Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T20:00:28.284Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  04 August 2010

J. A. H. Futterman
Affiliation:
Lawrence Livermore National Laboratory, California
Get access

Summary

Motivation, context and scope

When a physicist thinks of black holes, he may think of one of two substantially different concepts. There is the astrophysical black hole, and there is the black hole of the mathematical model.

Black holes as astronomical objects are the remnants of dead stars, or perhaps one of the remnants of the inhomogeneity spectrum of the early universe. Their detection as astronomical objects has so far only been by indirect means, by observations interpreted via the astrophysicists’ models. The plausible astronomical existence of black holes as X-ray sources, of black holes as the engine of quasi-stellar objects (QSO), of black holes contributing to the mass of the universe as hidden matter, makes them more interesting and more frustrating than one would expect from the mathematical description of a black hole in asymptotically flat space.

The mathematically defined black hole is the picture of simplicity. It depends only on three parameters: mass, angular momentum and charge (Schwarzschild, 1916; Reissner, 1916; Nordstrøm, 1918; Kerr, 1963, Newman et al., 1965. In this work we will largely ignore charged black holes.) It is the ultimate abstraction of a physically gravitating body. One is spared the complexity of describing matter degrees of freedom, and can concentrate on the behavior of the gravitational modes.

This work treats mathematical black holes. We consider scattering of massless waves by black holes embedded in asymptotically flat spacetime. Because of the simplicity of the problem, it is to a large extent explicitly soluble; and where explicit analytic solutions are not possible, a variety of qualitative methods can be applied.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×