Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T02:34:19.619Z Has data issue: false hasContentIssue false

13 - Composition of Solar System Small Bodies

from Part Three - Asteroids as Records of Formation and Differentiation

Published online by Cambridge University Press:  25 February 2017

Linda T. Elkins-Tanton
Affiliation:
Arizona State University
Benjamin P. Weiss
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Planetesimals
Early Differentiation and Consequences for Planets
, pp. 269 - 297
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abell, P. A., Fernández, Y. R., Pravec, P., et al. 2005. Physical characteristics of comet Nucleus C/2001 OG108 (LONEOS). Icarus, 179, 174194.CrossRefGoogle Scholar
Abell, P. A., Vilas, F., Jarvis, K. S., et al. 2007. Mineralogical composition of (25143) Itokawa 1998 SF36 from visible and near-infrared reflectance spectroscopy: Evidence for partial melting. Meteoritics & Planetary Science, 42, 21652177.CrossRefGoogle Scholar
A’Hearn, M. F., Feaga, L. M., Keller, H. U., et al. 2012. Cometary volatiles and the origin of comets. Astrophysical Journal, 758, A29.CrossRefGoogle Scholar
Barkume, K. M., Brown, M. E., and Schaller, E. L. 2008. Near-infrared spectra of centaurs and Kuiper belt objects. Astronomical Journal, 135, 5567.CrossRefGoogle Scholar
Barucci, M. A., Cruikshank, D. P., Dotto, E., et al. 2005. Is Sedna another Triton? Astronomy & Astrophysics, 439, L1L4.CrossRefGoogle Scholar
Barucci, M. A., Merlin, F., Guilbert, A., et al. 2008a. Surface composition and temperature of the TNO Orcus. Astron. Astrophys., 479, L13L16.CrossRefGoogle Scholar
Barucci, M. A., Brown, M. E., Emery, J. P., and Merlin, F. 2008b. Composition and surface properties of trans-neptunian objects and centaurs. In The Solar System Beyond Neptune, ed. Barucci, M. A., Boehnhardt, H., Cruikshank, D. P., and Morbidelli, A.. Tucson, AZ: University of Arizona Press, 143160.Google Scholar
Barucci, M.A., Alvarez-Candal, A., Merlin, F., et al. 2011. New insights on ices in centaur and transneptunian populations. Icarus, 214, 297307.CrossRefGoogle Scholar
Bell, J. F. 1988. A probable asteroidal parent body for the CV or CO chondrites (abstract). Meteoritics, 23, 256257.Google Scholar
Bennett, C. J., Jamieson, C. S., Osamura, Y., and Kaiser, R. I. 2006. Laboratory studies on the irradiation of methane in interstellar, cometary, and solar system ices. Astrophysical Journal, 653, 792811.CrossRefGoogle Scholar
Binzel, R. P., Xu, S., Bus, S. J., et al. 1993. Discovery of a main-belt asteroid resembling ordinary chondrite meteorites. Science, 262, 15411543.CrossRefGoogle ScholarPubMed
Bockelée-Morvan, D., Crovisier, J., Mumma, M. J., Weaver, H. A. 2004. The composition of cometary volatiles. In Comets II, ed. Festou, M. C., Keller, H. U., and Weaver, H. A.. Tucson, AZ: University of Arizona Press. Tucson, 391423.CrossRefGoogle Scholar
Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P. 2002. An overview of the asteroids: The Asteroids III perspective. In Asteroids III, ed. Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P.. Tucson, AZ: University of Arizona Press. Tucson, 315.CrossRefGoogle Scholar
Bottke, W. F., Nesvorny, D., Grimm, R. E., Morbidelli, A., and O’Brien, D. P. 2006. Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature, 439, 821824.CrossRefGoogle ScholarPubMed
Bottke, W. F., Vokrouhlický, D., Minton, D., et al. 2012. An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature, 485, 7881.CrossRefGoogle ScholarPubMed
Brown, M. E. 2000. Near-infrared spectroscopy of Centaurs and irregular satellites. The Astronomical Journal, 119, 977983.CrossRefGoogle Scholar
Brown, M. E. 2012. The compositions of Kuiper belt objects. Annual Review of Earth and Planetary Sciences, 40, 467494.CrossRefGoogle Scholar
Brown, M. E. 2013. The density of mid-sized Kuiper belt object 2002 UX25 and the formation of the dwarf planets. Astrophysical Journal Letters, 778, L34.CrossRefGoogle Scholar
Brown, M. E. and Rhoden, A. R. 2014. The 3 μm spectrum of Jupiter’s irregular satellite Himalia. Astrophysical Journal Letters, 793, L44.CrossRefGoogle Scholar
Brown, M. E., Trujillo, C. A., and Rabinowitz, D. L. 2005. Discovery of a planetary-sized object in the scattered Kuiper belt. Astrophysical Journal Letters, 635, L97L100.CrossRefGoogle Scholar
Brown, M. E., Barkume, K. M., Ragozzine, D., and Schaller, E. L. 2007. A collisional family of icy objects in the Kuiper belt. Nature, 446, 294296.CrossRefGoogle ScholarPubMed
Brown, M. E., Schaller, E. L., and Fraser, W. C. 2011. A Hypothesis for the color diversity of the Kuiper belt. Astrophysical Journal Letters, 739, L60.CrossRefGoogle Scholar
Brown, M. E., Schaller, E. L., and Fraser, W. C. 2012. Water ice in the Kuiper belt. Astronomical Journal, 143, 7 pp.CrossRefGoogle Scholar
Brownlee, D., Tsou, P., Aléon, J., et al. 2006. Comet 81P/Wild 2 under a microscope. Science, 314, 17111716.CrossRefGoogle ScholarPubMed
Brunetto, R., Romano, F., Blanco, A., et al. 2006. Space weathering of silicates simulated by nanosecond pulse UV excimer laser. Icarus, 180, 546554.CrossRefGoogle Scholar
Burbine, T. H. 1998. Could G-class asteroids be the parent bodies of the CM chondrites? Meteoritics & Planetary Science, 33, 253258.CrossRefGoogle Scholar
Burbine, T. H. 2014. Asteroids. Planets, asteroids, comets and the solar system. In Treatise on Geochemistry, 2nd edn, ed. Davis, A. M.. Amsterdam: Elsevier, 365415.CrossRefGoogle Scholar
Burbine, T. H. and O’Brien, K. M. 2004. Determining the possible building blocks of the Earth and Mars. Meteoritics & Planetary Science, 39, 667681.CrossRefGoogle Scholar
Burbine, T. H., Gaffey, M. J., and Bell, J. F. 1992. S-asteroids 387 Aquitania and 980 Anacostia: Possible fragments of the breakup of a spinel-bearing parent body with CO3/CV3 affinities. Meteoritics, 27, 424434.CrossRefGoogle Scholar
Burbine, T. H., Meibom, A., and Binzel, R. P. 1996. Mantle material in the main belt: Battered to bits? Meteoritics & Planetary Science, 31, 607620.CrossRefGoogle Scholar
Burbine, T. H., Binzel, R. P., Bus, S. J., and Clark, B. E. 2001. K asteroids and CO3/CV3 chondrites. Meteoritics & Planetary Science, 36, 245253.CrossRefGoogle Scholar
Burbine, T. H., McCoy, T. J., Meibom, A., et al. 2002a. Meteoritic parent bodies: Their number and identification. In Asteroids III, ed. Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P.. Tucson, AZ: University of Arizona Press, 653667.CrossRefGoogle Scholar
Burbine, T. H., McCoy, T. J., Nittler, L. R., et al. 2002b. Spectra of extremely reduced assemblages: Implications for Mercury. Meteoritics & Planetary Science, 37, 12331244.CrossRefGoogle Scholar
Burbine, T. H., McCoy, T. J., Hinrichs, J. L., and Lucey, P. G. 2006. Spectral properties of angrites. Meteoritics & Planetary Science, 41, 11391145.CrossRefGoogle Scholar
Burbine, T. H., Duffard, R., Buchanan, P. C., et al. 2011. Spectroscopy of O-type asteroids. Lunar and Planetary Science Conference, 42, 1608.Google Scholar
Bus, S. J. 1999. Compositional structure in the asteroid belt: Results of a spectroscopic survey. Ph.D. thesis, Massachusetts Institute of Technology.Google Scholar
Bus, S. J. and Binzel, R. P. 2002. Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: a feature-based taxonomy. Icarus, 158, 146177.CrossRefGoogle Scholar
Campins, H. and Ryan, E. V. 1989. The identification of crystalline olivine in cometary silicates. Astrophysical Journal, 341, 10591066.CrossRefGoogle Scholar
Campins, H., Ziffer, J., Licandro, J., et al. 2006. Nuclear spectra of comet 162P/Siding Spring (2004 TU12). Astronomical Journal, 132, 13461353.CrossRefGoogle Scholar
Campins, H., Licandro, J., Pinilla-Alonso, N., et al. 2007. Nuclear spectra of comet 28P Neujmin 1. Astronomical Journal, 134, 16261633.CrossRefGoogle Scholar
Campins, H., Hargrove, K., Pinilla-Alonso, N., et al. 2010. Water ice and organics on the surface of the asteroid 24 Themis. Nature, 464, 13201321.CrossRefGoogle ScholarPubMed
Capaccioni, F., Coradini, A., Filacchione, G., et al. 2015. The organic-rich surface of comet 67P/Churyumov–Gerasimenko as seen by VIRTIS/Rosetta. Science, 347, 0628.CrossRefGoogle ScholarPubMed
Carry, B. 2012. Density of asteroids. Planetary and Space Science, 73, 98118.CrossRefGoogle Scholar
Chapman, C. R. and Salisbury, J. W. 1973. Comparisons of meteorite and asteroid spectral reflectivities. Icarus, 19, 507–22.CrossRefGoogle Scholar
Chapman, C.R. 2004. Space weathering of asteroid surfaces. Annual Review of Earth and Planetary Sciences, 32, 539567.CrossRefGoogle Scholar
Chiang, E. and Youdin, A. N. 2010. Forming planetesimals in solar and extrasolar nebulae. Annual Review of Earth and Planetary Sciences, 38, 493522.CrossRefGoogle Scholar
Ciesla, F. J. 2007. Outward transport of high-temperature materials around the midplane of the solar nebula. Science, 318, 613615.CrossRefGoogle ScholarPubMed
Ciesla, F. J., Davison, T. M., Collins, G. S., and O’Brien, D. P. 2013. Thermal consequences of impacts in the early solar system. Meteoritics & Planetary Science, 48, 25592576.CrossRefGoogle Scholar
Clark, B. E., Bus, S. J., Rivkin, A. S., et al. 2004a. Spectroscopy of X-type asteroids. Astronomical Journal, 128, 30703081.CrossRefGoogle Scholar
Clark, B. E., Bus, S. J., Rivkin, A. S., et al. 2004b. E-type asteroid spectroscopy and compositional modeling. Journal of Geophysical Research, 109, E02001.CrossRefGoogle Scholar
Clark, B. E., Ockert-Bell, M. E., Cloutis, E. A., et al. 2009. Spectroscopy of K-complex asteroids: Parent bodies of carbonaceous meteorites? Icarus, 202, 119133.CrossRefGoogle Scholar
Clark, R. N., Brown, R. H., Jaumann, R., et al. 2005. Compositional maps of Saturn’s moon Phoebe from imaging spectroscopy. Nature, 435, 6669.CrossRefGoogle ScholarPubMed
Cloutis, E. A., Gaffey, M. J., Smith, D. G. W., and Lambert, R. St. J. 1990. Reflectance spectra of “featureless” materials and the surface mineralogies of M- and E-class asteroids. Journal of Geophysical Research, 95, 281293.CrossRefGoogle Scholar
Cloutis, E. A., Binzel, R. P., Burbine, T. H., et al. 2006. Asteroid 3628 Boznemcová: Covered with angrite-like basalts? Meteoritics & Planetary Science, 41, 11471161.CrossRefGoogle Scholar
Consolmagno, G. J. and Drake, M. J. 1977. Composition and evolution of the eucrite parent body: Evidence from rare earth elements. Geochimica et Cosmochimica Acta, 41, 12711282.CrossRefGoogle Scholar
Consolmagno, G., Britt, D., and Macke, R. 2008. The significance of meteorite density and porosity. Chemie der Erde, 68, 129.CrossRefGoogle Scholar
Crovisier, J., Biver, N., Bockelée-Morvan, D., and Colom, P. 2009a. Radio observations of Jupiter-family comets. Planetary and Space Science, 57, 11621174.CrossRefGoogle Scholar
Crovisier, J., Biver, N., Bockelée-Morvan, D., et al. 2009b. The chemical diversity of comets: synergies between space exploration and ground-based radio observations. Earth, Moon, and Planets, 105, 267272.CrossRefGoogle Scholar
Cruikshank, D. P. and Hartmann, W. K. 1984. The meteorite–asteroid connection: Two olivine-rich asteroids. Science, 223, 281283.CrossRefGoogle ScholarPubMed
Cruikshank, D. P., Roush, T. L., Moore, J. M., et al. 1997. The surfaces of Pluto and Charon. In Pluto and Charon, ed. Stern, S. A. and Tholen, D. J.. Tucson, AZ: University of Arizona Press. 221267.Google Scholar
Dauphas, N. and Chaussidon, M. 2011. A Perspective from extinct radionuclides on a young stellar object: the sun and its accretion disk. Annual Review of Earth and Planetary Sciences, 39, 351386.CrossRefGoogle Scholar
De León, J., Licandro, J., Serra-Ricart, M., et al. 2010. Observations, compositional, and physical characterization of near-Earth and Mars-crosser asteroids from a spectroscopic survey. Astronomy & Astrophysics, 517, A23.CrossRefGoogle Scholar
De Luise, F., Dotto, E., Fornasier, S., et al. 2010. A peculiar family of Jupiter Trojans: The Eurybates. Icarus, 209, 586590.CrossRefGoogle Scholar
DeMeo, F. E., Binzel, R. P., Slivan, S. M., and Bus, S. J. 2009. An extension of the Bus asteroid taxonomy into the near-infrared. Icarus, 202, 160180.CrossRefGoogle Scholar
DeMeo, F. E. and Carry, B. 2013. The taxonomic distribution of asteroids from multi-filter all sky photometric surveys. Icarus, 226, 723741.CrossRefGoogle Scholar
DeMeo, F. E. and Carry, B. 2014. Solar system evolution from compositional mapping of the asteroid belt. Nature, 505, 629634.CrossRefGoogle ScholarPubMed
Dumas, C., Owen, T., and Barucci, M. A. 1998. Near-infrared spectroscopy of low-albedo surfaces of the solar system: search for the spectral signature of dark material. Icarus, 133, 221232.CrossRefGoogle Scholar
Dunn, T. L., Burbine, T. H., Bottke, W. F., and Clark, J. P. 2013. Mineralogies and source regions of near-Earth asteroids. Icarus, 222, 273282.CrossRefGoogle Scholar
Emery, J. P. and Brown, R. H. 2003. Constraints on the surface composition of Trojan asteroids from near-infrared (0.8–4.0 μm) spectroscopy. Icarus, 164, 104121.CrossRefGoogle Scholar
Emery, J.P., Cruikshank, D.P., and van Cleve, J. 2006. Thermal emission spectroscopy (5.2–38 μm) of three Trojan asteroids with the Spitzer Space Telescope: Detection of fine-grained silicates. Icarus, 182, 496512.CrossRefGoogle Scholar
Emery, J. P., Burr, D. M., and Cruikshank, D. P. 2011. Near-infrared spectroscopy of Trojan asteroids: Evidence for two compositional groups. Astronomical Journal, 141, 25.CrossRefGoogle Scholar
Emery, J. P., Marzari, F. Morbidelli, A., French, L. A., and Grav, T. 2015. The complex history of Trojan asteroids. In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 203220.Google Scholar
Gaffey, M. J., Bell, J. F., and Cruikshank, D. P. 1989. Reflectance spectroscopy and asteroid surface mineralogy. In Asteroids II, ed. Binzel, R. P., Gehrels, T., and Matthews, M. F.. Tucson, AZ: University of Arizona Press, 98127.Google Scholar
Gaffey, M. J., Bell, J. F., Brown, R. H., et al. 1993. Mineralogic variations within the S-type asteroid class. Icarus, 106, 573602.CrossRefGoogle Scholar
Gomes, R., Levison, H.F., Tsiganis, K., and Morbidelli, A. 2005. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435, 466469.CrossRefGoogle ScholarPubMed
Gradie, J., and Tedesco, E. 1982. Compositional structure of the asteroid belt. Science, 216, 14051407.CrossRefGoogle ScholarPubMed
Grav, T., Holman, M. J., Gladman, B. J., and Aksnes, K. 2003. Photometric survey of the irregular satellites. Icarus, 166, 3345.CrossRefGoogle Scholar
Grav, T. & Holman, M. J. 2004. Near-infrared photometry of the irregular satellites of Jupiter and Saturn. Astrophysical Journal, 605, L141L144.CrossRefGoogle Scholar
Hanner, M. S., Lynch, D. K., & Russell, R. W. 1994. The 8–13 micron spectra of comets and the composition of silicate grains. Astrophysical Journal, 425, 274285.CrossRefGoogle Scholar
Hanner, M. S., Gehrz, R. D., Harker, D. E., et al. 1997. Thermal emission from the dust coma of comet Hale–Bopp and the composition of the silicate grains. Earth Moon and Planets, 79, 247264.CrossRefGoogle Scholar
Harker, D. E., Woodward, C. E., Kelley, M. S., et al. 2011. Mid-infrared spectrophotometric observations of fragments B and C of comet 73P/Schwassmann–Wachmann 3. Astronomical Journal, 141, 26.CrossRefGoogle Scholar
Hayward, T. L., Hanner, M. S., and Sekanina, Z. 2000. Thermal infrared imaging and spectroscopy of comet Hale–Bopp (C/1995 O1). Astrophysical Journal, 538, 428455.CrossRefGoogle Scholar
Hiroi, T., Pieters, C. M., Zolensky, M. E., and Lipschutz, M. E. 1993. Evidence of thermal metamorphism on the C, G, B, and F asteroids. Science, 261, 10161018.CrossRefGoogle Scholar
Hiroi, T. and Sasaki, S. 2001. Importance of space weathering simulation products in compositional modeling of asteroids: 349 Dembowska and 446 Aeternitas as examples. Meteoritics & Planetary Science, 36, 15871596.CrossRefGoogle Scholar
Hsieh, H. H. and Jewitt, D. A. 2006. Population of comets in the main asteroid belt. Science, 312, 561563.CrossRefGoogle ScholarPubMed
Hutchison, R. 2004. Meteorites: A Petrologic, Chemical and Isotopic Synthesis. Cambridge: Cambridge University Press.Google Scholar
Javoy, M., Kaminski, E., Guyot, F., et al. 2010. The chemical composition of the Earth: Enstatite chondrite models. Earth and Planetary Science Letters, 293, 259268.CrossRefGoogle Scholar
Jewitt, D. (2012). The active asteroids. Astronomical Journal, 143, 66.CrossRefGoogle Scholar
Johansen, A., Oishi, J. S., Mac Low, M.-M., et al. 2007. Rapid planetesimal formation in turbulent circumstellar disks. Nature, 448, 10221025.CrossRefGoogle ScholarPubMed
Johansen, A., Klahr, H., and Henning, Th. 2011. High-resolution simulations of planetesimal formation in turbulent protoplanetary discs. Astronomy & Astrophysics, 529, A62.CrossRefGoogle Scholar
Johansen, A., Youdin, A. N., and Lithwick, Y. 2012. Adding particle collisions to the formation of asteroids and Kuiper belt objects via streaming instabilities. Astronomy & Astrophysics, 537, A125.CrossRefGoogle Scholar
Kelley, M. S. and Gaffey, M. J. 2002. High-albedo asteroid 434 Hungaria: Spectrum, composition and genetic connections. Meteoritics & Planetary Science, 37, 18151827.CrossRefGoogle Scholar
Kelley, M. S. and Wooden, D. H. 2009. The composition of dust in Jupiter-family comets inferred from infrared spectroscopy. Planetary and Space Science, 57, 11331145.CrossRefGoogle Scholar
Küppers, M., O’Rourke, L., Bockelée-Morvan, D., Zakharov, V., Lee, S., et al. 2014. Localized sources of water vapour on the dwarf planet (1) Ceres. Nature, 505, 525527.CrossRefGoogle ScholarPubMed
Levison, H., Bottke, W.F., Gounelle, M., et al. 2009. Contamination of the asteroid belt by primordial trans-neptunian objects. Nature, 460, 364366.CrossRefGoogle ScholarPubMed
Licandro, J., Pinilla-Alonso, N., Pedani, M., et al. 2006. The methane ice rich surface of large TNO 2005 FY9: A Pluto-twin in the trans-neptunian belt? Astronomy & Astrophysics, 445, L35L38.CrossRefGoogle Scholar
Lisse, C. M., VanCleve, J., Adams, A. C., et al. 2006. Spitzer spectral observations of the deep impact ejecta. Science, 313, 635640.CrossRefGoogle ScholarPubMed
Lynch, D. K., Russell, R. W., and Sitko, M. L. 2002. 3- to 14-μm spectroscopy of comet C/1999 T1 (McNaught–Hartley). Icarus, 159, 234238.CrossRefGoogle Scholar
Marchi, S., Brunetto, R., Magrin, S., et al. 2005. Space weathering of near-Earth and main belt silicate-rich asteroids: Observations and ion irradiation experiments. Astronomy & Astrophysics, 443, 769775.CrossRefGoogle Scholar
Marchis, F., Hestroffer, D., Descamps, P., et al. 2006. A low density of 0.8 g cm–3 for the Trojan binary asteroid 617 Patroclus. Nature, 439, 565567.CrossRefGoogle ScholarPubMed
Marchis, F., Enriquez, J. E., Emery, J. P., et al. 2012. Multiple asteroid systems: Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations. Icarus, 221, 11301161.CrossRefGoogle Scholar
Marchis, F., Durech, J., Castillo-Rogez, J., et al. 2014. The puzzling mutual orbit of the binary Trojan asteroid (624) Hektor. Astrophysical Journal Letters, 783, L37.CrossRefGoogle Scholar
Marsset, M., Vernazza, P., Gourgeot, F., et al. 2014. Similar origin for low- and high-albedo Jovian trojans and Hilda asteroids? Astronomy & Astrophysics, 568, L7.CrossRefGoogle Scholar
Merlin, F., Barucci, M.A., de Bergh, C., et al. 2010a. Chemical and physical properties of the variegated Pluto and Charon surfaces. Icarus, 210, 930943.CrossRefGoogle Scholar
Morbidelli, A., Levison, H. F., Tsiganis, K., and Gomes, R. 2005. Chaotic capture of Jupiter’s Trojan asteroids in the early solar system. Nature, 435, 462465.CrossRefGoogle ScholarPubMed
Morbidelli, A., Levison, H. F., and Gomes, R. 2008. The dynamical structure of the Kuiper belt and its primordial origin. In The Solar System Beyond Neptune, ed. Barucci, M. A., Boehnhardt, H., Cruikshank, D. P., and Morbidelli, A.. Tucson, AZ: University of Arizona Press, 275292.Google Scholar
Morbidelli, A., Bottke, W. F., Nesvorny, D., and Levison, H. F. 2009. Asteroids were born big. Icarus, 204, 558573.CrossRefGoogle Scholar
Mueller, M., Marchis, F., Emery, J.P., et al. 2010. Eclipsing binary Trojan asteroid Patroclus: Thermal inertia from Spitzer observations. Icarus, 205, 505515.CrossRefGoogle Scholar
Mumma, M. J. and Charnley, S. B. 2011. The chemical composition of comets: Emerging taxonomies and natal heritage. Annual Review of Astronomy & Astrophysics, 49, 471524.CrossRefGoogle Scholar
Nakamura, T., Noguchi, T., Tanaka, M., et al. 2011. Itokawa dust particles: A direct link between S-type asteroids and ordinary chondrites. Science, 333, 11131116.CrossRefGoogle ScholarPubMed
Nakashima, D., Kita, N. T., Ushikubo, T., et al. 2014. Oxygen three-isotope ratios of silicate particles returned from asteroid Itokawa by the Hayabusa spacecraft: A strong link with equilibrated LL chondrites. Earth and Planetary Science Letters, 379, 127136.CrossRefGoogle Scholar
Peixinho, N., Lacerda, P., and Jewitt, D. 2008. Color–Inclination relation of the classical Kuiper belt objects. Astronomical Journal, 136, 18371845.CrossRefGoogle Scholar
Peixinho, N., Delsanti, A., Guilbert-Lepoutre, A., et al. 2012. The bimodal colors of centaurs and small Kuiper belt objects. Astronomy & Astrophysics, 546, A86.CrossRefGoogle Scholar
Rivkin, A. S. 2012. The fraction of hydrated C-complex asteroids in the asteroid belt from SDSS data. Icarus, 221, 744752.CrossRefGoogle Scholar
Rivkin, A. S. and Emery, J. P. 2010. Detection of ice and organics on an asteroidal surface. Nature, 464, 13221323.CrossRefGoogle Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. 2012. Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.CrossRefGoogle ScholarPubMed
Sasaki, S., Nakamura, K., Hamabe, Y., et al. 2001. Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering. Nature, 410, 555557.CrossRefGoogle Scholar
Schaller, E. L. and Brown, M. E. 2007a. Detection of methane on Kuiper belt object (50000) Quaoar. Astrophysical Journal Letters, 670, L49L51.CrossRefGoogle Scholar
Schaller, E. L. and Brown, M. E. 2007b. Volatile loss and retention on Kuiper belt objects. Astrophysical Journal Letters, 659, L61L64.CrossRefGoogle Scholar
Shepard, M. K., Taylor, P. A., Nolan, M. C., et al. 2015. A radar survey of M- and X-class asteroids. III. Insights into their composition, hydration state, and structure. Icarus, 245, 3855.CrossRefGoogle Scholar
Sheppard, S. S. and Trujillo, C. A. 2006. A thick cloud of Neptune Trojans and their colors. Science, 313, 511514.CrossRefGoogle ScholarPubMed
Sierks, H., Lamy, P., Barbieri, C., et al. 2011. Images of asteroid 21 Lutetia: A remnant planetesimal from the early solar system. Science, 334, 487490.CrossRefGoogle ScholarPubMed
Sierks, H., Barbieri, C., Lamy, P., et al. 2015. On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko. Science, 347, aaa1044.CrossRefGoogle ScholarPubMed
Sitko, M. L., Lynch, D. K., Russell, R. W., and Hanner, M. S. 2004. 3–14 Micron spectroscopy of comets C/2002 O4 (Honig), C/2002 V1 (NEAT), C/2002 X5 (Kudo–Fujikawa), C/2002 Y1 (Juels–Holvorcem), and 69P/Taylor and the relationships among grain temperature, silicate band strength, and structure among comet families. Astrophysical Journal, 612, 576587.CrossRefGoogle Scholar
Strazzulla, G., Dotto, E., Binzel, R., et al. 2005. Spectral alteration of the meteorite Epinal (H5) induced by heavy ion irradiation: A simulation of space weathering effects on near-Earth asteroids. Icarus, 174, 3135.CrossRefGoogle Scholar
Sunshine, J. M., Bus, S. J., McCoy, T. J., et al. 2004. High calcium pyroxene as an indicator of igneous differentiation in asteroids and meteorites. Meteoritics & Planetary Science, 39, 13431357.CrossRefGoogle Scholar
Sunshine, J. M., Bus, S. J., Corrigan, C. M., et al. 2007. Olivine-dominated asteroids and meteorites: Distinguishing nebular and igneous histories. Meteoritics & Planetary Science, 42, 155170.CrossRefGoogle Scholar
Sunshine, J. M., Connolly, H. C., McCoy, T. J., et al. 2008. Ancient asteroids enriched in refractory inclusions. Science, 320, 514516.CrossRefGoogle ScholarPubMed
Takir, D. and Emery, J. P. 2012. Outer main belt asteroids: Identification and distribution of four 3-μm spectral groups. Icarus, 219, 641654.CrossRefGoogle Scholar
Tegler, S.C., Grundy, W.M., Vilas, F., et al. 2008. Evidence of N2-ice on the surface of the icy dwarf Planet 136472 (2005 FY9). Icarus, 195, 844850.CrossRefGoogle Scholar
Thomas, P. C. 2010. Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission. Icarus, 208, 395401.CrossRefGoogle Scholar
Tsiganis, K., Gomes, R., Morbidelli, A., and Levison, H. F. 2005. Origin of the orbital architecture of the giant planets of the solar system. Nature, 435, 459461.CrossRefGoogle Scholar
Tsuchiyama, A., Uesugi, M., Uesugi, K., et al. 2014. Three-dimensional microstructure of samples recovered from asteroid 25143 Itokawa: Comparison with LL5 and LL6 chondrite particles. Meteoritics & Planetary Science, 49, 172187.CrossRefGoogle Scholar
Vernazza, P., Binzel, R. P., Thomas, C. A., et al. 2008. Compositional differences between meteorites and near-Earth asteroids. Nature, 454, 858860.CrossRefGoogle ScholarPubMed
Vernazza, P., Binzel, R. P., Rossi, A., Fulchignoni, M., and Birlan, M. 2009a. Solar wind as the origin of rapid weathering of asteroid surfaces. Nature, 458, 993995.CrossRefGoogle ScholarPubMed
Vernazza, P., Brunetto, R., Binzel, , et al. 2009b. Plausible parent bodies for enstatite chondrites and mesosiderites: Implications for Lutetia’s fly-by. Icarus, 202, 477486.CrossRefGoogle Scholar
Vernazza, P., Lamy, P., et al. 2011. Asteroid (21) Lutetia as a remnant of Earth’s precursor planetesimals. Icarus, 216, 650659.CrossRefGoogle Scholar
Vernazza, P., Delbo, M., King, P. L., et al. 2012. High surface porosity as the origin of emissivity features in asteroid spectra. Icarus, 221, 11621172.CrossRefGoogle Scholar
Vernazza, P., Zanda, B., Binzel, R. P., et al. 2014. Multiple and fast: The Accretion of ordinary chondrite parent bodies. Astrophysical Journal, 791, L22.CrossRefGoogle Scholar
Vernazza, P., Zanda, B., Nakamura, T., et al. 2015a. The formation and evolution of ordinary chondrite parent bodies. In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 618634.Google Scholar
Vernazza, P., Marsset, B., Beck, P. et al. 2015b. Interplanetary dust particles as samples of icy asteroids. Astrophysical Journal, 806, 204.CrossRefGoogle Scholar
Vilas, F., Lederer, S. M., Gill, S. L., et al. 2006. Aqueous alteration affecting the irregular outer planets satellites: Evidence from spectral reflectance. Icarus, 180, 453463.CrossRefGoogle Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., and Mandell, A. M. 2011. A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209.CrossRefGoogle ScholarPubMed
Weiss, B. P. and Elkins-Tanton, L. T. 2013. Differentiated planetesimals and the parent bodies of chondrites. Annual Review of Earth and Planetary Sciences, 41, 529560.CrossRefGoogle Scholar
Westphal, A. J., Fakra, S. C., Gainsforth, Z., et al. 2009. Mixing fraction of inner solar system material in comet 81P/Wild2. Astrophysical Journal, 694, 1828.CrossRefGoogle Scholar
Wooden, D. H., Woodward, C. E., and Harker, D. E. 2004. Discovery of crystalline silicates in comet C/2001 Q4 (NEAT). Astrophysical Journal Letters, 612, L77L80.CrossRefGoogle Scholar
Wooden, D. H. 2008. Cometary refractory grains: interstellar and nebular sources. Space Science Reviews, 138, 75108.CrossRefGoogle Scholar
Woodward, C. E., Jones, T. J., Brown, B., et al. 2011. Dust in comet C/2007 N3 (Lulin). Astronomical Journal, 141, A181.CrossRefGoogle Scholar
Yang, B., Lucey, P., and Glotch, T. 2013. Are large Trojan asteroids salty? An observational, theoretical, and experimental study. Icarus, 223, 359366.CrossRefGoogle Scholar
Youdin, A. N. 2011. On the formation of planetesimals via secular gravitational instabilities with Turbulent Stirring. Astrophysical Journal, 731, 99.CrossRefGoogle Scholar
Youdin, A. N. and Goodman, J. 2005. Streaming instabilities in protoplanetary disks. Astrophysical Journal, 620, 459469.CrossRefGoogle Scholar
Yurimoto, H., Abe, K., Abe, M., et al. 2011. Oxygen isotopic compositions of asteroidal materials returned from Itokawa by the Hayabusa mission. Science, 333, 11161119.CrossRefGoogle ScholarPubMed
Zellner, B. 1975. 44 Nysa: An iron-depleted asteroid. Astrophysical Journal, 198, L45L47.CrossRefGoogle Scholar
Zellner, B., Leake, M., Williams, J.G., and Morrison, D. 1977. The E asteroids and the origin of the enstatite achondrites. Geochimica et Cosmochimica Acta, 41, 17591767.CrossRefGoogle Scholar
Zolensky, M. E., Zega, T. J., Yano, H., et al. 2006. Mineralogy and petrology of comet 81P/Wild 2 nucleus samples. Science, 314, 17351739.CrossRefGoogle Scholar
Zolensky, M. E., Nakamura-Messenger, K., Rietmeijer, F., et al. 2008. Comparing Wild 2 particles to chondrites and IDPs. Meteoritics & Planetary Science, 43, 261272.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×