Senkan, S. M. (1996). Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixed methane and ethane flames. Combust. Sci. Tech. 116:211–287.Google Scholar
Marinov, N. M., Westbrook, C. K., and Pitz, W. (1995). Detailed and global chemical kinetics model for hydrogen. In Eight Symposium on Transport Processes 1:118–129.Google Scholar
Maron, N. (1990). Optical properties of fine amorphous carbon grains in the infrared region. Ap&SS 172:21–28.Google Scholar
Mathis, J. S., Rumpl, W., and Nordsieck, K. H. (1977). The size distribution of interstellar grains. ApJ 217:425–433.Google Scholar
Matteucci, F. (2003). The Chemical Evolution of the Galaxy. Kluwer, Dordrecht.
Mauron, N., and Huggins, P. (1999). Multiple shells in the circumstellar envelope of IRC+10216. A&A 349:203–208.Google Scholar
Mauron, N., and Huggins, P. (2000). Multiple shells in IRC+10216: Shell properties. A&A 359:707–715.Google Scholar
Mauron, N., and Huggins, P. (2006). Imaging the circumstellar envelopes of AGB stars. A&A 452:257–268.Google Scholar
Maxwell-Garnett, J. C. (1908). Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. A203:385–420.Google Scholar
Mayall, M. W. (1960). R Coronae Borealis. J. R. Astr. Soc. Canada, Variable Star Notes 54:193–196.Google Scholar
McEnally, C. S., Pfefferle, L. D., Atakan, B., and Kohse-Köinhaus, K. (2006). Studies of aromatic hydrocarbon formation mechanisms in flames: Progress towards closing the fuel gap. Prog. Energy Combust. Sci. 32:247–294.Google Scholar
Mendybaev, R. A., Beckett, J. R., Grossman, L., and Stolper, E. (1998). Measurement of oxygen fugacities under reducing conditions: Non-Nernstian behavior of Y2O3-doped zirconia oxygen sensors. In 29th Lunar and Planetary Institute Conference, p. 1871.
Menietti, J. D., and Fix, J. D. (1978). Models of mass flows from cool, luminous stars. ApJ 224:961–968.Google Scholar
Mennessier, M. O., and Omont, A., eds. (1990). From Miras to Planetary Nebulae: Which Path for Stellar Evolution?, Editions Frontières, Gif sur Yvette Cedex, France.
Messenger, S., Keller, L. P., Staderman, F. J., Walker, R. M., and Zinner, E. (2003). Samples of stars beyond the solar system: Silicate grains in interplanetary dust. Science 300:105–108.Google Scholar
Messenger, S., Keller, L. P., and Walker, R. M. (2002). Discovery of abundant interstellar silicates in cluster IDPs. In 33rd Lunar and Planetary Institute Conference p. 1887.
Meynet, G., Maeder, A., Schaller, G., Schaerer, D., and Charbonnel, C. (1994). Grids of massive stars with high mass loss rates. V: From 12 to 120 M0 at Z = 0.001, 0.004, 0.008, 0.020 and 0.040. A&AS 103:97–105.Google Scholar
Mie, G. (1908). Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Anna. Phys. 25:377–445.Google Scholar
Mihalas, D. (1978). Stellar Atmospheres, 2nd ed. W. H. Freeman, San Francisco.
Mihalas, D., and Hummer, D. (1974). Theory of Extended Stellar Atmospheres, ApJS 28:343–372.Google Scholar
Mihalas, D., and Weibel Mihalas, B. (1984). Foundations of Radiation Hydrodynamics. Oxford University Press, Oxford, UK.
Millar, T. (2003). Molecule and dust grain formation. In Habing, H., and Olofsson, H., eds., Asymptotic Giant Branch Stars, pp. 247–289. Springer, Berlin.
Millar, T. J., Herbst, E., and Bettens, R. P. A. (2000). Large molecules in the envelope surrounding IRC+10216. MNRAS 316:195–203.Google Scholar
Miller, J. A., Pilling, M. J., and Troe, J. (2005a). Unravelling combustion mechanisms through a quantitative understanding of elementary reactions. Proc. Combust. Inst. 30:43–88.Google Scholar
Miller, T. A., Wooldridge, M. S., and Bozzelli, J. W. (2005b). Computational modeling of the SiH3 + O2 reaction and silane combustion. Combust. Flame 137:73–92.Google Scholar
Millikan, R. C., and White, D. R. (1964). Systematics of vibrational relaxation. J. Chem. Phys. 39(4): 3209–3213.Google Scholar
Molster, F. (2000a). Crystalline silicates: New probes of circumstellar dust conditions? In ESA SP-456: ISO Beyond the Peaks: 2nd ISO Workshop on Analytical Spectroscopy, p. 151.
Molster, F. J. (2000b). Crystalline silicates in circumstellar dust shells. Ph.D. Thesis, FNWI, Sterrenkundig Instituut Anton Pannekoek, Postbus 19268, 1000 GG, Amsterdam, Netherlands.
Molster, F. J., and Waters, L. B. F. M. (2003). The mineralogy of interstellar and circumstellar dust. In Henning, T., ed., Astromineralogy, Vol. 609 of Lecture Note in Physics, pp. 121–170.
Molster, F. J., Waters, L. B. F. M., and Tielens, A. G. G. M. (2002a). Crystalline silicate dust around evolved stars. II: The crystalline silicate complexes. A&A 382:222–240.Google Scholar
Molster, F. J., Waters, L. B. F. M., Tielens, A. G. G. M., and Barlow, M. J. (2002b). Crystalline silicate dust around evolved stars. I: The sample stars. A&A 382:184–221.Google Scholar
Molster, F. J., Waters, L. B. F. M., Tielens, A. G. G. M., Koike, C., and Chihara, H. (2002c). Crystalline silicate dust around evolved stars. III: A correlations study of crystalline silicate features. A&A 382:241–255.Google Scholar
Morris, M. (1987). Mechanisms for mass loss from cool stars. PASP 99:1115–1122.Google Scholar
Morse, M. D. (1986). Clusters of transition-metal atoms. Chem. Rev. 86:1049–1109.Google Scholar
Mostefaoui, S., and Hoppe, P. (2004). Discovery of abundant in situ silicate and spinel grains from red giat stars in a primitive meteorite. ApJ 613:L149–L152.Google Scholar
Mowlavi, N., and Meynet, G. (2000). Aluminum 26 production in asymptotic giant branch stars. A&AS 361:959–976.Google Scholar
Mutschke, H., Andersen, A. C., Clément, D., Henning, T., and Peiter, G. (1999). Infrared properties of SiC particles. A&A 345:187–202.Google Scholar
Nagahara, H., Kushiro, I., and Mysen, B. (1994). Evaporation of olivine: Low pressure phase relations of the olivine system and its implication for the origin of chondritic components in the solar nebula. Geochim. Cosmochim. Acta 58:1951–1963.Google Scholar
Nagahara, H., Kushiro, I., Mysen, B., and Mori, H. (1988). Experimental vaporization and condensation of olivine solid solution. Nature 331:516–518.Google Scholar
Nagahara, H., and Ozawa, K. (1994). Vaporization rate of forsterite in hydrogen gas. Meteoritics 29:508–509.Google Scholar
Nagahara, H., and Ozawa, K. (1996). Evaporation of forsterite in H2 gas. Geochim. Cosmochim. Acta 60:1445–1459.Google Scholar
Nagasawa, H., Suzuki, T., Ito, M., and Morioka, M. (2001). Diffusion in single crystal of melilite: interdiffusion of Al+Alvs.Mg+Si.Phys. Chem. Minerals 28:706–710.
Netzer, N., and Elitzur, M. (1993). The dynamics of stellar outflows dominated by interaction of dust and radiation. ApJ 410:701–713.Google Scholar
Netzer, N., and Knapp, G. (1987). Mass loss from evolved stars. VII: OH maser shell radii and mass-loss rates for OH/IR stars. ApJ 323:734–748.Google Scholar
Neugebauer, G., and Leighton, R. B. (1969). Two-micron sky survey; a preliminary catalog. NASA Special Publication 3047.
Nguyen, A. N., and Zinner, E. (2004). Discovery of ancient silicate stardust in a meteorite. Science 303:1496–1499.Google Scholar
Nichols, R. H. Jr., Grimley, R. T., and Wasserburg, G. J. (1998). Measurement of gas-phase species during Langmuir evaporation of forsterite. Meteoritics 33:A115.Google Scholar
Nichols, R. H. Jr., Wasserburg, G. J., and Grimley, R. T. (1995). Evaporation of forsterite: Identification of gas-phase species via Knudsen cell mass spectrometry. In 26th Lunar and Planetary Institute Conference p. 1047.
Nittler, L., and Alexander, C. (1999). Automatic identification of presolar Al- and Ti-rich oxide grains from ordinary chondrites. In 30th Lunar and Planetary Institute Conference p. 2041.
Nittler, L. R., Alexander, C., Gao, X., Walker, R. M., and Zinner, E. (1994). Interstellar oxide grains from the Tieschitz ordinary chondrite. Nature 370:443–446.Google Scholar
Nittler, L. R., Hoppe, P., Alexander, C. O., Amari, S., Eberhardt, P., Gao, X., Lewis, R. S., Strebel, R., Walker, R. M., and Zinner, E. (1995). Silicon nitride from supernovae. ApJ 453:L25–L28.Google Scholar
Nomoto, K., Thielemann, F.-K., and Yokoi, K. (1984). Accreting white dwarf models of type I supernovae. III: Carbon deflagration supernovae. ApJ 286:644–658.Google Scholar
Nozawa, T., Kozasa, T., Umeda, H., Maeda, K., and Nomoto, K. (2003). Dust in the early universe: Dust formation in the ejecta of population III supernovae. ApJ 598:785–803.Google Scholar
Nuth, J. A., and Donn, B. (1981). Vibrational disequilibrium in low pressure clouds. ApJ 247:925–935.Google Scholar
Nuth, J. A., and Donn, B. (1982). Experimental studies of the vapor phase nucleation of refractory compounds. I: The condensation of SiO. J. Chem. Phys. 77:2639–2646.Google Scholar
Nuth, J. A., and Ferguson, F. T. (2006). Silicates do nucleate in oxygen-rich circumstellar outflows: New vapor pressure data for SiO. ApJ 649:1178–1183.Google Scholar
Olivier, E. A. and Wood, P. R., (2005). Non-linear pulsation models of red giants, MNRAS, 362:1396–1412.Google Scholar
O'Keefe, J. A. (1939). Remarks on Loreta's hypothesis concerning R Coronae Borealis. ApJ 90:294–300.Google Scholar
Olofsson, H. (2003). Circumstellar envelopes. In Habing, H., and Olofsson, H., eds., Asymptotic Giant Branch Stars, pp. 325–410. Springer, Berlin.
Olofsson, H., Bergman, P., Lucas, R., Eriksson, K., Gustafsson, B., and Bieging, J. H. (1998). A thin molecular shell around the carbon star TT CYG. A&A 330:L1–L4.Google Scholar
Olofsson, H., Bergman, P., Lucas, R., Eriksson, K., Gustafsson, B., and Bieging, J. H. (2000). A high-resolution study of episodic mass loss from the carbon star TT Cygni. A&A 353:583–597.Google Scholar
Olofsson, H., Carlstrom, U., Eriksson, K., Gustafsson, B., and Willson, L. A. (1990). Bright carbon stars with detached circumstellar envelopes: A natural consequence of helium shell flashes?A&A 230:L13–L16.Google Scholar
Olofsson, H., Eriksson, K., and Gustafsson, B. (1987). CO (J = 1 — 0) observations of bright carbon stars. A&A 183:L13–L16.Google Scholar
Olofsson, H., Eriksson, K., Gustafsson, B., and Carlström, U. (1993a). A study of circumstellar envelopes around bright carbon stars. I: Structure, kinematics, and mass loss rate. ApJS 87:267–304.
Olofsson, H., Eriksson, K., Gustafsson, B., and Carlström, U. (1993b). A study of circumstellar envelopes around bright carbon stars. II: molecular abundances. ApJS 87:305–330.Google Scholar
Ossenkopf, V., Henning, T., and Mathis, J. S. (1992). Constraints on cosmic silicates. A&A 261:567–578.Google Scholar
Osterbrock, D. (1974). Astrophysics of gaseous nebulae. In Interstellar Processes. Kluwer, Dodrecht.
Ostlie, D., and Cox, A. (1986). A linear survey of the Mira variable star instability region of the Hertzsprung-Russell diagram. ApJ 311:864–872.Google Scholar
Owocki, S. P. (1990). Winds from hot stars. In Klare, G., ed., Reviews in Modern Astronomy, Vol. 3 of Reviews in Modern Astronomy, pp. 98–123.
Owocki, S. P., Poe, C. H., and Castor, J. I. (1988). Absolute instability as a cause of intrinsic variablity in line-driven stellar winds. Bull. Am. Astronom. Soc. 20: 1013.Google Scholar
Ozawa, K., and Nagahara, H. (2000). Kinetics of diffusion-controlled evaporation of Fe-Mg olivine: Experimental study and implication for stability of Fe-rich olivine in the solid nebula. Geochim. Cosmochim. Acta 64:939–955.Google Scholar
Palik, E. D. (1985). Handbook of Optical Constants of Solids., Vols. I, II, III. Academic Press, New York.
Parker, E. (1958). Dynamics of the interplanetary gas and magnetic fields. ApJ 128:664.Google Scholar
Patzer, A. (1998). Non-equilibrium effects on chemistry and dust formation in circumstellar outflows. Ph.D. Thesis, Technical University of Berlin.
Patzer, A. B. C. (2004). Dust nucleation in oxygen-rich environments. In Witt, A. N., Clayton, G. C., and Draine, B. T., eds., Astrophysics of Dust, pp. 301–320. Astronomical Society of the Pacifio, San Francisco.
Patzer, A. B. C., Chang, C., Sedlmayr, E., and Sülzle, D. (2005). A density functional staudy of small AlxOy (x, y = 1 — 4) clusters and their thermodynamic properties. Eur. Phys. J. D 32:329–337.Google Scholar
Patzer, A. B. C., Gauger, A., and Sedlmayr, E. (1998). Dust formation in stellar winds. VII: Kinetic nucleation theory for chemical non-equilibrium in the gas phase. A&A 337:847–858.Google Scholar
Pauldrach, A. (2003). Hot stars: Old-fashioned or trendy?Rev. Mod. Astron. 16:133–170.Google Scholar
Pauldrach, A., Kudritzki, R., Puls, J., Butler, K., and Hunsinger, J. (1994). Radiation-driven winds of hot luminous stars. XII: A first step toward detailed UV-line diagnostics of O-stars. A&A 283:525–560.Google Scholar
Petaev, M. I., and Wood, J. A. (2005). Meteoritic constraints on temperatures, pressures, cooling rates, chemical compositions and modes of condensation in the solar nebula. In Krot, A. N., Scott, E. R. D., and Reipurth, B., eds., Chondrites and the Protoplanetary Disk, Vol. 341 of Astronomical Society of the Pacific Conference Series, pp. 373–406.
Pigott, E. (1797). On the periodical changes of brightness of two fixed stars. Philos. Trans. R. Soc. Lond. 87:133–141.Google Scholar
Pijpers, F. (1990). A model for the wind of the M supergiant VX Sagittarii. A&A 238:256–264.Google Scholar
Pijpers, F., and Habing, H. (1989). Driving the stellar wind of AGB stars by acoustic waves: Exploration of a simple model. A&A 215:334–346.Google Scholar
Pijpers, F., and Hearn, A. (1989). A model for the stellar wind driven by linear acoustic waves. A&A 209:198–210.Google Scholar
Pols, O. R., Schröder, K.-P., Hurley, J. R., Tout, C. A., and Eggleton, P. P. (1998). Stellar evolution models for Z = 0.0001 to 0.03. MNRAS 298:525–536.Google Scholar
Pols, O. R., Tout, C. A., Eggleton, P. P., and Han, Z. (1995). Approximate input physics for stellar modelling. MNRAS 274:964–974.Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007). Numerical Recipes. The Art of Scientific Computing, 3rd ed. Cambridge University Press, Cambridge, UK.
Price, S. D. (2009). Infrared sky surveys. Space Sci. Rev. 142:233–321.Google Scholar
Price, S.D., and Murdock, T. L. (1983). The revised Air Force Geophysical Laboratory infrared sky survey, AFGL-TR-0208 Environemental Research Papers, 161.
Pruppacher, H. R., and Klett, J. D. (1997). Microphysics of Clouds and Precipitation. Kluwer, Dordrecht.
Pugach, A. F. (1977). On the connection between pulsations of RY Sgr and the total light declines. Inform. Bull. Variable Stars 1277:1–3.Google Scholar
Pugach, A. F. (1984). A model of the R-Coronae phenomenon. Soviet Astronomy 28:288–293.Google Scholar
Pugach, A. F. (1990). Interpretation of photometric observations of R-Coronae: Light-curves. Soviet Astronomy 34:646–649.Google Scholar
Pugach, A. F. (1991). Interpretation of photometric observations of R-Coronae: Color features. Soviet Astronomy 35:61–65.Google Scholar
Putnis, A. (2001). An Introduction to Mineral Sciences. Cambridge University Press, Cambridge, UK.
Quarteroni, A., Sacco, R., and Saleri, F. (2000). Numerical Mathematics. Springer-Verlag, New York.
Reber, A. C., Clayborne, P. A., Reveles, J. U., Khanna, S. N., Castleman, A. W. Jr., and Ali, A. (2008a). Silicon oxide nanoparticles reveal the origin of silicate grains in circumstellar environments. Nano Letters 6:1190–1195.Google Scholar
Reber, A. C., Paranthaman, S., Clayborne, P. A., Khanna, S. N., and Castleman, A. W. Jr., (2008b). From SiO molecules to silicates in circumstellar space: Atomic structures, growth patterns, and optical signatures of SinOm clusters. Acsnano 2:1729–1737.Google Scholar
Reddy, B. E., Tomkin, J., Lambert, D. L., and Allende Prieto, C. (2003). The chemical composition of galactic disc F and G dwarf. MNRAS 340:304–340.Google Scholar
Reid, I. N., Hughes, S. M. G., and Glass, I. S. (1995). Long-period variables in the Large Magellanic Cloud. IV: A compendium of northern variables. MNRAS 275:331–380.Google Scholar
Reimers, D. (1973). A study of Ca II K2 and Hα line widths in late type stars. A&A 24:79–87.Google Scholar
Reimers, D. (1975). Circumstellar envelopes and mass loss of red giants. In Baschek, B., Kegel, W. H., and Traving, G., eds., Problems in Stellar Atmospheres and Envelopes, pp. 229–256. Springer-Verlag, Berlin.
Renzini, A. (1981). Red giants as precursors of planetary nebulae. In Iben, I. Jr., and Renzini, A., eds., Physical Processes in Red Giants, pp. 431–446. Reidel, Dordrecht.
Renzini, A. (1983). Red giants as precursors of planetary nebulae. In Flower, D., ed., IAU Symposium 103: Planetary Nebulae, pp. 267–279. Reidel, Dordrecht.
Richter, H., and Wood, P. R. (2001). On the shock-induced variability of emission lines in M-type Mira variables. I: Observational data. A&A 369:1027–1047.Google Scholar
Richter, H., Wood, P. R., Woitke, P., Bolick, U., and Sedlmayr, E. (2003). On the shock-induced variability of emission lines in M-type Mira variables. II: Fe II and [Fe II] emission lines as a diagnostic tool. A&A 400:319–328.Google Scholar
Richtmyer, R., and Morton, K. (1967). Difference Methods for Initial-Value Problems. Wiley, New York.
Ridgway, S., and Keady, J. J. (1988). The IRC+10216 circumstellar envelope. II: Spatial measurements of the dust. ApJ 326:843–858.Google Scholar
Ridgway, S. T., Joyce, R. R., White, N. M., and Wing, R. F. (1980). Effective temperatures of late-type stars: The field giants from K0 to M6. ApJ 235:126–137.Google Scholar
Rietmeijer, F. J. M., Nuth, J. A. III., and Karner, J. M. (1999). Metastable eutectic condensation in a Mg-Fe-SiO-H2-O2 vapor: Analogs to circumstellar dust. ApJ 527:395–404.Google Scholar
Rose, W. (1998). Advanced Stellar Astrophysics. Cambridge University Press, Cambridge, UK.
Rothe, E. (1930). Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben. Mathe. Ann. 102:650–670.Google Scholar
Rowan-Robinson, M., and Harris, S. (1983). Radiative transfer in dust clouds. 4: Circumstellar dust shells around carbon stars. MNRAS 202:797–811.Google Scholar
Russel, H. (1934). Molecules in the sun and stars. ApJ 79:317–342.Google Scholar
Rybicki, G. B. (1987). Radiation driven instabilities. In Lamers, H. J. G. L. M., and de Loore, C. W. H., eds., Instabilities in Luminous Early Type Stars, Vol. 136 of Astrophysics and Space Science Library, pp. 175–184.
Sahai, R. (1990). A new self-consistent model of circumstellar CO emission for deriving mass-loss rates in red giants. I: The carbon-rich star U Camelopardalis. ApJ 362:652–662.Google Scholar
Salpeter, E. E. (1974a). Formation and flow of dust grains in cool stellar atmospheres. ApJ 193:585–592.Google Scholar
Salpeter, E. E. (1974b). Nucleation and growth of dust grains. ApJ 193:579–584.Google Scholar
Salpeter, E. E. (1977). Formation and destruction of dust grains. ARA&A 15:267–293.Google Scholar
Sandin, C., and Höfner, S. (2003a). Three-component modeling of C-rich AGB star winds. I: Method and first results. A&A 398:253–266.Google Scholar
Sandin, C., and Höfner, S. (2003b). Three-component modeling of C-rich AGB star winds. II: The effects of drift in long-period variables. A&A 404:789–807.Google Scholar
Sandin, C., and Höfner, S. (2004). Three-component modeling of C-rich AGB star winds. III: Micro-physics of drift-dependent dust formation. A&A 413:789–798.Google Scholar
Saxena, S., Chatterjee, N., Fei, Y., and Shen, G. (1993). Thermodynamic Data on Oxides and Silicates. Springer, Heidelberg.
Saxena, S. K., and Eriksson, G. (1986). Chemistry of the formation of the terrestrial planets. In Saxena, S. K., ed., Chemistry and Physics of Terrestrial Planets, pp. 30–105. Springer, New York.
Schaaf, S. A. (1963). Mechanics of rarefied gases. In Flügge, S., ed., Handbook of Physics, Vol. 2 (Strömungsmechanik II), pp. 591–624. Springer-Verlag, Berlin.
Schäfer, K., ed. (1968). Landolt-Börnstein: Zahlenwerte und Funktionen, Vol. 5b. Springer-Verlag, Berlin.
Schaller, G., Schaerer, D., Meynet, G., and Maeder, A. (1992). New grid of stellar model from 0.8 to 120, M⊙ at Z = 0.020 and Z = 0.001. A&AS 96:269–331.Google Scholar
Schönberner, D. (1981). Late stages of stellar evolution: Central stars of planetary nebulae. A&A 103:119–130.Google Scholar
Schönberner, D., Steffen, M., Stahlberg, J., Kifonidis, K., and Blöcker, T. (2000). From the tip of the AGB towards a planetary: A hydrodynamical simulation. In Wing, R. F., ed., The Carbon Star Phenomenon, Vol. 177 of IAU Symposium, pp. 469–480.
Schröder, K.-P. (2003). Tip-AGB mass-loss on the galactic scale. Rev. Mod. Astron. 16:227–242.Google Scholar
Schröder, K.-P., and Cuntz, M. (2005). A new version of Reimers' law of mass loss based on a physical approach. ApJL 630:L73–L76.Google Scholar
Schröder, K.-P., and Sedlmayr, E. (2001). The galactic mass injection from cool stellar winds of the 1 to 2.5 M⊙ stars in the solar neighbourhood. A&A 366:913–922.Google Scholar
Schröder, K.-P., Winters, J. M., and Sedlmayr, E. (1999). Tip-AGB stellar evolution in the presence of a pulsating, dust-induced “superwind.” A&A 349:898–906.Google Scholar
Schwandt, C. S., Cygan, R. T., and Westrich, H. R. (1998). Magnesium self-diffusion in orthoenstatite. Contrib. Mineral Petrol 130:390–396.Google Scholar
Sedlmayr, E. (1990). Dust formation and stellar wind. In Mennessier, M., and Omont, A., eds., From Miras to Planetary Nebulae: Which Path for Stellar Evolution? pp. 179–185.
Sedlmayr, E., and Dominik, C. (1995). Dust driven winds. Space Sci. Rev. 73:211–272.Google Scholar
Sellgren, K., Werner, M. W., and Dinerstein, H. L. (1983). Extended near-infrared emission from visual reflection nebulae. ApJL 271:L13–L17.Google Scholar
Semenov, D., Henning, T., Helling, C., Ilgner, M., and Sedlmayr, E. (2003). Rosseland and Planck mean opacities for protoplanetary discs. A&A 410:611–621.Google Scholar
Serkowski, K., and Shawl, S. J. (2001). Polarimetry of 167 cool variable stars: Data. AJ 122:2017–2041.Google Scholar
Serrin, J. (1959). Mathematical principles of classical fluid mechanics. In Flügge, S., ed., Encyclopedia of Physics, Vol. VIII/1, Chapter 2, pp. 125–263. Springer, Berlin.
Sharp, C., and Huebner, W. (1990). Molecular equilibrium with condensation. ApJS 72:417–431.Google Scholar
Simis, Y. J. W., Icke, V., and Dominik, C. (2001). Origin of quasi-periodic shells in dust forming AGB winds. A&A 371:205–221.Google Scholar
Slavin, J. D., Jones, A. P., and Tielens, A. G. G. M. (2004). Shock processing of large grains in the interstellar medium. ApJ 614:796–806.Google Scholar
Sloan, G. C., Kraemer, K. E., Matsuura, M., Wood, P. R., Price, S. D., and Egan, M. P. (2006). Mid-infrared spectroscopy of carbon stars in the Small Magellanic Cloud. ApJ 645:1118–1130.Google Scholar
Smith, V. V., and Lambert, D. L. (1990). The chemical composition of red giants. III: Further CNO isotopic and s-process abundances in thermally pulsing asymptotic giant branch stars. ApJS 72:387–416.Google Scholar
Smith, W. R., and Missen, R. W. (1982). Chemical Reaction Equilibrium Analysis: Theory and Algorithms. Wiley, New York.
Sogawa, H., and Kozasa, T. (1999). On the origin of crystalline silicate in circumstellar envelopes of oxygen-rich asymptotic giant branch stars. ApJ 516:L33–L36.Google Scholar
Sopka, R. J., Hildebrand, R., Jaffe, D. T., Gatley, I., Roelling, T., Werner, M., Jura, M., and Zuckerman, B. (1985). Submillimeter observations of evolved stars. ApJ 294:242–255.Google Scholar
Soubiran, C., and Girard, P. (2005). Abundance trends in kinematical groups of the Milky Way's disk. A&A 438:139–151.Google Scholar
Speck, A., Meixner, M., and Knapp, G. (2000). Circumstellar dust around post-AGB stars. In Laureijs, R., Leech, K., and Kessler, M., eds., ESA SP-455: ISO Beyond Point Sources: Studies of Extended Infrared Emission, pp. 83–88.
Steffen, M., Szczerba, R., and Schoenberner, D. (1998). Hydrodynamical models and synthetic spectra of circumstellar dustshells around AGB stars. II: Time-dependent simulations. A&A 337:149–177.Google Scholar
Stein, W. A., Gaustad, J. E., Gillett, F. C., and Knacke, R. F. (1969). Circumstellar infrared emission from two peculiar objects: R Aquarii and R Coronae Borealis. ApJL 155:L3–L7.Google Scholar
Steyer, T. (1974). Infrared optical properties of some solids of possible interest in astronomy and atmospheric physics. Ph.D. Thesis, University of Arizona, Tucson.
Stroud, R. M., Nittler, L. R., and Alexander, C. M. O. (2004). Polymorphism in presolar Al2O3 grains from asymptotic giant branch stars. Science 305:1455–1457.Google Scholar
Stull, D. R., and Prohet, H. (1971). JANAF thermochemical tables. NSRDS-NBS, Washington, DC.
Suh, S., Zachariah, M. R., and Girshick, S. L. (2001). Modeling particle formation during low-pressure silane oxidation: Detailed chemical kinetics and aerosol dynamics. J. Vac. Sci. Technol. A 19:940–951.Google Scholar
Tabak, R. G., Hirth, J. P., Meyrick, G., and Roark, T. P. (1975). The nucleation and expulsion of carbon particles formed in stellar atmospheres. ApJ 196:457–463.Google Scholar
Tachibana, S., Nagahara, H., and Ozawa, K. (2001). Condensation kinetics of metallic iron and its application to condensation of metal in the solar nebula. In 32nd Lunar and Planetary Institute Conference p. 1767.
Tachibana, S., Tsuchiyama, A., and Nagahara, H. (1998). An experimental study of incongruent evaporation of enstatite. In 29th Lunar and Planetary Institute Conference p. 1539.
Tachibana, S., Tsuchiyama, A., and Nagahara, H. (2000). Evaporation kinetics of enstatite and Mg/Si fractionation in the solar nebula. In 31st Lunar and Planetary Institute Conference p. 1588.
Tachibana, S., Tsuchiyama, A., and Nagahara, H. (2002). Experimental study of incongruent evaporation kinetics of enstatite in vacuum and in hydrogen gas. Geochim. Cosmochim. Acta 66:713–728.Google Scholar
Tanabe, T., Nakada, Y., Kamijo, F., and Sakata, A. (1983). Far-infrared absorption measurements of graphite, amorphous carbon, and silicon carbide. PASJ 35:397–404.Google Scholar
Tang, M., and Anders, E. (1988). Isotopic anomalies of Ne, Xe, and C in meteorites. II: Interstellar diamond and SiC: Carriers of exotic noble gases. Geochim. Cosmochim. Acta 52:1235–1244.Google Scholar
Thorn, R. J., and Winslow, G. H. (1957). Vaporization coefficient of graphite and composition of the equilibrium vapor. J. Chem. Phys. 26:186–196.Google Scholar
Thronson, H., Latter, W., Black, J., Bally, J., and Hacking, P. (1987). Properties of evolved mass-losing stars in the Milky Way and variations in the interstellar dust composition. ApJ 322:770–786.Google Scholar
Tielens, A. G. G. M. (1983). Stationary flows in the circumstellar envelopes of M giants. ApJ 271:702–716.Google Scholar
Tielens, A. G. G. M. (1999). The destruction of interstellar dust. In Greenberg, J. M., and Li, A., eds., Formation and Evolution of Solids in Space, pp. 331–375, Kluwer, Dordrecht.
Tielens, A. G. G. M., and Allamandola, L. J. (1987). Composition, structure, and chemistry of interstellar dust. In Hollenbach, D. J., and Thronson, H. A., eds., Interstellar Processes, pp. 397, Reidel, Dordrecht.
Tsang, W., and Hampson, R. F. (1986). Chemical kinetic data base for combustion chemistry. I: Methane and related compounds. J. Phys. Chem. Ref. Data 15:1087–1279.Google Scholar
Tscharnuter, W. M., and Winkler, K.-H. (1979). A method for computing selfgravitating gas flows with radiation. Comput. Phys. Commun. 18:171–199.Google Scholar
Tsuchiyama, A., Tachibana, S., and Takahashi, T. (1999). Evaporation of forsterite in the primordial solar nebula: Rates and accompanied isotopic fractionation. Geochim. Cosmochim. Acta 63:2451–2466.Google Scholar
Tsuji, T. (1966). The atmospheric structure of late-type stars. I: physical properties of cool gaseous mixtures and the effect of molecular line absorption on stellar opacities. PASJ 18:127–173.Google Scholar
Tsuji, T. (1981a). Intrinsic properties of carbon stars. I: Effective temperature scale of N-type Carbon stars. J. Astrophys. Astron. 2:95–113.Google Scholar
Tsuji, T. (1981b). Intrinsic properties of carbon stars. II: Spectra, colours, and HR diagram of cool carbon stars. J. Astrophys. Astron. 2:253–276.Google Scholar
Ulrich, B. T., Neugebauer, G., McCammon, D., Leighton, R. B., Hughes, E. E., and Becklin, E. (1966). Further observations of extremely cool stars. ApJ 146:288–290.Google Scholar
Unno, W., and Kondo, M. (1976). The Eddington approximation generalized for radiative transfer in spherically symmetric systems. I: Basic method. PASJ 28:347–354.Google Scholar
van Loon, J., Groenewegen, M., de Koter, A., Trams, N., Waters, L., et al. (1999). Mass-loss rates and luminosity functions of dust-enshrouded AGB stars and red supergiants in the LMC. A&A 351:559–572.Google Scholar
Vassiliadis, E., and Wood, P. R. (1993). Evolution of low- and intermediate-mass stars to the end of the asymptotic giant branch with mass loss. ApJ 413:641–657.Google Scholar
Venn, K. A., Irwin, M., Shetrone, M. D., Tout, C. A., Hill, V., and Tolstoy, E. (2004). Stellar chemical signatures and hierarchical galaxy formation. AJ 128:1177–1195.Google Scholar
Vollmer, C., Hoppe, P., Brenker, F., and Palme, H. (2006). A complex presolar grain in acfer 094: Fingerprints of a circumstellar condensation sequence? In 37th Annual Lunar and Planetary Science Conference, Vol.37 of Lunar and Planetary Institute Conference p. 1284.
Voshchinnikov, N. V., Videen, G., and Henning, T. (2007). Effective medium theories for irregular fluffy structures: aggregation of small particles. Appl. Opt. 46:4065–4072.Google Scholar
Wachter, A., Schröder, K.-P., Winters, J. M., Arndt, T. U., and Sedlmayr, E. (2002). An improved mass-loss description for dust-driven superwinds and tip-AGB evolution models. A&A 384:452–459.Google Scholar
Waelkens, C., and Waters, R. (2003). Post-AGB stars. In Habing, H., and Olofsson, H., eds., Asymptotic Giant Branch Stars, pp. 519–554. Springer, Berlin.
Wagenhuber, J., and Groenewegen, M. A. T. (1998). New input data for synthetic AGB evolution. A&A 340:183–195.Google Scholar
Walker, A. R. (1980). Infrared photometry of galactic carbon stars. MNRAS 190:543–549.Google Scholar
Wang, J., Davis, A. M., Clayton, R. N., and Hashimoto, A. (1999). Evaporation of single crystal forsterite: Evaporation kinetics, magnesium isotope fractionation, and implications of mass-dependent isotopic fractionation of a diffusion-controlled reservoir. Geochim. Cosmochim. Acta 63:953–966.Google Scholar
Warnatz, J., Maas, U., and Dibble, R. W. (2006). Combustion, 4th ed. Springer, Berlin.
Warner, B. (1967). The hydrogen-deficient carbon stars. MNRAS 137:119–139.Google Scholar
Weidemann, V. (1987). The initial-final mass relation: Galactic disk and Magellanic Cloud. A&A 188:74–84.Google Scholar
Weidemann, V. (2000). Revision of the initial-to-final mass relation. A&A 363:647–656.Google Scholar
Weigelt, G., Balega, Y., Blöcker, T., Fleischer, A., Osterbart, R., and Winters, J. (1998). 76mas speckle-masking interferometry of IRC+10216 with the SAO 6m telescope: Evidence for a clumpy shell structure. A&A 333:L51–L54.Google Scholar
Whitelock, P., Feast, M., and Catchpole, R. (1991). IRAS sources and the nature of the galactic bulge. MNRAS 248:276–316.Google Scholar
Whitney, B. A., Balm, S. B., and Clayton, G. C. (1993). Dust formation in RCB stars. In Sasselov, D., ed., Luminous High Latitude Stars, pp. 115–122.
Whitney, B. A., Soker, N., and Clayton, G. C. (1991). Model for R Coronae Borealis stars. AJ 102:284–288.Google Scholar
Whittet, D. C. B. (1992). Dust in the Galactic Environment. Graduate Series in Astronomy. Institute of Physics (IOP), Bristol, UK.
Whittet, D. C. B. (2003). Dust in the Galactic Environment, 2nd ed. Institute of Physics (IOP), Bristol, UK.
Wickramasinghe, N. C. (1963). On graphite particles as intersellar grains, II. MNRAS 126:99–114.Google Scholar
Wickramasinghe, N. C. (1972). Interstellar dust. In Wickramasinghe, N. C., Kahn, F. D., and Mezger, P. G., eds., Interstellar Matter, Saas-Fee Advanced Course 2, pp. 209–340. Geneva Observatory.
Wickramasinghe, N. C., Donn, B. D., and Stecher, T. P. (1966). A mechanism for mass ejection in red giants. ApJ 146:590–593.Google Scholar
Wildt, R. (1933). Kondensation in Sternatmosphären. ZAp 6:345–354.Google Scholar
Willacy, K., and Cherchneff, I. (1998). Silicon and sulphur chemistry in the inner wind of IRC+10216. A&A 330:676–684.Google Scholar
Willacy, K., and Millar, T. J. (1997). Chemistry in oxygen-rich circumstellar envelopes. A&A 324:237–248.Google Scholar
Willson, L., and Bowen, G. (1985). Atmospheric structure and mass loss for pulsating stars. In Stalio, R., and Zirker, J., eds., Relations between Chromosperic-Coronal Heating and Mass Loss in Stars, pp. 127–176. Trieste Workshop Series, Trieste, Italy.
Willson, L., and Hill, S. (1979). Shock wave interpretation of emission lines in long period variable stars. II. Periodicity and mass loss. ApJ 228:854–869.Google Scholar
Willson, L. A. (2000). Mass loss from cool stars: Impact on the evolution of stars and stellar populations. ARA&A 38:573–611.Google Scholar
Wing, R. F., Baumert, J. H., Strom, S. E., and Strom, K. M. (1972). Infrared photometry of R Coronae Borealis during its recent decline. PASP 84:646–647.Google Scholar
Winters, J. M., Dominik, C., and Sedlmayr, E. (1994). Theoretical spectra of circumstellar dust shells around carbon-rich asymptotic giant branch stars. A&A 288:255–272.Google Scholar
Winters, J. M., Fleischer, A. J., Gauger, A., and Sedlmayr, E. (1995). Circumstellar dust shells around long-period variables. IV: Brightness profiles and spatial spectra of C-stars. A&A 302:483–496.Google Scholar
Winters, J. M., Fleischer, A. J., Le Bertre, T., and Sedlmayr, E. (1997). Circumstellar dust shells around long-period variables. V: A consistent time-dependent model for the extreme carbon star AFGL 3068. A&A 326:305–317.Google Scholar
Winters, J. M., Le Bertre, T., Jeong, K. S., Helling, C., and Sedlmayr, E. (2000). A systematic investigation of the mass loss mechanism in dust forming long-period variable stars. A&A 361:641–659.Google Scholar
Witteborn, F. C., Strecker, D. W., Erickson, E. F., Smith, S. M., Goebel, J. H., and Taylor, B. J. (1980). The spectrum of IRC +10216 from 2.0 to 8.5 microns. ApJ 238:577–584.Google Scholar
Woitke, P. (2000). Dust formation in radioactive environments. In Diehl, R., and Hartmann, D., eds., Astronomy with Radioactivities, pp. 163–174. MPE Report 274, Schloß Ringberg, Germany.
Woitke, P. (2006). Too little radiation pressure on dust in the winds of oxygen-rich AGB stars. A&A 460:L9–L12.Google Scholar
Woitke, P., Dominik, C., and Sedlmayr, E. (1993). Dust destruction in the transition region between stellar wind and interstellar medium. A&A 274:451–464.Google Scholar
Woitke, P., Goeres, A., and Sedlmayr, E. (1996a). On the gas temperature in the shocked circumstellar envelopes of pulsating stars. II: Shock induced condensation around R Coronae Borealis stars. A&A 313:217–228.Google Scholar
Woitke, P., Helling, C., Winters, J. M., and Jeong, K. S. (1999). On the formation of it warm molecular layers. A&A 348:L17–L20.Google Scholar
Woitke, P., Krüger, D., and Sedlmayr, E. (1996b). On the gas temperature in the shocked circumstellar envelopes of pulsating stars. I: Radiative heating and cooling rates. A&A 311:927–944.Google Scholar
Wolfire, M. G., and Cassinelli, J. P. (1986). The temperature structure in accretion flows onto massive protostars. ApJ 310:207–221.Google Scholar
Wood, B. J., and Kleppa, O. J. (1981). Thermochemistry offorsterite-fayalite olivine solutions. Geochim. Cosmochim. Acta 45:529–534.Google Scholar
Wood, P. (1979). Pulsation and mass loss in Mira variables. ApJ 227:220–231.Google Scholar
Wood, P. (1986). Long-period variables. In Cox, A. N., Sparks, W., and Starrfield, S., eds., Stellar Pulsation, pp. 250–259. Springer Lecture Notes in Physics No. 274, Springer, Berlin.
Wood, P. (1990a). Mira variables: Pulsation, mass loss and evolution. In Cacciari, C., and Clementini, G., eds., Confrontation between Stellar Pulsation and Evolution, pp. 355–364. In Astronomical Society of the Pacific Conference Series, Vol. 11.
Wood, P. (1990b). Pulsation and evolution of Mira variables. In Mennessier, M. O., and Omont, A., eds., From Miras to Planetary Nebulae: Which Path for Stellar Evolution? pp. 67–84. Editions Frontières, Gif sur Yvette Cedex, France.
Wood, P., and Cahn, J. (1977). Mira variables, mass loss, and the fate of red giant stars. ApJ 211:499–508.Google Scholar
Woolf, N. J., and Ney, E. P. (1969). Circumstellar infrared emission from cool stars. ApJ 155:L181–L184.Google Scholar
Ya'Ari, A., and Tuchman, Y. (1996). Long-term nonlinear thermal effects in the pulsation of Mira variables. ApJ 456:350–355.Google Scholar
Yamamoto, T., and Hasegawa, H. (1977). Grain formation through nucleation process in astrophysical environment. Prog. Theor. Phys. 58(3):816–828.Google Scholar
Yang, W. (2003). Improved recursive algorithm for light scattering by a multilayerd sphere. Appl. Opt. 42:1710–1720.Google Scholar
Zeldovich, Y. B. (1943). On the theory of new phase formation: cavitation. Acta Physicochim. 18:1–22.Google Scholar
Zeldovich, Y. B., and Raizer, Y. P. (2002). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover Publications, Dover, UK.
Zhukovska, S., and Gail, H.-P. (2008). Condensation of MgS in outflows from carbon stars. A&A 486:229–237.Google Scholar
Zhukovska, S., Gail, H.-P., and Trieloff, M. (2008). Evolution of interstellar dust and stardust in the solar neighbourhood. A&A 479:453–480.Google Scholar
Zijlstra, A. A., Matsuura, M., Wood, P. R., et al. (2006). A Spitzer mid-infrared spectral survey of mass-losing carbon stars in the Large Magellanic Cloud. Monthly Notices R. Astr. Soc. 370:1961–1978.Google Scholar
Zuckerman, B. (1993). Carbon stars with excess emission at 60-micron wavelength. A&A 276:367–372.Google Scholar
Zuckerman, B., and Aller, L. H. (1986). Origin of planetary nebulae: Morphology, carbon-to-oxygen abundance ratios, and central star multiplicity. ApJ 301:772–789.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Hans-Peter Gail, Ruprecht-Karls-Universität Heidelberg, Germany, Erwin Sedlmayr, Technische Universität Berlin
  • Book: Physics and Chemistry of Circumstellar Dust Shells
  • Online publication: 18 December 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511985607.025
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Hans-Peter Gail, Ruprecht-Karls-Universität Heidelberg, Germany, Erwin Sedlmayr, Technische Universität Berlin
  • Book: Physics and Chemistry of Circumstellar Dust Shells
  • Online publication: 18 December 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511985607.025
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Hans-Peter Gail, Ruprecht-Karls-Universität Heidelberg, Germany, Erwin Sedlmayr, Technische Universität Berlin
  • Book: Physics and Chemistry of Circumstellar Dust Shells
  • Online publication: 18 December 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511985607.025
Available formats
×