Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T06:33:15.764Z Has data issue: false hasContentIssue false

Chapter 5 - Pharmacogenomics and Psychopharmacology

from Part 1 - Basic Science and General Principles

Published online by Cambridge University Press:  29 May 2020

Peter M. Haddad
Affiliation:
Hamad Medical Corporation, Qatar
David J. Nutt
Affiliation:
Centre for Neuropsychopharmacology, Division of Psychiatry, Department of Brain Sciences, Imperial College London
Get access

Summary

While genome-wide association analysis and related multi-omic strategies have in recent years dominated the field of complex disorders including mental health and addictions, in pharmacogenomics, drug metabolizing enzymes show Mendelian patterns of inheritance with correspondingly large effect sizes. Consistent with this, genes encoding these enzymes make up the majority of the genes for which the strength of the association with clinical effect of psychiatric medications is sufficient to recommend clinical utility (Bousman et al., 2018). Moreover, such enzymes are expressed in the brain (Aitchison et al., 2010; Kalow & Tyndale, 1992). We herein provide a comprehensive review of the relevance of drug metabolizing enzyme and transporter genes to mental health and addictions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abernethy, DR, Todd, EL (1985). Impairment of caffeine clearance by chronic use of low-dose oestrogen-containing oral contraceptives. Eur J Clin Pharmacol, 28(4), 425428.Google Scholar
Adali, O, Carver, GC, Philpot, RM (1998). Modulation of human flavin-containing monooxygenase 3 activity by tricyclic antidepressants and other agents: importance of residue 428. Arch Biochem Biophys, 358(1), 9297. doi:10.1006/abbi.1998.0835.Google Scholar
Ahmed, I, Dagincourt, PG, Miller, LG, Shader, RI (1993). Possible interaction between fluoxetine and pimozide causing sinus bradycardia. Can J Psychiatry, 38(1), 6263.Google Scholar
Aitchison, KJ (2003). Pharmacogenetic studies of CYP2D6, CYP2C19, and CYP1A2, and investigation of their role in clinical response to antipsychotics and antidepressants. Unpublished PhD thesis, King’s College London.Google Scholar
Aitchison, KJ, Munro, J, Wright, P, et al. (1999). Failure to respond to treatment with typical antipsychotics is not associated with CYP2D6 ultrarapid hydroxylation. Br J Clin Pharmacol, 48(3), 388394.Google Scholar
Aitchison, KJ, Gonzalez, FJ, Quattrochi, LC, et al. (2000a). Identification of novel polymorphisms in the 5’ flanking region of CYP1A2, characterization of interethnic variability, and investigation of their functional significance. Pharmacogenetics, 10(8), 695704.Google Scholar
Aitchison, KJ, Jann, MW, Zhao, JH, et al. (2000b). Clozapine pharmacokinetics and pharmacodynamics studied with Cyp1A2-null mice. J Psychopharmacol, 14(4), 353359. doi:10.1177/026988110001400403.Google Scholar
Aitchison, KJ, Jordan, BD, Sharma, T (2000c). The relevance of ethnic influences on pharmacogenetics to the treatment of psychosis. Drug Metabol Drug Interact, 16(1), 1538.Google Scholar
Aitchison, KJ, Bienroth, M, Cookson, J, et al. (2009). A UK consensus on the administration of aripiprazole for the treatment of mania. J Psychopharmacol, 23(3), 231240. doi:10.1177/0269881108098820.Google Scholar
Aitchison, KJ, Datla, K, Rooprai, H, Fernando, J, Dexter, D (2010). Regional distribution of clomipramine and desmethylclomipramine in rat brain and peripheral organs on chronic clomipramine administration. J Psychopharmacol, 24(8), 12611268. doi:10.1177/0269881109105789.Google Scholar
Aklillu, E, Persson, I, Bertilsson, L, et al. (1996). Frequent distribution of ultrarapid metabolizers of debrisoquine in an Ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles. J Pharmacol Exp Ther, 278(1), 441446.Google Scholar
Aklillu, E, Kalow, W, Endrenyi, L, et al. (2007). CYP2D6 and DRD2 genes differentially impact pharmacodynamic sensitivity and time course of prolactin response to perphenazine. Pharmacogenet Genomics, 17(11), 989993. doi:10.1097/FPC.0b013e3282f01aa3.Google Scholar
Aller, SG, Yu, J, Ward, A, et al. (2009). Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science, 323(5922), 17181722. doi:10.1126/science.1168750.Google Scholar
Altman, RB, Whirl-Carrillo, M, Klein, TE (2013). Challenges in the pharmacogenomic annotation of whole genomes. Clin Pharmacol Ther, 94(2), 211213. doi:10.1038/clpt.2013.111.Google Scholar
American Psychiatric Association (2010). Practice Guideline for the Treatment of Patients with Major Depressive Disorder, 3rd ed. Available at: https://psychiatryonline.org/guidelines (last accessed 5.12.18).Google Scholar
Arici, M, Özhan, G (2017). The genetic profiles of CYP1A1, CYP1A2 and CYP2E1 enzymes as susceptibility factor in xenobiotic toxicity in Turkish population. Saudi Pharm J, 25(2), 294297. doi:10.1016/j.jsps.2016.06.001.Google Scholar
Aronow, WS, Shamliyan, TA (2018). Effects of atypical antipsychotic drugs on QT interval in patients with mental disorders. Ann Transl Med, 6(8), 147. doi:10.21037/atm.2018.03.17.Google Scholar
Asberg, M, Crönholm, B, Sjöqvist, F, Tuck, D (1971). Relationship between plasma level and therapeutic effect of nortriptyline. Br Med J, 3(5770), 331334.Google Scholar
Assenat, E, Gerbal-Chaloin, S, Larrey, D, et al. (2004). Interleukin 1beta inhibits CAR-induced expression of hepatic genes involved in drug and bilirubin clearance. Hepatology, 40(4), 951960. doi:10.1002/hep.20387.Google Scholar
Axelrod, J (1957). O-Methylation of epinephrine and other catechols in vitro and in vivo. Science, 126(3270), 400401. doi:10.1126/science.126.3270.400.Google Scholar
Ayesh, R, Mitchell, SC, Zhang, A, Smith, RL (1993). The fish odour syndrome: biochemical, familial, and clinical aspects. BMJ, 307(6905), 655657.Google Scholar
Azuma, J, Hasunuma, T, Kubo, M, et al. (2012). The relationship between clinical pharmacokinetics of aripiprazole and CYP2D6 genetic polymorphism: effects of CYP enzyme inhibition by coadministration of paroxetine or fluvoxamine. Eur J Clin Pharmacol, 68(1), 2937.Google Scholar
Bajpai, M, Roskos, LK, Shen, DD, Levy, RH (1996). Roles of cytochrome P4502C9 and cytochrome P4502C19 in the stereoselective metabolism of phenytoin to its major metabolite. Drug Metab Dispos, 24(12), 14011403.Google Scholar
Balant-Gorgia, AE, Balant, LP, Garrone, G (1989). High blood concentrations of imipramine or clomipramine and therapeutic failure: a case report study using drug monitoring data. Ther Drug Monit, 11(4), 415420.Google Scholar
Baltenberger, EP, Buterbaugh, WM, Martin, BS, Thomas, CJ (2015). Review of antidepressants in the treatment of neuropathic pain. Ment Health Clin, 5(3), 123133.Google Scholar
Baririan, N, Horsmans, Y, Desager, JP, et al. (2005). Alfentanil-induced miosis clearance as a liver CYP3A4 and 3A5 activity measure in healthy volunteers: improvement of experimental conditions. J Clin Pharmacol, 45(12), 14341441. doi:10.1177/0091270005282629.Google Scholar
Bauer, B, Hartz, AM, Fricker, G, Miller, DS (2004). Pregnane X receptor up-regulation of P-glycoprotein expression and transport function at the blood-brain barrier. Mol Pharmacol, 66(3), 413419. doi:10.1124/mol.66.3.Google Scholar
Beedham, C (1997). The role of non-P450 enzymes in drug oxidation. Pharm World Sci, 19(6), 255263.Google Scholar
Bertilsson, L (1995). Geographical/interracial differences in polymorphic drug oxidation. Current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19. Clin Pharmacokinet, 29(3), 192209. doi:10.2165/00003088-199529030-00005.Google Scholar
Bertilsson, L, Aberg-Wistedt, A (1983). The debrisoquine hydroxylation test predicts steady-state plasma levels of desipramine. Br J Clin Pharmacol, 15(3), 388390.Google Scholar
Bertilsson, L, Dahl, ML (1996). Polymorphic drug oxidation – relevance to the treatment of psychiatric disorders. CNS Drugs, 5(3), 200223. doi:10.2165/00023210–199605030–00006.Google Scholar
Bertilsson, L, Mellstrom, B, Sjokvist, F, Martenson, B, Asberg, M (1981). Slow hydroxylation of nortriptyline and concomitant poor debrisoquine hydroxylation: clinical implications. Lancet, 1(8219), 560561.Google Scholar
Bertilsson, L, Dahl, ML, Ekqvist, B, Llerena, A (1993a). Disposition of the neuroleptics perphenazine, zuclopenthixol, and haloperidol cosegregates with polymorphic debrisoquine hydroxylation. Psychopharmacol Ser, 10, 230237.Google Scholar
Bertilsson, L, Dahl, ML, Sjoqvist, F, et al. (1993b). Molecular basis for rational megaprescribing in ultrarapid hydroxylators of debrisoquine. Lancet, 341(8836), 63.Google Scholar
Bertilsson, L, Dahl, ML, Dalen, P, Al-Shurbaji, A (2002). Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol, 53(2), 111122.Google Scholar
Bhaskar, LV, Thangaraj, K, Patel, M, et al. (2013). EPHX1 gene polymorphisms in alcohol dependence and their distribution among the Indian populations. Am J Drug Alcohol Abuse, 39(1), 1622. doi:10.3109/00952990.2011.643991.Google Scholar
Bigos, KL, Bies, RR, Pollock, BG, et al. (2011). Genetic variation in CYP3A43 explains racial difference in olanzapine clearance. Mol Psychiatry, 16(6), 620625. doi:10.1038/mp.2011.38.Google Scholar
Blake, CM, Kharasch, ED, Schwab, M, Nagele, P (2013). A meta-analysis of CYP2D6 metabolizer phenotype and metoprolol pharmacokinetics. Clin Pharmacol Ther, 94(3), 394399. doi:10.1038/clpt.2013.96.Google Scholar
Bloomer, JC, Woods, FR, Haddock, RE, Lennard, MS, Tucker, GT (1992). The role of cytochrome P4502D6 in the metabolism of paroxetine by human liver microsomes. Br J Clin Pharmacol, 33(5), 521523.Google Scholar
Boland, MR, Tatonetti, NP (2016). Investigation of 7-dehydrocholesterol reductase pathway to elucidate off-target prenatal effects of pharmaceuticals: a systematic review. Pharmacogenomics J, 16(5), 411429. doi:10.1038/tpj.2016.48.Google Scholar
Boobis, AR, Lynch, AM, Murray, S, et al. (1994). CYP1A2-catalyzed conversion of dietary heterocyclic amines to their proximate carcinogens is their major route of metabolism in humans. Cancer Res, 54(1), 8994.Google Scholar
Bourin, M, Chue, P, Guillon, Y (2001). Paroxetine: a review. CNS Drug Rev, 7(1), 2547.Google Scholar
Bousman, CA, Hopwood, M (2016). Commercial pharmacogenetic-based decision-support tools in psychiatry. Lancet Psychiatry, 3(6), 585590. doi:10.1016/S2215-0366(16)00017-1.CrossRefGoogle ScholarPubMed
Bousman, C, Allen, J, Eyre, HA (2018). Pharmacogenetic tests in psychiatry. Am J Psychiatry, 175(2), 189. doi:10.1176/appi.ajp.2017.17101086.Google Scholar
Bousman, C, Maruf, AA, Muller, DJ (2019). Towards the integration of pharmacogenetics in psychiatry: a minimum, evidence-based genetic testing panel. Curr Opin Psychiatry, 32(1), 715. doi:10.1097/YCO.0000000000000465.Google Scholar
Bradford, LD (2002). CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics, 3(2), 229243. doi:10.1517/14622416.3.2.229.Google Scholar
Brøsen, K (1993). The pharmacogenetics of the selective serotonin reuptake inhibitors. Clin Investig, 71(12), 10021009.Google Scholar
Brøsen, K, Skjelbo, E, Rasmussen, BB, Poulsen, HE, Loft, S (1993). Fluvoxamine is a potent inhibitor of cytochrome P4501A2. Biochem Pharmacol, 45(6), 12111214.Google Scholar
Browning, SL, Tarekegn, A, Bekele, E, Bradman, N, Thomas, MG (2010). CYP1A2 is more variable than previously thought: a genomic biography of the gene behind the human drug-metabolizing enzyme. Pharmacogenet Genomics, 20(11), 647664. doi:10.1097/FPC.0b013e32833e90eb.Google Scholar
Bruyere, A, Decleves, X, Bouzom, F, et al. (2010). Effect of variations in the amounts of P-glycoprotein (ABCB1), BCRP (ABCG2) and CYP3A4 along the human small intestine on PBPK models for predicting intestinal first pass. Mol Pharm, 7(5), 15961607. doi:10.1021/mp100015x.Google Scholar
Bu, HZ (2006). A literature review of enzyme kinetic parameters for CYP3A4-mediated metabolic reactions of 113 drugs in human liver microsomes: structure-kinetics relationship assessment. Curr Drug Metab, 7(3), 231249.Google Scholar
Caruso, A, Bellia, C, Pivetti, A, et al. (2014). Effects of EPHX1 and CYP3A4 polymorphisms on carbamazepine metabolism in epileptic patients. Pharmgenomics Pers Med, 7, 117120. doi:10.2147/PGPM.S55548.Google Scholar
Carvajal, FJ, Inestrosa, NC (2011). Interactions of AChE with Aβ aggregates in Alzheimer’s brain: therapeutic relevance of IDN 5706. Front Mol Neurosci, 4, 19. doi:10.3389/fnmol.2011.00019.Google Scholar
Cascorbi, I (2011). P-glycoprotein: tissue distribution, substrates, and functional consequences of genetic variations. Handb Exp Pharmacol, 201, 261283. doi:10.1007/978-3-642-14541-4_6.Google Scholar
Cashman, JR, Zhang, J (2002). Interindividual differences of human flavin-containing monooxygenase 3: genetic polymorphisms and functional variation. Drug Metab Dispos, 30(10), 10431052.Google Scholar
Caspi, A, Moffitt, TE, Cannon, M, et al. (2005). Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene X environment interaction. Biol Psychiatry, 57(10), 11171127. doi:10.1016/j.biopsych.2005.01.026.Google Scholar
Caudle, KE, Klein, TE, Hoffman, JM, et al. (2014). Incorporation of pharmacogenomics into routine clinical practice: the Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline development process. Curr Drug Metab, 15(2), 209217.Google Scholar
Caudle, KE, Gammal, RS, Whirl-Carrillo, M, et al. (2016). Evidence and resources to implement pharmacogenetic knowledge for precision medicine. Am J Health Syst Pharm, 73(23), 19771985. doi:10.2146/ajhp150977.Google Scholar
Chen, J-T, Wei, L, Chen, T-L, Huang, C-J, Chen, R-M (2018). Regulation of cytochrome P450 gene expression by ketamine: a review. Expert Opin Drug Metab Toxicol, 14(7), 709720.Google Scholar
Chen, S, Chou, WH, Blouin, RA, et al. (1996). The cytochrome P450 2D6 (CYP2D6) enzyme polymorphism: screening costs and influence on clinical outcomes in psychiatry. Clin Pharmacol Ther, 60(5), 522534. doi:10.1016/S0009-9236(96)90148-4.Google Scholar
Chen, Y, Zane, NR, Thakker, DR, Wang, MZ (2016). Quantification of flavin-containing monooxygenases 1, 3, and 5 in human liver microsomes by UPLC-MRM-based targeted quantitative proteomics and its application to the study of ontogeny. Drug Metab Dispos, 44(7), 975983. doi:10.1124/dmd.115.067538.Google Scholar
Chou, WH, Yan, FX, Robbins-Weilert, DK, et al. (2003). Comparison of two CYP2D6 genotyping methods and assessment of genotype-phenotype relationships. Clin Chem, 49(4), 542551.Google Scholar
Christensen, M, Tybring, G, Mihara, K, et al. (2002). Low daily 10-mg and 20-mg doses of fluvoxamine inhibit the metabolism of both caffeine (cytochrome P4501A2) and omeprazole (cytochrome P4502C19). Clin Pharmacol Ther, 71(3), 141152. doi:10.1067/mcp.2002.121788.Google Scholar
Chung, WH, Hung, SI, Hong, HS, et al. (2004). Medical genetics: a marker for Stevens-Johnson syndrome. Nature, 428(6982), 486. doi:10.1038/428486a.Google Scholar
Coleman, T, Ellis, SW, Martin, IJ, Lennard, MS, Tucker, GT (1996). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is N-demethylated by cytochromes P450 2D6, 1A2 and 3A4 – implications for susceptibility to Parkinson’s disease. J Pharmacol Exp Ther, 277(2), 685690.Google Scholar
Coller, JK, Krebsfaenger, N, Klein, K, et al. (2002). The influence of CYP2B6, CYP2C9 and CYP2D6 genotypes on the formation of the potent antioestrogen Z-4-hydroxy-tamoxifen in human liver. Br J Clin Pharmacol, 54(2), 157167. doi:10.1046/j.1365-2125.2002.01614.x.Google Scholar
Committee on Safety of Medicines-Medicines Control Agency (1995). Cardiac arrhythmias with pimozide (Orap). Curr Probl Pharmacovigilance, 21, 1.Google Scholar
Consoli, G, Lastella, M, Ciapparelli, A, et al. (2009). ABCB1 polymorphisms are associated with clozapine plasma levels in psychotic patients. Pharmacogenomics, 10(8), 12671276. doi:10.2217/pgs.09.51.Google Scholar
Cornelis, MC, El-Sohemy, A, Kabagambe, EK, Campos, H (2006). Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA, 295(10), 11351141. doi:10.1001/jama.295.10.1135.Google Scholar
Correll, CU, Detraux, J, De Lepeleire, J, De Hert, M (2015). Effects of antipsychotics, antidepressants and mood stabilizers on risk for physical diseases in people with schizophrenia, depression and bipolar disorder. World Psychiatry, 14(2), 119136. doi:10.1002/wps.20204.Google Scholar
Crespi, CL, Penman, BW, Leakey, JAE, et al. (1990). Human cytochrome P450IIA3: cDNA sequence role of the enzyme in the metabolic activation of promutagens comparison to nitrosamine activation by human cytochrome P450IIE1. Carcinogenesis, 11(8), 12931300.Google Scholar
Crews, KR, Gaedigk, A, Dunnenberger, HM, et al; Clinical Pharmacogenetics Implementation Consortium. (2014). Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther, 95(4), 376382. doi:10.1038/clpt.2013.254.Google Scholar
Cupp, MJ, Tracy, TS (1998). Cytochrome P450: new nomenclature and clinical implications. Am Fam Physician, 57(1), 107116.Google Scholar
Cusack, B, Nelson, A, Richelson, E (1994). Binding of antidepressants to human brain receptors: focus on newer generation compounds. Psychopharmacology (Berl), 114(4), 559565.Google Scholar
Czekaj, P (2000). Phenobarbital-induced expression of cytochrome P450 genes. Acta Biochim Pol, 47(4), 10931105.Google Scholar
Czekaj, P, Skowronek, R (2012). Transcription factors potentially involved in regulation of cytochrome P450 gene expression. In Paxton, J, ed., Topics on Drug Metabolism. Croatia: InTech, pp. 171190.Google Scholar
Daci, A, Beretta, G, Vllasaliu, D, et al. (2015). Polymorphic variants of SCN1A and EPHX1 influence plasma carbamazepine concentration, metabolism and pharmacoresistance in a population of Kosovar Albanian epileptic patients. PLoS One, 10(11), e0142408. doi:10.1371/journal.pone.0142408.Google Scholar
Dahl-Puustinen, M-L, Lidén, A, Alm, C, Nordin, C, Bertilsson, L (1989). Disposition of perphenazine is related to polymorphic debrisoquin hydroxylation in human beings. Clin Pharmacol Ther, 46(1), 7881.Google Scholar
Dalen, P, Dahl, ML, Bernal Ruiz, ML, Nordin, J, Bertilsson, L (1998). 10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther, 63(4), 444452. doi:10.1016/S0009-9236(98)90040-6.Google Scholar
Dannenberg, LO, Edenberg, HJ (2006). Epigenetics of gene expression in human hepatoma cells: expression profiling the response to inhibition of DNA methylation and histone deacetylation. BMC Genomics, 7, 181. doi:10.1186/1471-2164-7-181.Google Scholar
de Andrés F, Sosa-Macías, M, Llerena, A (2014). A rapid and simple LC-MS/MS method for the simultaneous evaluation of CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 hydroxylation capacity. Bioanalysis, 6(5), 683696. doi:10.4155/bio.14.20.Google Scholar
de Klerk, OL, Nolte, IM, Bet, PM, et al. (2013). ABCB1 gene variants influence tolerance to selective serotonin reuptake inhibitors in a large sample of Dutch cases with major depressive disorder. Pharmacogenomics J, 13(4), 349353. doi:10.1038/tpj.2012.16.Google Scholar
de Leon, J (2009). The future (or lack of future) of personalized prescription in psychiatry. Pharmacol Res, 59(2), 8189. doi:10.1016/j.phrs.2008.10.002.Google Scholar
de Morais, SM, Wilkinson, GR, Blaisdell, J, et al. (1994). The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem, 269(22), 1541915422.Google Scholar
Del Tredici, AL, Malhotra, A, Dedek, M, et al. (2018). Frequency of CYP2D6 alleles including structural variants in the United States. Front Pharmacol, 9, 305. doi:10.3389/fphar.2018.00305.Google Scholar
DeLeon, A, Patel, NC, Crismon, ML (2004). Aripiprazole: a comprehensive review of its pharmacology, clinical efficacy, and tolerability. Clin Ther, 26(5), 649666.Google Scholar
Desta, Z, Kerbusch, T, Soukhova, N, et al. (1998). Identification and characterization of human cytochrome P450 isoforms interacting with pimozide. J Pharmacol Exp Ther, 285(2), 428437.Google Scholar
Desta, Z, Kerbusch, T, Flockhart, DA (1999). Effect of clarithromycin on the pharmacokinetics and pharmacodynamics of pimozide in healthy poor and extensive metabolizers of cytochrome P450 2D6 (CYP2D6). Clin Pharmacol Ther, 65(1), 1020. https://doi.org/10.1016/S0009-9236(99)70117-7.Google Scholar
Desta, Z, Zhao, X, Shin, JG, Flockhart, DA (2002). Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet, 41(12), 913958. doi:10.2165/00003088-200241120-00002.Google Scholar
Desta, Z, Saussele, T, Ward, B, et al. (2007). Impact of CYP2B6 polymorphism on hepatic efavirenz metabolism in vitro. Pharmacogenomics, 8(6), 547558. doi:10.2217/14622416.8.6.547.Google Scholar
di Iulio, J, Fayet, A, Arab-Alameddine, M, et al.; Swiss HIV Cohort Study (2009). In vivo analysis of efavirenz metabolism in individuals with impaired CYP2A6 function. Pharmacogenet Genomics, 19(4), 300309. doi:10.1097/FPC.0b013e328328d577.Google Scholar
Dobrinas, M, Cornuz, J, Oneda, B, et al. (2011). Impact of smoking, smoking cessation, and genetic polymorphisms on CYP1A2 activity and inducibility. Clin Pharmacol Ther, 90(1), 117125. doi:10.1038/clpt.2011.70.Google Scholar
Doring, B, Petzinger, E (2014). Phase 0 and phase III transport in various organs: combined concept of phases in xenobiotic transport and metabolism. Drug Metab Rev, 46(3), 261282. doi:10.3109/03602532.2014.882353.Google Scholar
Drolet, B, Rousseau, G, Daleau, P, et al. (2001). Pimozide (Orap) prolongs cardiac repolarization by blocking the rapid component of the delayed rectifier potassium current in native cardiac myocytes. J Cardiovasc Pharmacol Ther, 6(3), 255260. doi:10.1177/107424840100600306.Google Scholar
Drozda, K, Müller, DJ, Bishop, JR (2014). Pharmacogenomic testing for neuropsychiatric drugs: current status of drug labeling, guidelines for using genetic information, and test options. Pharmacotherapy, 34(2), 166184. doi:10.1002/phar.1398.Google Scholar
Eaton, DL, Gallagher, EP, Bammler, TK, Kunze, KL (1995). Role of cytochrome P4501A2 in chemical carcinogenesis: implications for human variability in expression and enzyme activity. Pharmacogenetics, 5(5), 259274.Google Scholar
Ehlert, FJ, Delen, FM, Yun, SH, Liem, HA (1990). The interaction of amitriptyline, doxepin, imipramine and their N-methyl quaternary ammonium derivatives with subtypes of muscarinic receptors in brain and heart. J Pharmacol Exp Ther, 253(1), 1319.Google Scholar
Eichelbaum, M (1984). Polymorphic drug oxidation in humans. Fed Proc, 43(8), 22982302.Google Scholar
Ekroos, M, Sjogren, T (2006). Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc Natl Acad Sci U S A, 103(37), 1368213687. doi:10.1073/pnas.0603236103.Google Scholar
El-Sherbeni, AA, El-Kadi, AO (2014). The role of epoxide hydrolases in health and disease. Arch Toxicol, 88(11), 20132032. doi:10.1007/s00204-014-1371-y.Google Scholar
Elsinga, PH, Hendrikse, NH, Bart, J, Vaalburg, W, van Waarde, A (2004). PET studies on P-glycoprotein function in the blood-brain barrier: how it affects uptake and binding of drugs within the CNS. Curr Pharm Des, 10(13), 14931503.Google Scholar
Eriksson, N, Wadelius, M (2012). Prediction of warfarin dose: why, when and how? Pharmacogenomics, 13(4), 429440. doi:10.2217/pgs.11.184.Google Scholar
Espinoza, M, Rivero Osimani, V, Sánchez, V, Rosenbaum, E, Guiñazú, N. (2016). B-esterase determination and organophosphate insecticide inhibitory effects in JEG-3 trophoblasts. Toxicol In Vitro, 32, 190197. doi:10.1016/j.tiv.2016.01.001.Google Scholar
Fabbri, C, Tansey, KE, Perlis, RH, et al. (2018). Effect of cytochrome CYP2C19 metabolizing activity on antidepressant response and side effects: meta-analysis of data from genome-wide association studies. Eur Neuropsychopharmacol, 28(8), 945954. doi:10.1016/j.euroneuro.2018.05.009.Google Scholar
Fan, WL, Shiao, MS, Hui, RC, et al. (2017). HLA association with drug-induced adverse reactions. J Immunol Res, 2017, 3186328. doi:10.1155/2017/3186328.Google Scholar
Fang, H, Xu, X, Kaur, K, et al. (2019). A screening test for HLA-B( *)15:02 in a large United States patient cohort identifies broader risk of carbamazepine-induced adverse events. Front Pharmacol 10, 149.Google Scholar
Feng, J, Sun, J, Wang, MZ, et al. (2010). Compilation of a comprehensive gene panel for systematic assessment of genes that govern an individual’s drug responses. Pharmacogenomics, 11(10), 14031425. doi:10.2217/pgs.10.99.Google Scholar
Ferrell, PB, McLeod, HL (2008). Carbamazepine, HLA-B*1502 and risk of Stevens-Johnson syndrome and toxic epidermal necrolysis: US FDA recommendations. Pharmacogenomics, 9(10), 15431546. doi:10.2217/14622416.9.10.1543.Google Scholar
Fiore, MC, Jorenby, DE, Schensky, AE, et al. (1995). Smoking status as the new vital sign: effect on assessment and intervention in patients who smoke. Mayo Clin Proc, 70(3), 209213. doi:10.1016/S0025-6196(11)64939-2.Google Scholar
Flockhart, DA, Drici, MD, Kerbusch, T, et al. (2000). Studies on the mechanism of a fatal clarithromycin-pimozide interaction in a patient with Tourette syndrome. J Clin Psychopharmacol, 20(3), 317324.Google Scholar
Foti, RS, Dalvie, DK (2016). Cytochrome P450 and non-cytochrome P450 oxidative metabolism: contributions to the pharmacokinetics, safety, and efficacy of xenobiotics. Drug Metab Dispos, 44(8), 12291245. doi:10.1124/dmd.116.071753.Google Scholar
Foti, RS, Wienkers, LC, Wahlstrom, JL (2010). Application of cytochrome P450 drug interaction screening in drug discovery. Comb Chem High Throughput Screen, 13(2), 145158.Google Scholar
Fricke-Galindo, I, LLerena, A, Jung-Cook, H, López-López, M (2018). Carbamazepine adverse drug reactions. Expert Rev Clin Pharmacol, 11(7), 705718. doi:10.1080/17512433.2018.1486707.Google Scholar
Fromm, MF, Kim, RB (2011). Drug Transporters: Handbook of Experimental Pharmacology v. 201. Available at: http://dx.doi.org/10.1007/978–3-642–14541-4 (last accessed 5.12.18).Google Scholar
Fuhr, U, Anders, EM, Mahr, G, Sorgel, F, Staib, AH (1992). Inhibitory potency of quinolone antibacterial agents against cytochrome P450IA2 activity in vivo and in vitro. Antimicrob Agents Chemother, 36(5), 942948.Google Scholar
Fuhr, U, Klittich, K, Staib, AH (1993). Inhibitory effect of grapefruit juice and its bitter principal, naringenin, on CYP1A2 dependent metabolism of caffeine in man. Br J Clin Pharmacol, 35(4), 431436.Google Scholar
Fuhr, U, Jetter, A, Kirchheiner, J (2007). Appropriate phenotyping procedures for drug metabolizing enzymes and transporters in humans and their simultaneous use in the ‘cocktail’ approach. Clin Pharmacol Ther, 81, 270283.Google Scholar
Fujita, K, Sasaki, Y (2007). Pharmacogenomics in drug-metabolizing enzymes catalyzing anticancer drugs for personalized cancer chemotherapy. Curr Drug Metab, 8(6), 554562.Google Scholar
Fukami, T, Yokoi, T (2012). The emerging role of human esterases. Drug Metab Pharmacokinet, 27(5), 466477.Google Scholar
Fulop, G, Phillips, RA, Shapiro, AK, et al. (1987). ECG changes during haloperidol and pimozide treatment of Tourette’s disorder. Am J Psychiatry, 144(5), 673675. doi:10.1176/ajp.144.5.673.Google Scholar
Furnes, B, Feng, J, Sommer, SS, Schlenk, D (2003). Identification of novel variants of the flavin-containing monooxygenase gene family in African Americans. Drug Metab Dispos, 31(2), 187193.Google Scholar
Genaro-Mattos, TC, Tallman, KA, Allen, LB, et al. (2018). Dichlorophenyl piperazines, including a recently-approved atypical antipsychotic, are potent inhibitors of DHCR7, the last enzyme in cholesterol biosynthesis. Toxicol Appl Pharmacol, 349, 2128. doi:10.1016/j.taap.2018.04.029.Google Scholar
Ghodke-Puranik, Y, Thorn, CF, Lamba, JK, et al. (2013). Valproic acid pathway: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics, 23(4), 236241. doi:10.1097/FPC.0b013e32835ea0b2.Google Scholar
Ghotbi, R, Christensen, M, Roh, HK, et al. (2007). Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans. Eur J Clin Pharmacol, 63(6), 537546. doi:10.1007/s00228-007-0288-2.Google Scholar
Goh, BC, Lee, SC, Wang, LZ, et al. (2002). Explaining interindividual variability of docetaxel pharmacokinetics and pharmacodynamics in Asians through phenotyping and genotyping strategies. J Clin Oncol, 20(17), 36833690. doi:10.1200/JCO.2002.01.025.Google Scholar
Goldman, D (2014). Roles of COMT, NPY and GCH1 in acute and chronic pain/stress response. Mol Pain, 10(Suppl 1), O5. doi:10.1186/1744-8069-10-S1-O5.Google Scholar
Goldman, D, Weinberger, DR, Malhotra, AK, Goldberg, TE (2009). The role of COMT Val158Met in cognition. Biol Psychiatry, 65(1), e1e2; author reply e3–e4. doi:10.1016/j.biopsych.2008.07.032.Google Scholar
Goldstein, JA, de Morais, SM (1994). Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics, 4(6), 285299.Google Scholar
Gong, QL, Hedner, T, Hedner, J, Bjorkman, R, Nordberg, G (1991). Antinociceptive and ventilatory effects of the morphine metabolites: morphine-6-glucuronide and morphine-3-glucuronide. Eur J Pharmacol, 193(1), 4756.Google Scholar
Gonzalez, FJ, Gelboin, HV (1994). Role of human cytochromes P450 in the metabolic activation of chemical carcinogens and toxins. Drug Metab Rev, 26(1–2), 165183.Google Scholar
Goodarzi, MO, Xu, N, Azziz, R (2008). Association of CYP3A7*1C and serum dehydroepiandrosterone sulfate levels in women with polycystic ovary syndrome. J Clin Endocrinol Metab, 93(7), 29092912. doi:10.1210/jc.2008-0403.Google Scholar
Gough, AC, Miles, JS, Spurr, NK, et al. (1990). Identification of the primary gene defect at the cytochrome P450 CYP2D locus. Nature, 347(6295), 773776. doi:10.1038/347773a0.Google Scholar
Gram, LF, Kragh-Sorensen, P, Kristensen, CB, et al. (1984). Plasma level monitoring of antidepressants: theoretical basis and clinical application. Adv Biochem Psychopharmacol, 39, 399411.Google Scholar
Grisaru, D, Sternfeld, M, Eldor, A, Glick, D, Soreq, H (1999). Structural roles of acetylcholinesterase variants in biology and pathology. Eur J Biochem, 264(3), 672686.Google Scholar
Grossberg, GT (2003). Cholinesterase inhibitors for the treatment of Alzheimer’s disease: getting on and staying on. Curr Ther Res Clin Exp, 64(4), 216235. doi:10.1016/S0011-393X(03)00059-6.Google Scholar
Guengerich, FP (1999). Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol, 39, 117. doi:10.1146/annurev.pharmtox.39.1.1.Google Scholar
Haas, DW, Ribaudo, HJ, Kim, RB, et al. (2004). Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study. AIDS, 18(18), 23912400.Google Scholar
Haberl, M, Anwald, B, Klein, K, et al. (2005). Three haplotypes associated with CYP2A6 phenotypes in Caucasians. Pharmacogenet Genomics, 15(9), 609624.Google Scholar
Haddock, RE, Johnson, AM, Langley, PF, et al. (1989). Metabolic pathway of paroxetine in animals and man and the comparative pharmacological properties of its metabolites. Acta Psychiatr Scand, 80(S350), 2426.Google Scholar
Hadidi, H, Zahlsen, K, Idle, JR, Cholerton, S (1997). A single amino acid substitution (Leu160His) in cytochrome P450 CYP2A6 causes switching from 7-hydroxylation to 3-hydroxylation of coumarin. Food Chem Toxicol, 35(9), 903907.Google Scholar
Hals, P-A, Hall, H, Dahl, SG (1986). Phenothiazine drug metabolites: dopamine D2 receptor, α1-and α2-adrenoceptor binding. Eur J Pharmacol, 125(3), 373381.Google Scholar
Hammons, GJ, Milton, D, Stepps, K, et al. (1997). Metabolism of carcinogenic heterocyclic and aromatic amines by recombinant human cytochrome P450 enzymes. Carcinogenesis, 18(4), 851854.Google Scholar
Hanioka, N, Kimura, S, Meyer, UA, Gonzalez, FJ (1990). The human CYP2D locus associated with a common genetic defect in drug oxidation: a G1934-A base change in intron 3 of a mutant CYP2D6 allele results in an aberrant 3’ splice recognition site. Am J Hum Genet, 47(6), 9941001.Google Scholar
Hansen, LB (1981). The clinical significance of measuring perphenazine in plasma during oral antipsychotic treatment. In Usdin, E, Dahl, SG, Gram, LF, Lingjærde, O, eds., Clinical Pharmacology in Psychiatry – Neuroleptic and Antidepressant Research. London: Macmillan, pp. 211216.Google Scholar
Hansen, LB, Larsen, NE (1983). Plasma levels of perphenazine related to clinical effect and extrapyramidal side-effects. In Gram, LF, Usdin, E, Dahl, SG, et al., eds., Clinical Pharmacology in Psychiatry – Bridging the Experimental-Therapeutic Gap. London: Macmillan, pp. 175181.Google Scholar
Hansen, LB, Larsen, NE (1985). Therapeutic advantages of monitoring plasma concentrations of perphenazine in clinical practice. Psychopharmacology (Berl), 87(1), 1619.Google Scholar
Hansen, LB, Elley, J, Christensen, TR, et al. (1979). Plasma levels of perphenazine and its major metabolites during simultaneous treatment with anticholinergic drugs. Br J Clin Pharmacol, 7(1), 7580.Google Scholar
Hansen, LB, Larsen, NE, Gulmann, N. (1982). Dose-response relationships of perphenazine in the treatment of acute psychoses. Psychopharmacology (Berl), 78(2), 112115.Google Scholar
Hartsfield, JK Jr, Sutcliffe, MJ, Everett, ET, et al. (1998). Assignment1 of microsomal epoxide hydrolase (EPHX1) to human chromosome 1q42.1 by in situ hybridization. Cytogenet Cell Genet, 83(1–2), 4445. doi:10.1159/000015164.Google Scholar
Hasin, Y, Avidan, N, Bercovich, D, et al. (2005). Analysis of genetic polymorphisms in acetylcholinesterase as reflected in different populations. Curr Alzheimer Res, 2(2), 207218.Google Scholar
Hassett, C, Robinson, KB, Beck, NB, Omiecinski, CJ (1994). The human microsomal epoxide hydrolase gene (EPHX1): complete nucleotide sequence and structural characterization. Genomics, 23(2), 433442. doi:10.1006/geno.1994.1520.Google Scholar
Hemeryck, A, Belpaire, FM (2002). Selective serotonin reuptake inhibitors and cytochrome P-450 mediated drug-drug interactions: an update. Curr Drug Metab, 3(1), 1337.Google Scholar
Hendset, M, Molden, E, Knape, M, Hermann, M (2014). Serum concentrations of risperidone and aripiprazole in subgroups encoding CYP2D6 intermediate metabolizer phenotype. Ther Drug Monit, 36(1), 8085. doi:10.1097/FTD.0000000000000018.Google Scholar
Herrlin, K, Yasui-Furukori, N, Tybring, G, et al. (2003). Metabolism of citalopram enantiomers in CYP2C19/CYP2D6 phenotyped panels of healthy Swedes. Br J Clin Pharmacol, 56(4), 415421.Google Scholar
Hesse, LM, He, P, Krishnaswamy, S, et al. (2004). Pharmacogenetic determinants of interindividual variability in bupropion hydroxylation by cytochrome P450 2B6 in human liver microsomes. Pharmacogenetics, 14(4), 225238.Google Scholar
Hicks, JK, Swen, JJ, Thorn, CF, et al. (2013). Clinical Pharmacogenetics Implementation Consortium guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants. Clin Pharmacol Ther, 93(5), 402408. doi:10.1038/clpt.2013.2.Google Scholar
Hicks, JK, Sangkuhl, K, Swen, JJ, et al. (2016). Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther, 102(1), 3744. doi:10.1002/cpt.597.Google Scholar
Hiemke, C, Bergemann, N, Clement, HW, et al. (2018). Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology: Update 2017. Pharmacopsychiatry, 51(1–2), e1. doi:10.1055/s-0037-1600991.Google Scholar
Hillhouse, TM, Porter, JH (2015). A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp Clin Psychopharmacol, 23(1), 121. doi:10.1037/a0038550.Google Scholar
Hisaka, A, Ohno, Y, Yamamoto, T, Suzuki, H (2010). Prediction of pharmacokinetic drug-drug interaction caused by changes in cytochrome P450 activity using in vivo information. Pharmacol Ther, 125(2), 230248. doi:10.1016/j.pharmthera.2009.10.011.Google Scholar
Hjorthoj, C, Ostergaard, MLD, Benros, ME, et al. (2015). Association between alcohol and substance use disorders and all-cause and cause-specific mortality in schizophrenia, bipolar disorder, and unipolar depression: a nationwide, prospective, register-based study. Lancet Psychiatry, 2(9), 801808. doi:10.1016/S2215-0366(15)00207-2.Google Scholar
Hoffman, SM, Nelson, DR, Keeney, DS (2001). Organization, structure and evolution of the CYP2 gene cluster on human chromosome 19. Pharmacogenetics, 11(8), 687698.Google Scholar
Hofmann, MH, Blievernicht, JK, Klein, K, et al. (2008). Aberrant splicing caused by single nucleotide polymorphism c.516G>T [Q172H], a marker of CYP2B6*6, is responsible for decreased expression and activity of CYP2B6 in liver. J Pharmacol Exp Ther, 325(1), 284292. doi:10.1124/jpet.107.133306.Google Scholar
Holstein, A, Plaschke, A, Ptak, M, et al. (2005). Association between CYP2C9 slow metabolizer genotypes and severe hypoglycaemia on medication with sulphonylurea hypoglycaemic agents. Br J Clin Pharmacol, 60(1), 103106. doi:10.1111/j.1365-2125.2005.02379.x.Google Scholar
Hoosain, FG, Choonara, YE, Tomar, LK, et al. (2015). Bypassing P-glycoprotein drug efflux mechanisms: possible applications in pharmacoresistant schizophrenia therapy. Biomed Res Int, 2015, 484963. doi:10.1155/2015/484963.Google Scholar
Horrigan, JP, Barnhill, LJ (1994). Paroxetine-pimozide drug interaction. J Am Acad Child Adolesc Psychiatry, 33(7), 10601061. doi:10.1097/00004583-199409000-00022.Google Scholar
Hu, GX, Dai, DP, Wang, H, et al. (2017). Systematic screening for CYP3A4 genetic polymorphisms in a Han Chinese population. Pharmacogenomics, 18(4), 369379. doi:10.2217/pgs-2016-0179.Google Scholar
Hu, Y, Oscarson, M, Johansson, I, et al. (1997). Genetic polymorphism of human CYP2E1: characterization of two variant alleles. Mol Pharmacol, 51(3), 370376.Google Scholar
Huang, C, Kurland, AA (1964). Perphenazine (trilafon) metabolism in psychotic patients. Arch Gen Psychiatry, 10(6), 639646.Google Scholar
Huezo-Diaz, P, Perroud, N, Spencer, EP, et al. (2012). CYP2C19 genotype predicts steady state escitalopram concentration in GENDEP. J Psychopharmacol, 26(3), 398407. doi:10.1177/0269881111414451.Google Scholar
Imaoka, S, Funae, Y (1990). Purification and characterization of rat pulmonary cytochrome P-450. J Biochem, 108(1), 3336.Google Scholar
Ingelman-Sundberg, M (2004a). Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedebergs Arch Pharmacol, 369(1), 89104. doi:10.1007/s00210-003-0819-z.Google Scholar
Ingelman-Sundberg, M (2004b). Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol Sci, 25(4), 193200. doi:10.1016/j.tips.2004.02.007.Google Scholar
Ishii, Y, Iwanaga, M, Nishimura, Y, et al. (2007). Protein-protein interactions between rat hepatic cytochromes P450 (P450s) and UDP-glucuronosyltransferases (UGTs): evidence for the functionally active UGT in P450-UGT complex. Drug Metab Pharmacokinet, 22(5), 367376.Google Scholar
Ishikawa, T (1992). The ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci, 17(11), 463468.Google Scholar
Jackson, MR, Craft, JA, Burchell, B (1987). Nucleotide and deduced amino acid sequence of human liver microsomal epoxide hydrolase. Nucleic Acids Res, 15(17), 7188.Google Scholar
Jančová, P, Šiller, M (2012). Phase II drug metabolism. In Paxton, J, ed., Topics on Drug Metabolism. Croatia: InTech, pp. 3560.Google Scholar
Jann, MW, Cohen, LJ (2000). The influence of ethnicity and antidepressant pharmacogenetics in the treatment of depression. Drug Metabol Drug Interact, 16(1), 3967.Google Scholar
Jaquenoud Sirot, E, Knezevic, B, Morena, GP, et al. (2009). ABCB1 and cytochrome P450 polymorphisms: clinical pharmacogenetics of clozapine. J Clin Psychopharmacol, 29(4), 319326. doi:10.1097/JCP.0b013e3181acc372.Google Scholar
Jerling, M, Dahl, ML, Aberg-Wistedt, A, et al. (1996). The CYP2D6 genotype predicts the oral clearance of the neuroleptic agents perphenazine and zuclopenthixol. Clin Pharmacol Ther, 59(4), 423428. doi:10.1016/S0009-9236(96)90111-3.Google Scholar
Jiang, Z, Dalton, TP, Jin, L, et al. (2005). Toward the evaluation of function in genetic variability: characterizing human SNP frequencies and establishing BAC-transgenic mice carrying the human CYP1A1_CYP1A2 locus. Hum Mutat, 25(2), 196206. doi:10.1002/humu.20134.Google Scholar
Johannessen, SI, Landmark, CJ (2010). Antiepileptic drug interactions – principles and clinical implications. Curr Neuropharmacol, 8(3), 254267. doi:10.2174/157015910792246254.Google Scholar
Johansson, I, Ingelman-Sundberg, M (2011). Genetic polymorphism and toxicology – with emphasis on cytochrome p450. Toxicol Sci, 120(1), 113. doi:10.1093/toxsci/kfq374.Google Scholar
Johansson, I, Lundqvist, E, Bertilsson, L, et al. (1993). Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci U S A, 90(24), 1182511829.Google Scholar
Johansson, I, Oscarson, M, Yue, QY, et al. (1994). Genetic-analysis of the Chinese cytochrome P4502d locus – characterization of variant Cyp2d6 genes present in subjects with diminished capacity for debrisoquine hydroxylation. Mol Pharmacol, 46(3), 452459.Google Scholar
Johne, A, Brockmoller, J, Bauer, S, et al. (1999). Pharmacokinetic interaction of digoxin with an herbal extract from St John’s wort (Hypericum perforatum). Clin Pharmacol Ther, 66(4), 338345. doi:10.1053/cp.1999.v66.a101944.Google Scholar
Johnstone, E, Benowitz, N, Cargill, A, et al. (2006). Determinants of the rate of nicotine metabolism and effects on smoking behavior. Clin Pharmacol Ther, 80(4), 319330. doi:10.1016/j.clpt.2006.06.011.Google Scholar
Jornil, J, Jensen, KG, Larsen, F, Linnet, K (2010). Identification of cytochrome P450 isoforms involved in the metabolism of paroxetine and estimation of their importance for human paroxetine metabolism using a population-based simulator. Drug Metab Dispos, 38(3), 376385. doi:10.1124/dmd.109.030551.Google Scholar
Jung, F, Richardson, TH, Raucy, JL, Johnson, EF (1997). Diazepam metabolism by cDNA-expressed human 2C P450s: identification of P4502C18 and P4502C19 as low K(M) diazepam N-demethylases. Drug Metab Dispos, 25(2), 133139.Google Scholar
Jurica, J, Sulcova, A (2012). Determination of cytochrome P450 metabolic activity using selective markers. In Paxton, J, ed., Topics on Drug Metabolism. Croatia: InTech, pp. 191220.Google Scholar
Kagimoto, M, Heim, M, Kagimoto, K, Zeugin, T, Meyer, UA (1990). Multiple mutations of the human cytochrome P450IID6 gene (CYP2D6) in poor metabolizers of debrisoquine. Study of the functional significance of individual mutations by expression of chimeric genes. J Biol Chem, 265(28), 1720917214.Google Scholar
Kalow, W, Tyndale, R (1992). Debrisoquine/sparteine monooxygenase and other P450s in brain. In Kalow, W, ed., Pharmacogenetics of Drug Metabolism. Oxford: Pergamon Press, pp. 649656.Google Scholar
Kasperaviciūte, D, Sisodiya, SM (2009). Epilepsy pharmacogenetics. Pharmacogenomics, 10(5), 817836. doi:10.2217/pgs.09.34.Google Scholar
Kertesz, SG, Pletcher, MJ, Safford, M, et al. (2007). Illicit drug use in young adults and subsequent decline in general health: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Drug Alcohol Depend, 88(2–3), 224233. doi:10.1016/j.drugalcdep.2006.10.017.Google Scholar
Khan, KK, He, YQ, Domanski, TL, Halpert, JR (2002). Midazolam oxidation by cytochrome P450 3A4 and active-site mutants: an evaluation of multiple binding sites and of the metabolic pathway that leads to enzyme inactivation. Mol Pharmacol, 61(3), 495506.Google Scholar
Kim, HY, Korade, Z, Tallman, KA, et al. (2016). Inhibitors of 7-dehydrocholesterol reductase: screening of a collection of pharmacologically active compounds in Neuro2a cells. Chem Res Toxicol, 29(5), 892900. doi:10.1021/acs.chemrestox.6b00054.Google Scholar
King, J, Aberg, JA (2008). Clinical impact of patient population differences and genomic variation in efavirenz therapy. AIDS, 22(14), 17091717. doi:10.1097/QAD.0b013e32830163ad.Google Scholar
Kirchheiner, J, Brøsen, K, Dahl, ML, et al. (2001). CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand, 104(3), 173192.Google Scholar
Kirchheiner, J, Klein, C, Meineke, I, et al. (2003). Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6. Pharmacogenetics, 13(10), 619626. doi:10.1097/01.fpc.0000054125.14659.d0.Google Scholar
Kirchheiner, J, Nickchen, K, Bauer, M, et al. (2004). Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry, 9(5), 442473. doi:10.1038/sj.mp.4001494.Google Scholar
Kirschbaum, KM, Müller, MJ, Malevani, J, et al. (2008). Serum levels of aripiprazole and dehydroaripiprazole, clinical response and side effects. World J Biol Psychiatry, 9(3), 212218. doi:10.1080/15622970701361255.Google Scholar
Klaassen, CD, Slitt, AL (2005). Regulation of hepatic transporters by xenobiotic receptors. Curr Drug Metab, 6(4), 309328.Google Scholar
Klees, TM, Sheffels, P, Dale, O, Kharasch, ED (2005). Metabolism of alfentanil by cytochrome P4503A (CYP3A) enzymes. Drug Metab Dispos, 33(3), 303311. doi:10.1124/dmd.104.002709.Google Scholar
Klein, K, Lang, T, Saussele, T, et al. (2005). Genetic variability of CYP2B6 in populations of African and Asian origin: allele frequencies, novel functional variants, and possible implications for anti-HIV therapy with efavirenz. Pharmacogenet Genomics, 15(12), 861873.Google Scholar
Klotz, U (2006). Clinical impact of CYP2C19 polymorphism on the action of proton pump inhibitors: a review of a special problem. Int J Clin Pharmacol Ther, 44(7), 297302.Google Scholar
Klotz, U (2009). Pharmacokinetics and drug metabolism in the elderly. Drug Metab Rev, 41(2), 6776.Google Scholar
Knutti, R, Rothweiler, H, Schlatter, C (1981). Effect of pregnancy on the pharmacokinetics of caffeine. Eur J Clin Pharmacol, 21(2), 121126.Google Scholar
Kobayashi, K, Chiba, K, Yagi, T, et al. (1997). Identification of cytochrome P450 isoforms involved in citalopram N-demethylation by human liver microsomes. J Pharmacol Exp Ther, 280(2), 927933.Google Scholar
Kolars, JC, Lown, KS, Schmiedlin-Ren, P, et al. (1994). CYP3A gene expression in human gut epithelium. Pharmacogenetics, 4(5), 247259.Google Scholar
Komatsu, T, Yamazaki, H, Shimada, N, Nakajima, M, Yokoi, T. (2000). Roles of cytochromes P450 1A2, 2A6, and 2C8 in 5-fluorouracil formation from tegafur, an anticancer prodrug, in human liver microsomes. Drug Metab Dispos, 28(12), 14571463.Google Scholar
Koola, MM, Tsapakis, EM, Wright, P, et al. (2014). Association of tardive dyskinesia with variation in CYP2D6: is there a role for active metabolites? J Psychopharmacol, 28(7), 665670. doi:10.1177/0269881114523861.Google Scholar
Korade, Z, Xu, L, Shelton, R, Porter, NA (2010). Biological activities of 7-dehydrocholesterol-derived oxysterols: implications for Smith-Lemli-Opitz syndrome. J Lipid Res, 51(11), 32593269.Google Scholar
Korade, Z, Kim, HY, Tallman, KA, et al. (2016). The effect of small molecules on sterol homeostasis: measuring 7-dehydrocholesterol in Dhcr7-deficient Neuro2a cells and human fibroblasts. J Med Chem, 59(3), 11021115. doi:10.1021/acs.jmedchem.5b01696.Google Scholar
Korzekwa, KR, Krishnamachary, N, Shou, M, et al. (1998). Evaluation of atypical cytochrome P450 kinetics with two-substrate models: evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites. Biochemistry, 37(12), 41374147. doi:10.1021/bi9715627.Google Scholar
Koskinen, J, Lohonen, J, Koponen, H, Isohanni, M, Miettunen, J (2010). Rate of cannabis use disorders in clinical samples of patients with schizophrenia: a meta-analysis. Schizophr Bull, 36(6), 11151130. doi:10.1093/schbul/sbp031.Google Scholar
Koukouritaki, SB, Manro, JR, Marsh, SA, et al. (2004). Developmental expression of human hepatic CYP2C9 and CYP2C19. J Pharmacol Exp Ther, 308(3), 965974. doi:10.1124/jpet.103.060137.Google Scholar
Koyama, E, Tanaka, T, Chiba, K, et al. (1996). Steady-state plasma concentrations of imipramine and desipramine in relation to S-mephenytoin 4’-hydroxylation status in Japanese depressive patients. J Clin Psychopharmacol, 16(4), 286293.Google Scholar
Koyama, E, Chiba, K, Tani, M, Ishizaki, T (1997). Reappraisal of human CYP isoforms involved in imipramine N-demethylation and 2-hydroxylation: a study using microsomes obtained from putative extensive and poor metabolizers of S-mephenytoin and eleven recombinant human CYPs. J Pharmacol Exp Ther, 281(3), 11991210.Google Scholar
Krueger, SK, Williams, DE (2005). Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther, 106(3), 357387. doi:10.1016/j.pharmthera.2005.01.001.Google Scholar
Krueger, SK, Williams, DE, Yueh, MF, et al. (2002). Genetic polymorphisms of flavin-containing monooxygenase (FMO). Drug Metab Rev, 34(3), 523532. doi:10.1081/DMR-120005653.Google Scholar
Kubo, M, Koue, T, Inaba, A, et al. (2005). Influence of itraconazole co-administration and CYP2D6 genotype on the pharmacokinetics of the new antipsychotic ARIPIPRAZOLE. Drug Metab Pharmacokinet, 20(1), 5564.Google Scholar
Kubo, M, Koue, T, Maune, H, Fukuda, T, Azuma, J (2007). Pharmacokinetics of aripiprazole, a new antipsychotic, following oral dosing in healthy adult Japanese volunteers: influence of CYP2D6 polymorphism. Drug Metab Pharmacokinet, 22(5), 358366.Google Scholar
Kuehl, P, Zhang, J, Lin, Y, et al. (2001). Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet, 27(4), 383391. doi:10.1038/86882.Google Scholar
Kuhn, R (1958). The treatment of depressive states with G 22355 (imipramine hydrochloride). Am J Psychiatry, 115(5), 459464. doi:10.1176/ajp.115.5.459.Google Scholar
Kumana, CR, Lauder, IJ, Chan, M, Ko, W, Lin, HJ (1987). Differences in diazepam pharmacokinetics in Chinese and white Caucasians – relation to body lipid stores. Eur J Clin Pharmacol, 32(2), 211215.Google Scholar
Kuzman, MR, Medved, V, Bozina, N, et al. (2011). Association study of MDR1 and 5-HT2C genetic polymorphisms and antipsychotic-induced metabolic disturbances in female patients with schizophrenia. Pharmacogenomics J, 11(1), 3544. doi:10.1038/tpj.2010.7.Google Scholar
Laika, B, Leucht, S, Heres, S, Schneider, H, Steimer, W (2010). Pharmacogenetics and olanzapine treatment: CYP1A2*1F and serotonergic polymorphisms influence therapeutic outcome. Pharmacogenomics J, 10(1), 2029. doi:10.1038/tpj.2009.32.Google Scholar
Laird, B, Colvin, L, Fallon, M (2008). Management of cancer pain: basic principles and neuropathic cancer pain. Eur J Cancer, 44(8), 10781082. doi:10.1016/j.ejca.2008.03.022.Google Scholar
Lam, YW, Gaedigk, A, Ereshefsky, L, Alfaro, CL, Simpson, J (2002). CYP2D6 inhibition by selective serotonin reuptake inhibitors: analysis of achievable steady-state plasma concentrations and the effect of ultrarapid metabolism at CYP2D6. Pharmacotherapy, 22(8), 10011006.Google Scholar
Lamba, J, Schuetz, E (2008). Genetic variants of xenobiotic receptors and their implications in drug metabolism and pharmacogenetics. In Xie, W, ed., Nuclear Receptors in Drug Metabolism. Hoboken: John Wiley & Sons, pp. 241273.Google Scholar
Lamba, JK, Lin, YS, Schuetz, EG, Thummel, KE (2002). Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev, 54(10), 12711294.Google Scholar
Lamba, J, Lamba, V, Schuetz, E (2005). Genetic variants of PXR (NR1I2) and CAR (NR1I3) and their implications in drug metabolism and pharmacogenetics. Curr Drug Metab, 6(4), 369383.Google Scholar
Lamba, V, Lamba, J, Yasuda, K, et al. (2003). Hepatic CYP2B6 expression: gender and ethnic differences and relationship to CYP2B6 genotype and CAR (constitutive androstane receptor) expression. J Pharmacol Exp Ther, 307(3), 906922. doi:10.1124/jpet.103.054866.Google Scholar
Lampe, JW, King, IB, Li, S, et al. (2000). Brassica vegetables increase and apiaceous vegetables decrease cytochrome P450 1A2 activity in humans: changes in caffeine metabolite ratios in response to controlled vegetable diets. Carcinogenesis, 21(6), 11571162.Google Scholar
Lang, T, Klein, K, Fischer, J, et al. (2001). Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics, 11(5), 399415.Google Scholar
Lang, T, Klein, K, Richter, T, et al. (2004). Multiple novel nonsynonymous CYP2B6 gene polymorphisms in Caucasians: demonstration of phenotypic null alleles. J Pharmacol Exp Ther, 311(1), 3443. doi:10.1124/jpet.104.068973.Google Scholar
Le Marchand, L, Franke, AA, Custer, L, Wilkens, LR, Cooney, RV (1997). Lifestyle and nutritional correlates of cytochrome CYP1A2 activity: inverse associations with plasma lutein and alpha-tocopherol. Pharmacogenetics, 7(1), 1119.Google Scholar
Leclerc, J, Courcot-Ngoubo Ngangue, E, Cauffiez, C, et al. (2011). Xenobiotic metabolism and disposition in human lung: transcript profiling in non-tumoral and tumoral tissues. Biochimie, 93(6), 10121027. doi:10.1016/j.biochi.2011.02.012.Google Scholar
Lee, CR, Goldstein, JA, Pieper, JA (2002). Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics, 12(3), 251263.Google Scholar
Li, F, Zhang, A, Shi, Y, Ma, Y, Du, Y (2015). 1alpha,25-Dihydroxyvitamin D3 prevents the differentiation of human lung fibroblasts via microRNA-27b targeting the vitamin D receptor. Int J Mol Med, 36(4), 967974. doi:10.3892/ijmm.2015.2318.Google Scholar
Linnet, K, Wiborg, O (1996). Steady-state serum concentrations of the neuroleptic perphenazine in relation to CYP2D6 genetic polymorphism. Clin Pharmacol Ther, 60(1), 4147. doi:10.1016/S0009-9236(96)90165-4.Google Scholar
Liston, HL, DeVane, CL, Boulton, DW, et al. (2002). Differential time course of cytochrome P450 2D6 enzyme inhibition by fluoxetine, sertraline, and paroxetine in healthy volunteers. J Clin Psychopharmacol, 22(2), 169173.Google Scholar
Liu, HQ, Zhang, CP, Zhang, CZ, Liu, XC, Liu, ZJ (2015). Influence of two common polymorphisms in the EPHX1 gene on warfarin maintenance dosage: a meta-analysis. Biomed Res Int, 2015, 564149. doi:10.1155/2015/564149.Google Scholar
Lobo, ED, Bergstrom, RF, Reddy, S, et al. (2008). In vitro and in vivo evaluations of cytochrome P450 1A2 interactions with duloxetine. Clin Pharmacokinet, 47(3), 191202. doi:10.2165/00003088-200847030-00005.Google Scholar
Lodhi, RJ, Wang, Y, Rossolatos, D, et al. (2017). Investigation of the COMT Val158Met variant association with age of onset of psychosis, adjusting for cannabis use. Brain Behav, 7(11), e00850. doi:10.1002/brb3.850.Google Scholar
Lomri, N, Yang, Z, Cashman, JR (1993). Expression in Escherichia coli of the flavin-containing monooxygenase D (form II) from adult human liver: determination of a distinct tertiary amine substrate specificity. Chem Res Toxicol, 6(4), 425429.Google Scholar
Löscher, W, Klotz, U, Zimprich, F, Schmidt, D (2009). The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia, 50(1), 123. doi:10.1111/j.1528-1167.2008.01716.x.Google Scholar
Lubomirov, R, Colombo, S, di Iulio, J, et al.; Swiss, HIV Consortium Study (2011). Association of pharmacogenetic markers with premature discontinuation of first-line anti-HIV therapy: an observational cohort study. J Infect Dis, 203(2), 246257. doi:10.1093/infdis/jiq043.Google Scholar
Mackay, RJ, McEntyre, CJ, Henderson, C, Lever, M, George, PM (2011). Trimethylaminuria: causes and diagnosis of a socially distressing condition. Clin Biochem Rev, 32(1), 3343.Google Scholar
Madsen, H, Hansen, TS, Brøsen, K (1996). Imipramine metabolism in relation to the sparteine oxidation polymorphism – a family study. Pharmacogenetics, 6(6), 513519.Google Scholar
Mahgoub, A, Idle, JR, Dring, LG, Lancaster, R, Smith, RL (1977). Polymorphic hydroxylation of debrisoquine in man. Lancet, 2(8038), 584586.Google Scholar
Mailman, RB, Murthy, V (2010). Third generation antipsychotic drugs: partial agonism or receptor functional selectivity? Curr Pharm Des, 16(5), 488501.Google Scholar
Majewska, MD, Mienville, JM, Vicini, S (1988). Neurosteroid pregnenolone sulfate antagonizes electrophysiological responses to GABA in neurons. Neurosci Lett, 90(3), 279284.Google Scholar
Mallikaarjun, S, Kane, JM, Bricmont, P, et al. (2013). Pharmacokinetics, tolerability and safety of aripiprazole once-monthly in adult schizophrenia: an open-label, parallel-arm, multiple-dose study. Schizophr Res, 150(1), 281288. doi:10.1016/j.schres.2013.06.041.Google Scholar
Mamiya, K, Ieiri, I, Miyahara, S, et al. (1998a). Association of polymorphisms in the cytochrome P450 (CYP) 2C19 and 2C18 genes in Japanese epileptic patients. Pharmacogenetics, 8(1), 8790.Google Scholar
Mamiya, K, Ieiri, I, Shimamoto, J, et al. (1998b). The effects of genetic polymorphisms of CYP2C9 and CYP2C19 on phenytoin metabolism in Japanese adult patients with epilepsy: studies in stereoselective hydroxylation and population pharmacokinetics. Epilepsia, 39(12), 13171323.Google Scholar
Mammen, G, Rueda, S, Roerecke, M, et al. (2018). Association of cannabis with long-term clinical symptoms in anxiety and mood disorders: a systematic review of prospective studies. J Clin Psychiatry, 79(4), pii: 17r11839. doi:10.4088/JCP.17r11839.Google Scholar
Manrique-Garcia, E, de Leon, AP, Dalman, C, Andreasson, S, Allebeck, P (2016). Cannabis, psychosis, and mortality: a cohort study of 50,373 Swedish men. Am J Psychiatry, 173(8), 790798. doi:10.1176/appi.ajp.2016.14050637.Google Scholar
Masimirembwa, C, Persson, I, Bertilsson, L, Hasler, J, Ingelman-Sundberg, M (1996). A novel mutant variant of the CYP2D6 gene (CYP2D6*17) common in a black African population: association with diminished debrisoquine hydroxylase activity. Br J Clin Pharmacol, 42(6), 713719.Google Scholar
Massoulié, J, Pezzementi, L, Bon, S, Krejci, E, Vallette, FM (1993). Molecular and cellular biology of cholinesterases. Prog Neurobiol, 41(1), 3191.Google Scholar
McConnell, HW, Mitchell, SC, Smith, RL, Brewster, M (1997). Trimethylaminuria associated with seizures and behavioural disturbance: a case report. Seizure, 6(4), 317321.Google Scholar
McManus, ME, Burgess, WM, Veronese, ME, et al. (1990). Metabolism of 2-acetylaminofluorene and benzo(a)pyrene and activation of food-derived heterocyclic amine mutagens by human cytochromes P-450. Cancer Res, 50(11), 33673376.Google Scholar
Michaels, S, Wang, MZ (2014). The revised human liver cytochrome P450 ‘Pie’: absolute protein quantification of CYP4F and CYP3A enzymes using targeted quantitative proteomics. Drug Metab Dispos, 42(8), 12411251. doi:10.1124/dmd.114.058040.Google Scholar
Mittal, B, Tulsyan, S, Kumar, S, Mittal, RD, Agarwal, G (2015). Cytochrome P450 in cancer susceptibility and treatment. Adv Clin Chem, 71, 77139.Google Scholar
Morita, S, Shimoda, K, Someya, T, et al. (2000). Steady-state plasma levels of nortriptyline and its hydroxylated metabolites in Japanese patients: impact of CYP2D6 genotype on the hydroxylation of nortriptyline. J Clin Psychopharmacol, 20(2), 141149.Google Scholar
Motika, MS, Zhang, J, Cashman, JR (2007). Flavin-containing monooxygenase 3 and human disease. Expert Opin Drug Metab Toxicol, 3(6), 831845. doi:10.1517/17425255.3.6.831.Google Scholar
Murai, K, Yamazaki, H, Nakagawa, K, Kawai, R, Kamataki, T (2009). Deactivation of anti-cancer drug letrozole to a carbinol metabolite by polymorphic cytochrome P450 2A6 in human liver microsomes. Xenobiotica, 39(11), 795802. doi:10.3109/00498250903171395.Google Scholar
Murray, GI, Melvin, WT, Greenlee, WF, Burke, MD (2001). Regulation, function, and tissue-specific expression of cytochrome P450 CYP1B1. Annu Rev Pharmacol Toxicol, 41, 297316. doi:10.1146/annurev.pharmtox.41.1.297.Google Scholar
Murru, A, Popovic, D, Pacchiarotti, I, et al. (2015). Management of adverse effects of mood stabilizers. Curr Psychiatry Rep, 17(8), 603. doi:10.1007/s11920-015-0603-z.Google Scholar
Mushiroda, T, Takahashi, Y, Onuma, T, et al. (2018). Association of HLA-A*31:01 screening with the incidence of carbamazepine-induced cutaneous adverse reactions in a Japanese population. JAMA Neurol, 75(7), 842849. doi:10.1001/jamaneurol.2018.0278.Google Scholar
Mwenifumbo, JC, Sellers, EM, Tyndale, RF (2007). Nicotine metabolism and CYP2A6 activity in a population of black African descent: impact of gender and light smoking. Drug Alcohol Depend, 89(1), 2433. doi:10.1016/j.drugalcdep.2006.11.012.Google Scholar
Nagaoka, R, Iwasaki, T, Rokutanda, N, et al. (2006). Tamoxifen activates CYP3A4 and MDR1 genes through steroid and xenobiotic receptor in breast cancer cells. Endocrine, 30(3), 261268. doi:10.1007/s12020-006-0003-6.Google Scholar
Nakajima, M, Yokoi, T, Mizutani, M, et al. (1999). Genetic polymorphism in the 5’-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. J Biochem, 125(4), 803808.Google Scholar
Nakajima, M, Fukami, T, Yamanaka, H, et al. (2006). Comprehensive evaluation of variability in nicotine metabolism and CYP2A6 polymorphic alleles in four ethnic populations. Clin Pharmacol Ther, 80(3), 282297. doi:10.1016/j.clpt.2006.05.012.Google Scholar
Nakajima, Y, Saito, Y, Shiseki, K, et al. (2005). Haplotype structures of EPHX1 and their effects on the metabolism of carbamazepine-10,11-epoxide in Japanese epileptic patients. Eur J Clin Pharmacol, 61(1), 2534. doi:10.1007/s00228-004-0878-1.Google Scholar
Naraharisetti, SB, Lin, YS, Rieder, MJ, et al. (2010). Human liver expression of CYP2C8: gender, age, and genotype effects. Drug Metab Dispos, 38(6), 889893. doi:10.1124/dmd.109.031542.Google Scholar
Nebert, DW, Russell, DW (2002). Clinical importance of the cytochromes P450. Lancet, 360(9340), 11551162. doi:10.1016/S0140-6736(02)11203-7.Google Scholar
Nelson, DR, Zeldin, DC, Hoffman, SM, et al. (2004). Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics, 14(1), 118.Google Scholar
Niwa, T, Shizuku, M, Yamano, K (2017). Effect of genetic polymorphism on the inhibition of dopamine formation from p-tyramine catalyzed by brain cytochrome P450 2D6. Arch Biochem Biophys, 620, 2327. doi:10.1016/j.abb.2017.03.009.Google Scholar
Niwa, T, Yanai, M, Matsumoto, M, Shizuku, M (2018). Effect of cytochrome P450 (CYP) 2D6 genetic polymorphism on the inhibitory action of antidepressants on CYP2D6-mediated dopamine formation from p-tyramine. J Pharm Pharm Sci, 21(1), 135142. doi:10.18433/jpps29673.Google Scholar
Niznik, HB, Tyndale, RF, Sallee, FR, et al. (1990). The dopamine transporter and cytochrome P45OIID1 (debrisoquine 4-hydroxylase) in brain: resolution and identification of two distinct [3H]GBR-12935 binding proteins. Arch Biochem Biophys, 276(2), 424432.Google Scholar
Nordin, C, Siwers, B, Benitez, J, Bertilsson, L (1985). Plasma concentrations of nortriptyline and its 10-hydroxy metabolite in depressed patients – relationship to the debrisoquine hydroxylation metabolic ratio. Br J Clin Pharmacol, 19(6), 832835.Google Scholar
O’Brien, FE, Dinan, TG, Griffin, BT, Cryan, JF (2012). Interactions between antidepressants and P-glycoprotein at the blood-brain barrier: clinical significance of in vitro and in vivo findings. Br J Pharmacol, 165(2), 289312. doi:10.1111/j.1476-5381.2011.01557.x.Google Scholar
Oesch, F, Raphael, D, Schwind, H, Glatt, HR (1977). Species differences in activating and inactivating enzymes related to the control of mutagenic metabolites. Arch Toxicol, 39(1–2), 97108.Google Scholar
Ohmori, O, Suzuki, T, Kojima, H, et al. (1998). Tardive dyskinesia and debrisoquine 4-hydroxylase (CYP2D6) genotype in Japanese schizophrenics. Schizophr Res, 32(2), 107113.Google Scholar
Ohtsuki, S, Schaefer, O, Kawakami, H, et al. (2012). Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: comparison with mRNA levels and activities. Drug Metab Dispos, 40(1), 8392. doi:10.1124/dmd.111.042259.Google Scholar
Okubo, M, Murayama, N, Shimizu, M, et al. (2013). CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with reduced CYP3A4 protein level and function in human liver microsomes. J Toxicol Sci, 38(3), 349354.Google Scholar
Olesen, OV, Linnet, K (2000). Identification of the human cytochrome P450 isoforms mediating in vitro N-dealkylation of perphenazine. Br J Clin Pharmacol, 50(6), 563571.Google Scholar
Oscarson, M, Hidestrand, M, Johansson, I, Ingelman-Sundberg, M (1997). A combination of mutations in the CYP2D6*17 (CYP2D6Z) allele causes alterations in enzyme function. Mol Pharmacol, 52(6), 10341040.Google Scholar
Oscarson, M, Gullsten, H, Rautio, A, et al. (1998). Genotyping of human cytochrome P450 2A6 (CYP2A6), a nicotine C-oxidase. FEBS Lett, 438(3), 201205.Google Scholar
Ouzzine, M, Magdalou, J, Burchell, B, Fournel-Gigleux, S (1999). An internal signal sequence mediates the targeting and retention of the human UDP-glucuronosyltransferase 1A6 to the endoplasmic reticulum. J Biol Chem, 274(44), 3140131409.Google Scholar
Ouzzine, M, Gulberti, S, Ramalanjaona, N, Magdalou, J, Fournel-Gigleux, S (2014). The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication. Front Cell Neurosci, 8, 349. doi:10.3389/fncel.2014.00349.Google Scholar
Owens, MJ (1996). Molecular and cellular mechanisms of antidepressant drugs. Depress Anxiety, 4(4), 153159. doi:10.1002/(SICI)1520-6394(1996)4:4<53::aid-da1>3.0.CO;2-G.Google Scholar
Owens, MJ, Morgan, WN, Plott, SJ, Nemeroff, CB (1997). Neurotransmitter receptor and transporter binding profile of antidepressants and their metabolites. J Pharmacol Exp Ther, 283(3), 13051322.Google Scholar
Owens, MJ, Knight, DL, Nemeroff, CB (2001). Second-generation SSRIs: human monoamine transporter binding profile of escitalopram and R-fluoxetine. Biol Psychiatry, 50(5), 345350.Google Scholar
Ozdemir, V, Naranjo, CA, Herrmann, N, et al. (1997). Paroxetine potentiates the central nervous system side effects of perphenazine: contribution of cytochrome P4502D6 inhibition in vivo. Clin Pharmacol Ther, 62(3), 334347. doi:10.1016/S0009-9236(97)90037-0.Google Scholar
Ozdemir, V, Bertilsson, L, Miura, J, et al. (2007). CYP2D6 genotype in relation to perphenazine concentration and pituitary pharmacodynamic tissue sensitivity in Asians: CYP2D6-serotonin-dopamine crosstalk revisited. Pharmacogenet Genomics, 17(5), 339347. doi:10.1097/FPC.0b013e32801a3c10.Google Scholar
Pacifici, GM, Bencini, C, Rane, A (1986). Acetyltransferase in humans: development and tissue distribution. Pharmacology, 32(5), 283291. doi:10.1159/000138181.Google Scholar
Palleria, C, Di Paolo, A, Giofrè, C, et al. (2013). Pharmacokinetic drug-drug interaction and their implication in clinical management. J Res Med Sci, 18(7), 601610.Google Scholar
Pan, YZ, Gao, W, Yu, AM (2009). MicroRNAs regulate CYP3A4 expression via direct and indirect targeting. Drug Metab Dispos, 37(10), 21122117. doi:10.1124/dmd.109.027680.Google Scholar
Pariente-Khayat, A, Pons, G, Rey, E, et al. (1991). Caffeine acetylator phenotyping during maturation in infants. Pediatr Res, 29(5), 492495. doi:10.1203/00006450-199105010-00015.Google Scholar
Parker, AC, Pritchard, P, Preston, T, Choonara, I (1998). Induction of CYP1A2 activity by carbamazepine in children using the caffeine breath test. Br J Clin Pharmacol, 45(2), 176178.Google Scholar
Pelkonen, O, Rautio, A, Raunio, H, Pasanen, M (2000). CYP2A6: a human coumarin 7-hydroxylase. Toxicology, 144(1), 139147.Google Scholar
Pelkonen, O, Turpeinen, M, Hakkola, J, et al. (2008). Inhibition and induction of human cytochrome P450 enzymes: current status. Arch Toxicol, 82(10), 667715. doi:10.1007/s00204-008-0332-8.Google Scholar
Perry, PJ, Pfohl, BM, Holstad, SG (1987). The relationship between antidepressant response and tricyclic antidepressant plasma concentrations. A retrospective analysis of the literature using logistic regression analysis. Clin Pharmacokinet, 13(6), 381392. doi:10.2165/00003088-198713060-00003.Google Scholar
Persson, I, Aklillu, E, Rodrigues, F, Bertilsson, L, Ingelman-Sundberg, M (1996). S-mephenytoin hydroxylation phenotype and CYP2C19 genotype among Ethiopians. Pharmacogenetics, 6(6), 521526.Google Scholar
Phillips, EJ, Sukasem, C, Whirl-Carrillo, M, et al. (2018). Clinical Pharmacogenetics Implementation Consortium Guideline for HLA Genotype and Use of Carbamazepine and Oxcarbazepine: 2017 Update. Clin Pharmacol Ther, 103(4), 574581. doi:10.1002/cpt.1004.Google Scholar
Phillips, IR, Shephard, EA (2017). Drug metabolism by flavin-containing monooxygenases of human and mouse. Expert Opin Drug Metab Toxicol, 13(2), 167181. doi:10.1080/17425255.2017.1239718.Google Scholar
Piatkov, I, Caetano, D, Assur, Y, et al. (2017). ABCB1 and ABCC1 single-nucleotide polymorphisms in patients treated with clozapine. Pharmgenomics Pers Med, 10, 235242. doi:10.2147/PGPM.S142314.Google Scholar
Pinto, N, Dolan, ME (2011). Clinically relevant genetic variations in drug metabolizing enzymes. Curr Drug Metab, 12(5), 487497.Google Scholar
Pisanu, C, Melis, C, Squassina, A (2016). Lithium pharmacogenetics: where do we stand? Drug Dev Res, 77(7), 368373. doi:10.1002/ddr.21341.Google Scholar
Pollock, BG, Mulsant, BH, Sweet, RA, et al. (1995). Prospective cytochrome P450 phenotyping for neuroleptic treatment in dementia. Psychopharmacol Bull, 31(2), 327331.Google Scholar
Preskorn, SH (2003). Reproducibility of the in vivo effect of the selective serotonin reuptake inhibitors on the in vivo function of cytochrome P450 2D6: an update (part I). J Psychiatr Pract, 9(2), 150158.Google Scholar
Preskorn, SH (2012). Changes in the product label for pimozide illustrate both the promises and the challenges of personalized medicine. J Clin Psychiatry, 73(9), 11911193. doi:10.4088/JCP.12com07963.Google Scholar
Preskorn, SH (2013). Complexities of personalized medicine: how genes, drug-drug interactions, dosing schedules, and other factors can combine to produce clinically meaningful differences in a drug’s effect. J Psychiatr Pract, 19(5), 397405. doi:10.1097/01.pra.0000435038.91049.cb.Google Scholar
Preskorn, SH, Jerkovich, GS (1990). Central nervous system toxicity of tricyclic antidepressants: phenomenology, course, risk factors, and role of therapeutic drug monitoring. J Clin Psychopharmacol, 10(2), 8895.Google Scholar
Pringsheim, T, Marras, C (2009). Pimozide for tics in Tourette’s syndrome. Cochrane Database Syst Rev, (2), CD006996. doi:10.1002/14651858.CD006996.pub2.Google Scholar
Puangpetch, A, Vanwong, N, Nuntamool, N, et al. (2016). CYP2D6 polymorphisms and their influence on risperidone treatment. Pharmgenomics Pers Med, 9, 131147. doi:10.2147/PGPM.S107772.Google Scholar
Puranik, YG, Birnbaum, AK, Marino, SE, et al. (2013). Association of carbamazepine major metabolism and transport pathway gene polymorphisms and pharmacokinetics in patients with epilepsy. Pharmacogenomics, 14(1), 3545. doi:10.2217/pgs.12.180.Google Scholar
Qin, XP, Xie, HG, Wang, W, et al. (1999). Effect of the gene dosage of CgammaP2C19 on diazepam metabolism in Chinese subjects. Clin Pharmacol Ther, 66(6), 642646. doi:10.1016/S0009-9236(99)90075-9.Google Scholar
Raimundo, S, Fischer, J, Eichelbaum, M, et al. (2000). Elucidation of the genetic basis of the common ‘intermediate metabolizer’ phenotype for drug oxidation by CYP2D6. Pharmacogenetics, 10(7), 577581.Google Scholar
Raimundo, S, Toscano, C, Klein, K, et al. (2004). A novel intronic mutation, 2988G>A, with high predictivity for impaired function of cytochrome P450 2D6 in white subjects. Clin Pharmacol Ther, 76(2), 128138. doi:10.1016/j.clpt.2004.04.009.Google Scholar
Raskin, A, Crook, TH (1975). Antidepressants in black and white inpatients. Differential response to a controlled trial of chlorpromazine and imipramine. Arch Gen Psychiatry, 32(5), 643649.Google Scholar
Rau, T, Diepenbruck, S, Diepenbruck, I, Eschenhagen, T (2006). The 2988G>A polymorphism affects splicing of a CYP2D6 minigene. Clin Pharmacol Ther, 80(5), 555558; author reply 558560. doi:10.1016/j.clpt.2006.08.008.Google Scholar
Raunio, H, Rahnasto-Rilla, M (2012). CYP2A6: genetics, structure, regulation, and function. Drug Metabol Drug Interact, 27(2), 7388. doi:10.1515/dmdi-2012-0001.Google Scholar
Reale, M, Costantini, E, Di Nicola, M, et al. (2018). Butyrylcholinesterase and acetylcholinesterase polymorphisms in Multiple sclerosis patients: implication in peripheral inflammation. Sci Rep, 8(1), 1319. doi:10.1038/s41598-018-19701-7.Google Scholar
Relling, MV, Klein, TE (2011). CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. Clin Pharmacol Ther, 89(3), 464467. doi:10.1038/clpt.2010.279.Google Scholar
Relling, MV, Gardner, EE, Sandborn, WJ, et al.; Clinical Pharmacogenetics Implementation, Consortium (2011). Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharmacol Ther, 89(3), 387391. doi:10.1038/clpt.2010.320.Google Scholar
Rettie, AE, Jones, JP (2005). Clinical and toxicological relevance of CYP2C9: drug-drug interactions and pharmacogenetics. Annu Rev Pharmacol Toxicol, 45, 477494. doi:10.1146/annurev.pharmtox.45.120403.095821.Google Scholar
Ribaudo, HJ, Haas, DW, Tierney, C, et al.; Adult AIDS Clinical Trials Group Study (2006). Pharmacogenetics of plasma efavirenz exposure after treatment discontinuation: an Adult AIDS Clinical Trials Group Study. Clin Infect Dis, 42(3), 401407. doi:10.1086/499364.Google Scholar
Riches, Z, Stanley, EL, Bloomer, JC, Coughtrie, MW (2009). Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: the SULT ‘pie’. Drug Metab Dispos, 37(11), 22552261. doi:10.1124/dmd.109.028399.Google Scholar
Rietveld, EC, Broekman, MM, Houben, JJ, Eskes, TK, van Rossum, JM (1984). Rapid onset of an increase in caffeine residence time in young women due to oral contraceptive steroids. Eur J Clin Pharmacol, 26(3), 371373.Google Scholar
Riordan, JR, Deuchars, K, Kartner, N, et al. (1985). Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. Nature, 316(6031), 817819.Google Scholar
Rizzo, N, Hispard, E, Dolbeault, S, et al. (1997). Impact of long-term ethanol consumption on CYP1A2 activity. Clin Pharmacol Ther, 62(5), 505509. doi:10.1016/S0009-9236(97)90045-X.Google Scholar
Robbins, MG, Andersen, G, Somoza, V, et al. (2011). Heat treatment of Brussels sprouts retains their ability to induce detoxification enzyme expression in vitro and in vivo. J Food Sci, 76(3), C454C461. doi:10.1111/j.1750-3841.2011.02105.x.Google Scholar
Roberts, RL, Mulder, RT, Joyce, PR, Luty, SE, Kennedy, MA (2004). No evidence of increased adverse drug reactions in cytochrome P450 CYP2D6 poor metabolizers treated with fluoxetine or nortriptyline. Hum Psychopharmacol, 19(1), 1723. doi:10.1002/hup.539.Google Scholar
Rochat, B, Amey, M, Gillet, M, Meyer, UA, Baumann, P (1997). Identification of three cytochrome P450 isozymes involved in N-demethylation of citalopram enantiomers in human liver microsomes. Pharmacogenetics, 7(1), 110.Google Scholar
Rogers, HL, Bhattaram, A, Zineh, I, et al. (2012). CYP2D6 genotype information to guide pimozide treatment in adult and pediatric patients: basis for the U.S. Food and Drug Administration’s new dosing recommendations. J Clin Psychiatry, 73(9), 11871190. doi:10.4088/JCP.11m07572.Google Scholar
Roh, HK, Dahl, ML, Tybring, G, et al. (1996). CYP2C19 genotype and phenotype determined by omeprazole in a Korean population. Pharmacogenetics, 6(6), 547551.Google Scholar
Roninson, IB, Chin, JE, Choi, KG, et al. (1986). Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci U S A, 83(12), 45384542.Google Scholar
Rost, KL, Brosicke, H, Heinemeyer, G, Roots, I (1994). Specific and dose-dependent enzyme induction by omeprazole in human beings. Hepatology, 20(5), 12041212.Google Scholar
Rotger, M, Tegude, H, Colombo, S, et al. (2007). Predictive value of known and novel alleles of CYP2B6 for efavirenz plasma concentrations in HIV-infected individuals. Clin Pharmacol Ther, 81(4), 557566. doi:10.1038/sj.clpt.6100072.Google Scholar
Rothman, RB, Baumann, MH, Dersch, CM, et al. (2001). Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse, 39(1), 3241. doi:10.1002/1098-2396(20010101)39:1<32::aid-syn5>3.0.CO;2-3.Google Scholar
Rudberg, I, Mohebi, B, Hermann, M, Refsum, H, Molden, E (2007). Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients. Clin Pharmacol Ther, 83(2), 322327.Google Scholar
Rudorfer, MV, Robins, E (1982). Amitriptyline overdose: clinical effects on tricyclic antidepressant plasma levels. J Clin Psychiatry, 43(11), 457460.Google Scholar
Saeed, LH, Mayet, AY (2013). Genotype-phenotype analysis of CYP2C19 in healthy Saudi individuals and its potential clinical implication in drug therapy. Int J Med Sci, 10(11), 14971502. doi:10.7150/ijms.6795.Google Scholar
Saez-Valero, J, Sberna, G, McLean, CA, Small, DH (1999). Molecular isoform distribution and glycosylation of acetylcholinesterase are altered in brain and cerebrospinal fluid of patients with Alzheimer’s disease. J Neurochem, 72(4), 16001608.Google Scholar
Sakuyama, K, Sasaki, T, Ujiie, S, et al. (2008). Functional characterization of 17 CYP2D6 allelic variants (CYP2D6.2, 10, 14A-B, 18, 27, 36, 39, 47–51, 53–55, and 57). Drug Metab Dispos, 36(12), 24602467. doi:10.1124/dmd.108.023242.Google Scholar
Sanchez, C, Hyttel, J (1999). Comparison of the effects of antidepressants and their metabolites on reuptake of biogenic amines and on receptor binding. Cell Mol Neurobiol, 19(4), 467489.Google Scholar
Saruwatari, J, Ishitsu, T, Nakagawa, K (2010). Update on the genetic polymorphisms of drug-metabolizing enzymes in antiepileptic drug therapy. Pharmaceuticals (Basel), 3(8), 27092732. doi:10.3390/ph3082709.Google Scholar
Schrag, ML, Wienkers, LC (2001). Covalent alteration of the CYP3A4 active site: evidence for multiple substrate binding domains. Arch Biochem Biophys, 391(1), 4955. doi:10.1006/abbi.2001.2401.Google Scholar
Sezutsu, H, Le Goff, G, Feyereisen, R (2013). Origins of P450 diversity. Philos Trans R Soc Lond B Biol Sci, 368(1612), 20120428.Google Scholar
Shimada, T, Yamazaki, H, Mimura, M, Inui, Y, Guengerich, FP (1994). Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther, 270(1), 414423.Google Scholar
Shin, JG, Park, JY, Kim, MJ, et al. (2002). Inhibitory effects of tricyclic antidepressants (TCAs) on human cytochrome P450 enzymes in vitro: mechanism of drug interaction between TCAs and phenytoin. Drug Metab Dispos, 30(10), 11021107.Google Scholar
Siegle, I, Fritz, P, Eckhardt, K, Zanger, UM, Eichelbaum, M (2001). Cellular localization and regional distribution of CYP2D6 mRNA and protein expression in human brain. Pharmacogenetics, 11(3), 237245.Google Scholar
Sim, E, Westwood, I, Fullam, E (2007). Arylamine N-acetyltransferases. Expert Opin Drug Metab Toxicol, 3(2), 169184. doi:10.1517/17425255.3.2.169.Google Scholar
Sim, E, Abuhammad, A, Ryan, A (2014). Arylamine N-acetyltransferases: from drug metabolism and pharmacogenetics to drug discovery. Br J Pharmacol, 171(11), 27052725. doi:10.1111/bph.12598.Google Scholar
Sim, SC, Risinger, C, Dahl, ML, et al. (2006). A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther, 79(1), 103113. doi:10.1016/j.clpt.2005.10.002.Google Scholar
Sindrup, SH, Gram, LF, Brøsen, K, Eshoj, O, Mogensen, EF (1990). The selective serotonin reuptake inhibitor paroxetine is effective in the treatment of diabetic neuropathy symptoms. Pain, 42(2), 135144.Google Scholar
Sindrup, SH, Grodum, E, Gram, LF, Beck-Nielsen, H (1991). Concentration-response relationship in paroxetine treatment of diabetic neuropathy symptoms: a patient-blinded dose-escalation study. Ther Drug Monit, 13(5), 408414.Google Scholar
Sindrup, SH, Brøsen, K, Hansen, MG, et al. (1993). Pharmacokinetics of citalopram in relation to the sparteine and the mephenytoin oxidation polymorphisms. Ther Drug Monit, 15(1), 1117.Google Scholar
Singh, D, Cho, WC, Upadhyay, G (2015). Drug-induced liver toxicity and prevention by herbal antioxidants: an overview. Front Physiol, 6, 363. doi:10.3389/fphys.2015.00363.Google Scholar
Sjöqvist, F, Bertilsson, L (1984). Clinical pharmacology of antidepressant drugs: pharmacogenetics. Adv Biochem Psychopharmacol, 39, 359372.Google Scholar
Sjöqvist, F, Bertilsson, L, Asberg, M (1980). Monitoring tricyclic antidepressants. Ther Drug Monit, 2(1), 8593.Google Scholar
Skoda, RC, Demierre, A, McBride, OW, Gonzalez, FJ, Meyer, UA (1988). Human microsomal xenobiotic epoxide hydrolase. Complementary DNA sequence, complementary DNA-directed expression in COS-1 cells, and chromosomal localization. J Biol Chem, 263(3), 15491554.Google Scholar
Smith, RL (1986). Special Issue – Human Genetic Variations in Oxidative Drug-Metabolism – Introduction. Xenobiotica, 16(5), 361365. doi:10.3109/00498258609050244.Google Scholar
Sobanski, T, Bagli, M, Laux, G, Rao, ML (1997). Serotonin syndrome after lithium add-on medication to paroxetine. Pharmacopsychiatry, 30(3), 106107. doi:10.1055/s-2007-979491.Google Scholar
Spina, E, Gitto, C, Avenoso, A, et al. (1997). Relationship between plasma desipramine levels, CYP2D6 phenotype and clinical response to desipramine: a prospective study. Eur J Clin Pharmacol, 51(5), 395398.Google Scholar
Sproule, BA, Naranjo, CA, Brenmer, KE, Hassan, PC (1997). Selective serotonin reuptake inhibitors and CNS drug interactions. A critical review of the evidence. Clin Pharmacokinet, 33(6), 454471.Google Scholar
Staudinger, JL, Xu, C, Cui, YJ, Klaassen, CD (2010). Nuclear receptor-mediated regulation of carboxylesterase expression and activity. Expert Opin Drug Metab Toxicol, 6(3), 261271. doi:10.1517/17425250903483215.Google Scholar
Steimer, W, Zöpf, K, von Amelunxen, S, et al. (2004). Allele-specific change of concentration and functional gene dose for the prediction of steady-state serum concentrations of amitriptyline and nortriptyline in CYP2C19 and CYP2D6 extensive and intermediate metabolizers. Clin Chem, 50(9), 16231633. doi:10.1373/clinchem.2003.030825.Google Scholar
Steimer, W, Zopf, K, von Amelunxen, S, et al. (2005). Amitriptyline or not, that is the question: pharmacogenetic testing of CYP2D6 and CYP2C19 identifies patients with low or high risk for side effects in amitriptyline therapy. Clin Chem, 51(2), 376385. doi:10.1373/clinchem.2004.041327.Google Scholar
Stern, RS, Divito, SJ (2017). Stevens-Johnson syndrome and toxic epidermal necrolysis: associations, outcomes, and pathobiology – thirty years of progress but still much to be done. J Invest Dermatol, 137(5), 10041008. doi:10.1016/j.jid.2017.01.003.Google Scholar
Sukasem, C, Chaichan, C, Nakkrut, T, et al. (2018). Association between HLA-B alleles and carbamazepine-induced maculopapular exanthema and severe cutaneous reactions in Thai patients. J Immunol Res, 2018, 2780272. doi:10.1155/2018/2780272.Google Scholar
Sweet, RA, Pollock, BG, Mulsant, BH, et al. (2000). Pharmacologic profile of perphenazine’s metabolites. J Clin Psychopharmacol, 20(2), 181197.Google Scholar
Takagi, S, Nakajima, M, Mohri, T, Yokoi, T (2008). Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4. J Biol Chem, 283(15), 96749680. doi:10.1074/jbc.M709382200.Google Scholar
Takeuchi, F, McGinnis, R, Bourgeois, S, et al. (2009). A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet, 5(3), e1000433. doi:10.1371/journal.pgen.1000433.Google Scholar
Tang, MH, Pinsky, EG (2015). Mood and affect disorders. Pediatr Rev, 36(2), 5260; quiz 61. doi:10.1542/pir.36-2-52.Google Scholar
Tanner, JA, Prasad, B, Claw, KG, et al. (2017). Predictors of variation in CYP2A6 mRNA, protein, and enzyme activity in a human liver bank: influence of genetic and nongenetic factors. J Pharmacol Exp Ther, 360(1), 129139. doi:10.1124/jpet.116.237594.Google Scholar
Taskinen, J, Ethell, BT, Pihlavisto, P, et al. (2003). Conjugation of catechols by recombinant human sulfotransferases, UDP-glucuronosyltransferases, and soluble catechol O-methyltransferase: structure-conjugation relationships and predictive models. Drug Metab Dispos, 31(9), 11871197. doi:10.1124/dmd.31.9.1187.Google Scholar
Teitelbaum, AM, Murphy, SE, Akk, G, et al. (2018). Nicotine dependence is associated with functional variation in FMO3, an enzyme that metabolizes nicotine in the brain. Pharmacogenomics J, 18(1), 136143. doi:10.1038/tpj.2016.92.Google Scholar
Thomas, DR, Nelson, DR, Johnson, AM (1987). Biochemical effects of the antidepressant paroxetine, a specific 5-hydroxytryptamine uptake inhibitor. Psychopharmacology (Berl), 93(2), 193200.Google Scholar
Tirona, RG, Lee, W, Leake, BF, et al. (2003). The orphan nuclear receptor HNF4alpha determines PXR- and CAR-mediated xenobiotic induction of CYP3A4. Nat Med, 9(2), 220224. doi:10.1038/nm815.Google Scholar
Tolson, AH, Wang, H (2010). Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Adv Drug Deliv Rev, 62(13), 12381249. doi:10.1016/j.addr.2010.08.006.Google Scholar
Toscano, C, Klein, K, Blievernicht, J, et al. (2006). Impaired expression of CYP2D6 in intermediate metabolizers carrying the *41 allele caused by the intronic SNP 2988G>A: evidence for modulation of splicing events. Pharmacogenet Genomics, 16(10), 755766. doi:10.1097/01.fpc.0000230112.96086.e0.Google Scholar
Tsuchiya, K, Gatanaga, H, Tachikawa, N, et al. (2004). Homozygous CYP2B6 *6 (Q172H and K262R) correlates with high plasma efavirenz concentrations in HIV-1 patients treated with standard efavirenz-containing regimens. Biochem Biophys Res Commun, 319(4), 13221326. doi:10.1016/j.bbrc.2004.05.116.Google Scholar
Tucker, GT, Houston, JB, Huang, SM (2001). Optimizing drug development: strategies to assess drug metabolism/transporter interaction potential – towards a consensus. Br J Clin Pharmacol, 52(1), 107117.Google Scholar
Tunbridge, EM, Harrison, PJ, Weinberger, DR (2006). Catechol-O-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biol Psychiatry, 60(2), 141151. doi:10.1016/j.biopsych.2005.10.024.Google Scholar
Turpeinen, M, Tolonen, A, Chesne, C, et al. (2009). Functional expression, inhibition and induction of CYP enzymes in HepaRG cells. Toxicol In Vitro, 23(4), 748753. doi:10.1016/j.tiv.2009.03.008.Google Scholar
Ueda, K, Clark, DP, Chen, CJ, et al. (1987). The human multidrug resistance (mdr1) gene. cDNA cloning and transcription initiation. J Biol Chem, 262(2), 505508.Google Scholar
Ufer, M, Dilger, K, Leschhorn, L, et al. (2008). Influence of CYP3A4, CYP3A5, and ABCB1 genotype and expression on budesonide pharmacokinetics: a possible role of intestinal CYP3A4 expression. Clin Pharmacol Ther, 84(1), 4346. doi:10.1038/sj.clpt.6100505.Google Scholar
Uhr, M, Tontsch, A, Namendorf, C, et al. (2008). Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron, 57(2), 203209. doi:10.1016/j.neuron.2007.11.017.Google Scholar
US National Library of Medicine (2016). Abilify – aripiprazole tablet. Available at: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=c040bd1d-45b7-49f2-93ea-aed7220b30ac (last accessed 5.12.18).Google Scholar
Václavíková, R, Hughes, DJ, Souček, P (2015). Microsomal epoxide hydrolase 1 (EPHX1): gene, structure, function, and role in human disease. Gene, 571(1), 18. doi:10.1016/j.gene.2015.07.071.Google Scholar
Vaishnavi, SN, Nemeroff, CB, Plott, SJ, et al. (2004). Milnacipran: a comparative analysis of human monoamine uptake and transporter binding affinity. Biol Psychiatry, 55(3), 320322.Google Scholar
van der Weide, J, Steijns, LSW (1999). Cytochrome P450 enzyme system: genetic polymorphisms and impact on clinical pharmacology. Ann Clin Biochem, 36(6), 722729.Google Scholar
van der Weide, K, van der Weide, J (2015). The influence of the CYP3A4*22 polymorphism and CYP2D6 polymorphisms on serum concentrations of aripiprazole, haloperidol, pimozide, and risperidone in psychiatric patients. J Clin Psychopharmacol, 35(3), 228236. doi:10.1097/JCP.0000000000000319.Google Scholar
van Kempen, GMJ (1971). Urinary excretion of perphenazine and its sulfoxide during administration in oral and long-acting injectable form. Psychopharmacology (Berl), 21(3), 283286.Google Scholar
Veeramah, KR, Thomas, MG, Weale, ME, et al. (2008). The potentially deleterious functional variant flavin-containing monooxygenase 2*1 is at high frequency throughout sub-Saharan Africa. Pharmacogenet Genomics, 18(10), 877886. doi:10.1097/FPC.0b013e3283097311.Google Scholar
Vistisen, K, Poulsen, HE, Loft, S (1992). Foreign compound metabolism capacity in man measured from metabolites of dietary caffeine. Carcinogenesis, 13(9), 15611568.Google Scholar
von Moltke, LL, Greenblatt, DJ, Giancarlo, GM, et al. (2001). Escitalopram (S-citalopram) and its metabolites in vitro: cytochromes mediating biotransformation, inhibitory effects, and comparison to R-citalopram. Drug Metab Dispos, 29(8), 11021109.Google Scholar
von Richter, O, Burk, O, Fromm, MF, et al. (2004). Cytochrome P450 3A4 and P-glycoprotein expression in human small intestinal enterocytes and hepatocytes: a comparative analysis in paired tissue specimens. Clin Pharmacol Ther, 75(3), 172183. doi:10.1016/j.clpt.2003.10.008.Google Scholar
Wacher, VJ, Salphati, L, Benet, LZ (2001). Active secretion and enterocytic drug metabolism barriers to drug absorption. Adv Drug Deliv Rev, 46(1–3), 89102.Google Scholar
Wang, D, Poi, MJ, Sun, X, et al. (2014). Common CYP2D6 polymorphisms affecting alternative splicing and transcription: long-range haplotypes with two regulatory variants modulate CYP2D6 activity. Hum Mol Genet, 23(1), 268278. doi:10.1093/hmg/ddt417.Google Scholar
Wang, D, Papp, AC, Sun, X (2015). Functional characterization of CYP2D6 enhancer polymorphisms. Hum Mol Genet, 24(6), 15561562. doi:10.1093/hmg/ddu566.Google Scholar
Wang, H, Tompkins, LM (2008). CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme. Curr Drug Metab, 9(7), 598610.Google Scholar
Ward, BA, Gorski, JC, Jones, DR, et al. (2003). The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J Pharmacol Exp Ther, 306(1), 287300. doi:10.1124/jpet.103.049601.Google Scholar
Watson, CP (2000). The treatment of neuropathic pain: antidepressants and opioids. Clin J Pain, 16(2 Suppl), S49S55.Google Scholar
Weinshilboum, RM, Otterness, DM, Szumlanski, CL (1999). Methylation pharmacogenetics: catechol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annu Rev Pharmacol Toxicol, 39, 1952. doi:10.1146/annurev.pharmtox.39.1.19.Google Scholar
Werk, AN, Lefeldt, S, Bruckmueller, H, et al. (2014). Identification and characterization of a defective CYP3A4 genotype in a kidney transplant patient with severely diminished tacrolimus clearance. Clin Pharmacol Ther, 95(4), 416422. doi:10.1038/clpt.2013.210.Google Scholar
Whetstine, JR, Yueh, MF, McCarver, DG, et al. (2000). Ethnic differences in human flavin-containing monooxygenase 2 (FMO2) polymorphisms: detection of expressed protein in African-Americans. Toxicol Appl Pharmacol, 168(3), 216224. doi:10.1006/taap.2000.9050.Google Scholar
Windmill, KF, Gaedigk, A, Hall, PM, et al. (2000). Localization of N-acetyltransferases NAT1 and NAT2 in human tissues. Toxicol Sci, 54(1), 1929.Google Scholar
Wong, DT, Horng, JS, Bymaster, FP, Hauser, KL, Molloy, BB (1974). A selective inhibitor of serotonin uptake: Lilly 110140, 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine. Life Sci, 15(3), 471479.Google Scholar
Wong, DT, Bymaster, FP, Horng, JS, Molloy, BB (1975). A new selective inhibitor for uptake of serotonin into synaptosomes of rat brain: 3-(p-trifluoromethylphenoxy). N-methyl-3-phenylpropylamine. J Pharmacol Exp Ther, 193(3), 804811.Google Scholar
Woosley, RL, Chen, Y, Freiman, JP, Gillis, RA (1993). Mechanism of the cardiotoxic actions of terfenadine. JAMA, 269(12), 15321536.Google Scholar
Wu, B, Kulkarni, K, Basu, S, Zhang, S, Hu, M (2011). First-pass metabolism via UDP-glucuronosyltransferase: a barrier to oral bioavailability of phenolics. J Pharm Sci, 100(9), 36553681. doi:10.1002/jps.22568.Google Scholar
Wu, FS, Gibbs, TT, Farb, DH (1991). Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor. Mol Pharmacol, 40(3), 333336.Google Scholar
Xie, Y, Ke, S, Ouyang, N, et al. (2009). Epigenetic regulation of transcriptional activity of pregnane X receptor by protein arginine methyltransferase 1. J Biol Chem, 284(14), 91999205. doi:10.1074/jbc.M806193200.Google Scholar
Xu, C, Li, CY, Kong, AN (2005). Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res, 28(3), 249268.Google Scholar
Yamazaki, H, Inui, Y, Yun, C-H, Guengerich, FP, Shimada, T (1992). Cytochrome P450 2E1 and 2A6 enzymes as major catalysts for metabolic activation of N-nitrosodialkylamines and tobacco-related nitrosamines in human liver microsomes. Carcinogenesis, 13(10), 17891794.Google Scholar
Yasukochi, Y, Satta, Y (2011). Evolution of the CYP2D gene cluster in humans and four non-human primates. Genes Genet Syst, 86(2), 109116.Google Scholar
Yeung, CK, Lang, DH, Thummel, KE, Rettie, AE (2000). Immunoquantitation of FMO1 in human liver, kidney, and intestine. Drug Metab Dispos, 28(9), 11071111.Google Scholar
Yimer, G, Amogne, W, Habtewold, A, et al. (2012). High plasma efavirenz level and CYP2B6*6 are associated with efavirenz-based HAART-induced liver injury in the treatment of naive HIV patients from Ethiopia: a prospective cohort study. Pharmacogenomics J, 12(6), 499506. doi:10.1038/tpj.2011.34.Google Scholar
Yokota, H, Tamura, S, Furuya, H, et al. (1993). Evidence for a new variant CYP2D6 allele CYP2D6J in a Japanese population associated with lower in vivo rates of sparteine metabolism. Pharmacogenetics, 3(5), 256263.Google Scholar
Yoshinari, K, Ueda, R, Kusano, K, et al. (2008). Omeprazole transactivates human CYP1A1 and CYP1A2 expression through the common regulatory region containing multiple xenobiotic-responsive elements. Biochem Pharmacol, 76(1), 139145. doi:10.1016/j.bcp.2008.04.005.Google Scholar
Yu, AM, Idle, JR, Herraiz, T, Kupfer, A, Gonzalez, FJ (2003). Screening for endogenous substrates reveals that CYP2D6 is a 5-methoxyindolethylamine O-demethylase. Pharmacogenetics, 13(6), 307319. doi:10.1097/01.fpc.0000054094.48725.b7.Google Scholar
Yue, Q-Y, Zhong, Z-H, Tybring, G, et al. (1998). Pharmacokinetics of nortriptyline and its 10-hydroxy metabolite in Chinese subjects of different CYP2D6 genotypes. Clin Pharmacol Ther, 64(4), 384390.Google Scholar
Zanger, UM, Klein, K (2013). Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): advances on polymorphisms, mechanisms, and clinical relevance. Front Genet, 4, 24.Google Scholar
Zanger, UM, Schwab, M (2013). Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther, 138(1), 103141. doi:10.1016/j.pharmthera.2012.12.007.Google Scholar
Zanger, UM, Klein, K, Saussele, T, et al. (2007). Polymorphic CYP2B6: molecular mechanisms and emerging clinical significance. Pharmacogenomics, 8(7), 743759. doi:10.2217/14622416.8.7.743.Google Scholar
Zhou, H, Josephy, PD, Kim, D, Guengerich, FP (2004). Functional characterization of four allelic variants of human cytochrome P450 1A2. Arch Biochem Biophys, 422(1), 2330.Google Scholar
Ziegler, VE, Biggs, JT (1977). Tricyclic plasma levels. Effect of age, race, sex, and smoking. JAMA, 238(20), 21672169.Google Scholar
Ziegler, VE, Clayton, PJ, Biggs, JT (1977). A comparison study of amitriptyline and nortriptyline with plasma levels. Arch Gen Psychiatry, 34(5), 607612.Google Scholar
Zukunft, J, Lang, T, Richter, T, et al. (2005). A natural CYP2B6 TATA box polymorphism (-82T–> C) leading to enhanced transcription and relocation of the transcriptional start site. Mol Pharmacol, 67(5), 17721782. doi:10.1124/mol.104.008086.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×