Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T17:31:24.346Z Has data issue: false hasContentIssue false

7 - Domain construction

from PART II - OPERATIONS AND CONSTRUCTIONS

Published online by Cambridge University Press:  05 May 2013

Gunther Schmidt
Affiliation:
Universität der Bundeswehr München
Get access

Summary

It has been shown in Chapters 2 and 3 how moderately sized sets (termed basesets when we want to stress that they are linearly ordered, non-empty, and finite), elements, vectors, and relations can be represented. There is a tendency to try to extend these techniques indiscriminately to all finite situations. We do not follow this trend. Instead, sets, elements, vectors, or relations – beyond those related to ground sets – will carefully be constructed, in particular if they are ‘larger’. Only a few generic techniques are necessary. They are presented here in detail as appropriate.

These techniques are far from being new. We have routinely applied them in an informal way since our school days. What is new in the approach chosen here is that we begin to take these techniques seriously: pair forming, if–then–else–fi–handling of variants, quotient forming, etc. For pairs, we routinely look for the first and second components; when a set is considered modulo an equivalence, we work with the corresponding equivalence classes and obey carefully the rule that our results should not depend on the specific representative chosen, etc.

What has been indicated here, however, requires a more detailed language to be expressed. This in turn means that a distinction between language and interpretation is suddenly important, which one would like to abstract from when handling relations ‘directly’. It turns out that only one or two generically defined relations are necessary for each construction step with quite simple and intuitive algebraic properties.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Domain construction
  • Gunther Schmidt, Universität der Bundeswehr München
  • Book: Relational Mathematics
  • Online publication: 05 May 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511778810.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Domain construction
  • Gunther Schmidt, Universität der Bundeswehr München
  • Book: Relational Mathematics
  • Online publication: 05 May 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511778810.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Domain construction
  • Gunther Schmidt, Universität der Bundeswehr München
  • Book: Relational Mathematics
  • Online publication: 05 May 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511778810.011
Available formats
×