Book contents
- Frontmatter
- Contents
- Preface
- Part I Point Processes
- Part II Optimal Control in Discrete Time
- Part III Optimal Control in Continuous Time
- Part IV Non-Linear Filtering Theory
- Part V Applications in Financial Economics
- 16 Basic Arbitrage Theory
- 17 Poisson-Driven Stock Prices
- 18 The Simplest Jump-Diffusion Model
- 19 A General Jump-Diffusion Model
- 20 The Merton Model
- 21 Determining a Unique Q
- 22 Good-Deal Bounds
- 23 Diversifiable Risk
- 24 Credit Risk and Cox Processes
- 25 Interest-Rate Theory
- 26 Equilibrium Theory
- References
- Index of Symbols
- Subject Index
25 - Interest-Rate Theory
from Part V - Applications in Financial Economics
Published online by Cambridge University Press: 27 May 2021
- Frontmatter
- Contents
- Preface
- Part I Point Processes
- Part II Optimal Control in Discrete Time
- Part III Optimal Control in Continuous Time
- Part IV Non-Linear Filtering Theory
- Part V Applications in Financial Economics
- 16 Basic Arbitrage Theory
- 17 Poisson-Driven Stock Prices
- 18 The Simplest Jump-Diffusion Model
- 19 A General Jump-Diffusion Model
- 20 The Merton Model
- 21 Determining a Unique Q
- 22 Good-Deal Bounds
- 23 Diversifiable Risk
- 24 Credit Risk and Cox Processes
- 25 Interest-Rate Theory
- 26 Equilibrium Theory
- References
- Index of Symbols
- Subject Index
Summary
This chapter studies interest theory within a jump–diffusion framework. We start by studying short-rate models and affine term structures. We then go on to forward-rate models of HJM type, and for these models we derive the relevant HJM drift condition, guaranteeing the existence of a martingale measure. We also briefly discuss infinite-dimensional SDEs and the Musiela parameterization of the forward-rate curve.
Keywords
- Type
- Chapter
- Information
- Point Processes and Jump DiffusionsAn Introduction with Finance Applications, pp. 265 - 283Publisher: Cambridge University PressPrint publication year: 2021