Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T10:59:02.895Z Has data issue: false hasContentIssue false

19 - Molecular Machines

from Part II - Single Bacteria

Published online by Cambridge University Press:  12 December 2024

Thomas Andrew Waigh
Affiliation:
University of Manchester
Get access

Summary

Considers molecular machines including self-assembling fibres, pili, flagellar motors, ion channels, nucleic acid machines and secretion complexes.

Type
Chapter
Information
The Physics of Bacteria
From Cells to Biofilms
, pp. 203 - 215
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Reading

Bensimon, D.; Croquette, V.; Allemand, J. F.; Michalet, X.; Strick, T., Single-molecule Studies of Nucleic Acids and Their Proteins. Oxford University Press: 2018.CrossRefGoogle Scholar
Steven, A.; Baumeister, W.; Johnson, L. N.; Perham, R. N., Molecular Biology of Assemblies and Machines. Garland Science: 2016.CrossRefGoogle Scholar

References

Steven, A. C.; Baumeister, W.; Johnson, L. N.; Perham, R. N., Molecular Biology of Assemblies and Machines. Garland Science: 2016.CrossRefGoogle Scholar
Ramos-Leon, F.; Ramamurthi, K. S., Cytoskeletal proteins: Lessons learned from bacteria. Physical Biology 2022, 19 (2), 021005.CrossRefGoogle ScholarPubMed
Pismen, L., Active Matter Within and Around Us: From Self-propelled Particles to Flocks and Living Forms. Springer: 2021.CrossRefGoogle Scholar
Peskin, C. S.; Odell, G. M.; Oster, G. F., Cellular motions and thermal fluctuations: The Brownian ratchet. Biophysical Journal 1993, 65 (1), 316324.CrossRefGoogle ScholarPubMed
Feynman, R., Feynman Lectures on Physics. Basic Books: 2010.Google Scholar
Mogliner, A.; Oster, G. F., Cell motility driven by actin polymerization. Biophysical Journal 1996, 71 (6), 30303045.CrossRefGoogle Scholar
Philips, R.; Kondev, J.; Theriot, J.; Garcia, H.; Kondev, J., Physical Biology of the Cell. Garland Science: 2012.CrossRefGoogle Scholar
Fronzes, R.; Remaut, H.; Waksman, G., Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria. The EMBO Journal 2008, 27 (17), 22712280.CrossRefGoogle ScholarPubMed
Hospenthal, M. K.; Costa, T. R. D.; Waksman, G., A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Nature Reviews Microbiology 2017, 15 (6), 365379.CrossRefGoogle ScholarPubMed
Maier, B., The bacterial type IV pilus system – a tunable molecular motor. Soft Matter 2013, 9 (24), 56675671.CrossRefGoogle Scholar
Skerker, J. M.; Berg, H. C., Direct observation of extension and retraction of type IV pili. Proceedings of the National Academy of Sciences of the United States of America 2001, 98 (12), 69016904.CrossRefGoogle ScholarPubMed
Merz, A. J.; So, M.; Sheetz, M. P., Pilus retraction powers bacterial twitching motility. Nature 2000, 407 (6800), 98102.CrossRefGoogle ScholarPubMed
Andersson, M.; Fallman, E.; Uhlin, B. E.; Axner, O., Dynamic force spectroscopy of E. coli P Pili. Biophysical Journal 2006, 91 (7), 27172725.CrossRefGoogle ScholarPubMed
Bullitt, E.; Makowski, L., Bacterial adhesion pili are heterologous assemblies of similar subunits. Biophysical Journal 1998, 74 (1), 623632.CrossRefGoogle ScholarPubMed
Xing, J.; Bai, F.; Berry, R.; Oster, G., Torque-speed relationship of the bacterial flagellar motor. Proceedings of the National Academy of Sciences of the United States of America 2006, 103 (5), 12601265.CrossRefGoogle ScholarPubMed
Berg, H. C., E. coli in Motion. Springer: 2004.CrossRefGoogle Scholar
Berg, H. C.; Turner, L., Torque generated by the flagellar motor of Escherichia coli. Biophysical Journal 1993, 65 (5), 22012216.CrossRefGoogle ScholarPubMed
Korobkova, E. A.; Emonet, T.; Park, H.; Cluzel, P., Hidden stochastic nature of a single bacterial motor. Physical Review Letters 2006, 96 (5), 058105.CrossRefGoogle ScholarPubMed
Li, G.; Tang, J. X., Low flagellar motor torque and high swimming efficiency of Caulobacter crescentus swarmer cells. Biophysical Journal 2006, 91 (7), 27262734.CrossRefGoogle ScholarPubMed
Blount, P.; Iscia, I., Life with bacterial mechanosensitive channels, from discovery to physiology to pharmacological target. Microbiology and Molecular Biology Reviews 2020, 84 (1), e00055-19.CrossRefGoogle ScholarPubMed
MacKinnon, R., Potassium channels and the atomic basis of selective ion conduction. Angewandte Chemie 2004, 43 (33), 42654277.CrossRefGoogle ScholarPubMed
Milkman, R., An Escherichia coli homologue of eukaryotic potassium channel proteins. Proceedings of the National Academy of Sciences of the United States of America 1994, 91 (9), 35103514.CrossRefGoogle ScholarPubMed
Kuo, M. M. C.; Saimi, Y.; Kung, C., Gain-of-function mutations indicate that Escherichia coli Kch forms a functional K+ conduit in vivo. The EMBO Journal 2003, 22 (16), 40494058.CrossRefGoogle ScholarPubMed
Akabuogu, E. U.; Martorelli, V.; Krasovec, R.; Roberts, I. S.; Waigh, T. A., Emergence of ion-channel mediated electrical oscillations in Escherichia coli biofilms. eLife 2023, to appear.Google Scholar
Weiss, G. L.; Kieninger, A. K.; Maldener, I.; Forchhammer, K.; Pilhofer, M., Structure and function of a bacterial gap junction analog. Cell 2019, 178 (2), 374384.CrossRefGoogle ScholarPubMed
Compton, E. L. R.; Misdell, J. A., Bacterial ion channels. EcoSalPlus 2010, 4 (1).CrossRefGoogle ScholarPubMed
Lemon, K. P.; Grossman, A. D., Localization of bacterial DNA polymerase: Evidence for a factory model of replication. Science 1998, 282, 15161519.CrossRefGoogle ScholarPubMed
Endesfelder, U.; Finan, J.; Holden, S. J.; Cook, P. R.; Kapanidis, A. N., Multiscale spatial organization of RNA polymerase in Escherichia coli. Biophysical Journal 2013, 105 (1), 172181.CrossRefGoogle ScholarPubMed
Wiedenheft, B.; Sternberg, S. H.; Doudna, J. A., RNA-guided genetic silencing systems in bacteria and archaea. Nature 2012, 482 (7385), 331338.CrossRefGoogle ScholarPubMed
Horvath, P.; Barrangou, R., CRISPR/Cas, the immune system of bacteria and archaea. Science 2010, 327 (5962), 167170.CrossRefGoogle ScholarPubMed
Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D. A.; Horvath, P., CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315 (5819), 17091712.CrossRefGoogle ScholarPubMed
Cong, L.; et al., Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339 (6121), 819823.CrossRefGoogle ScholarPubMed
Marraffini, L. A.; Sontheimer, E. J., CRISPR interference limits horizontal gene transfer in Staphylococci by targeting DNA. Science 2008, 322 (5909), 18431845.CrossRefGoogle ScholarPubMed
Hyman, P.; Abedon, S. T., Bacteriophage host range and bacterial resistance. Advances in Applied Microbiology 2010, 70, 217248.CrossRefGoogle ScholarPubMed
Green, E. R.; Mecsas, J., Bacterial secretion systems: An overview. In Virulence Mechanisms of Bacterial Pathogens, Kudva, I. T. et al., Eds. American Society for Microbiology: 2016; pp. 119.Google Scholar
Galan, J. E.; Waksman, G., Protein-injection machines in bacteria. Cell 2018, 172 (6), 13061318.CrossRefGoogle ScholarPubMed
Galan, J. E.; Collmer, A., Type III secretion machines: Bacterial devices for protein delivery into host cells. Science 1999, 284 (5418), 13221328.CrossRefGoogle ScholarPubMed
Enninga, J.; Mounier, J.; Sansonetti, P.; van Nhein, G. T., Secretion of type III effectors into host cells in real time. Nature Methods 2005, 2 (12), 959965.CrossRefGoogle ScholarPubMed
van Engelenburg, S. B.; Palmer, A. E., Imaging type-III secretion reveals dynamics and spatial segregation of Salmonella effectors. Nature Methods 2010, 7 (4), 325330.CrossRefGoogle ScholarPubMed
Locher, K. P.; Lee, A. T.; Rees, D. C., The E. coli BtuCD structure: A framework for ABC transporter architecture and mechanism. Science 2002, 296 (5570), 10911098.CrossRefGoogle Scholar
Woese, C. R.; Kandler, O.; Wheelis, M. L., Towards a natural system of organisms: Proposal for the domains archaea, bacteria, and eucarya. Proceedings of the National Academy of Sciences of the United States of America 1990, 87 (12), 45764579.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Molecular Machines
  • Thomas Andrew Waigh, University of Manchester
  • Book: The Physics of Bacteria
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009313506.022
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Molecular Machines
  • Thomas Andrew Waigh, University of Manchester
  • Book: The Physics of Bacteria
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009313506.022
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Molecular Machines
  • Thomas Andrew Waigh, University of Manchester
  • Book: The Physics of Bacteria
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009313506.022
Available formats
×