Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T19:38:53.620Z Has data issue: false hasContentIssue false

5 - Exponential families and tilted distributions

Published online by Cambridge University Press:  25 February 2010

Ronald W. Butler
Affiliation:
Colorado State University
Get access

Summary

Exponential families provide the context for many practical applications of saddlepoint methods including those using generalized linear models with canonical links. More traditional exponential family applications are considered in this chapter and some generalized linear models are presented in chapter 6. All these settings have canonical sufficient statistics whose joint distribution is conveniently approximated using saddlepoint methods. Such approximate distributions become especially important in this context because statistical methods are almost always based on these sufficient statistics. Furthermore, these distributions are most often intractable by other means when considered to the degree of accuracy that may be achieved when using saddlepoint approximations. Thus, in terms of accuracy, both in this context and in the many others previously discussed, saddlepoint methods are largely unrivaled by all other analytical approximations.

The subclass of regular exponential families of distributions was introduced in section 2.4.5 by “tilting” a distribution whose MGF converges in the “regular” sense. Tilting combined with Edgeworth expansions provide the techniques for an alternative derivation of saddlepoint densities that is presented in this chapter. This alternative approach also gives further understanding as to why the saddlepoint density achieves its remarkable accuracy. Both unconditional and conditional saddlepoint approximations are considered for the canonical sufficient statistics in a regular exponential family. The computation of p-values for various likelihood ratio tests and the determination of some uniformly most powerful unbiased tests are some of the practical examples that are considered.

Regular exponential families

Definitions and examples

Let z be the data and denote Z as the random variable for the data before observation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×