Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T04:15:30.995Z Has data issue: false hasContentIssue false

Chapter 6 - Enriched Social Connectedness and Brain Function

from Part II - Society Interacting with Brain, Cognition, and Health in Late Life

Published online by Cambridge University Press:  28 September 2023

Jeanyung Chey
Affiliation:
Seoul National University
Get access

Summary

A growing body of evidence suggests a strong link between how individuals maintain an enriched social network and their brain health. Both the quantity and quality of social networks provide abundant social connections. Through persistent social interactions, individuals’ neurocognitive health appears to benefit from cognitively stimulating activity as well as social support. By utilizing various neuroimaging methods, researchers have found that maintaining an enriched social network is likely to lead to better neural functioning that could delay or counter the effects of neuropathological progression in late life. This chapter reviews studies examining the relationship between social network characteristics and neurocognitive health. The studies highlight that social connectedness and brain functioning have reciprocal effects. It also discusses whether larger and cohesively connected social networks lead to a healthier brain and better cognitive function, as well as the moderators of this association.

Type
Chapter
Information
Society within the Brain
How Social Networks Interact with Our Brain, Behavior and Health as We Age
, pp. 141 - 161
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphs, R., Baron-Cohen, S., & Tranel, D. (2002). Impaired recognition of social emotions following amygdala damage. Journal of Cognitive Neuroscience, 14(8), 12641274. https://doi.org/10.1162/089892902760807258Google Scholar
Badre, D., & D’Esposito, M. (2009). Is the rostro-caudal axis of the frontal lobe hierarchical? Nature Reviews Neuroscience, 10(9), 659669. https://doi.org/10.1038/nrn2667Google Scholar
Bang, M., Kim, J., An, S. K., Youm, Y., Chey, J., Kim, H. C., Park, K., Namkoong, K., & Lee, E. (2019). Associations of systemic inflammation with frontotemporal functional network connectivity and out-degree social-network size in community-dwelling older adults. Brain, Behavior, and Immunity, 79, 309313. https://doi.org/10.1016/j.bbi.2019.01.025Google Scholar
Barnes, D. E. (2011). The Mediterranean diet: Good for the heart = good for the brain? Annals of Neurology, 69(2), 226228. https://doi.org/10.1002/ana.22376Google Scholar
Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends in Cognitive Sciences, 17(10), 502509. https://doi.org/10.1016/j.tics.2013.08.012CrossRefGoogle ScholarPubMed
Bell, H. C., Pellis, S. M., & Kolb, B. (2010). Juvenile peer play experience and the development of the orbitofrontal and medial prefrontal cortices. Behavioural Brain Research, 207(1), 713. https://doi.org/10.1016/j.bbr.2009.09.029CrossRefGoogle ScholarPubMed
Bickart, K. C., Brickhouse, M., Negreira, A., Sapolsky, D., Barrett, L. F., & Dickerson, B. C. (2014). Atrophy in distinct corticolimbic networks in frontotemporal dementia relates to social impairments measured using the Social Impairment Rating Scale. Journal of Neurology, Neurosurgery & Psychiatry, 85(4), 438448. https://doi.org/10.1136/jnnp-2012-304656Google Scholar
Bickart, K. C., Dickerson, B. C., Barrett, L. F., & Feldman Barrett, L. (2014). The amygdala as a hub in brain networks that support social life. Neuropsychologia, 63, 235248. https://doi.org/10.1016/j.neuropsychologia.2014.08.013Google Scholar
Bickart, K. C., Hollenbeck, M. C., Barrett, L. F., & Dickerson, B. C. (2012). Intrinsic Amygdala – Cortical Functional Connectivity Predicts Social Network Size in Humans. Journal of Neuroscience, 32(42), 1472914741. https://doi.org/10.1523/JNEUROSCI.1599-12.2012Google Scholar
Bickart, K. C., Wright, C. I., Dautoff, R. J., Dickerson, B. C., & Barrett, L. F. (2011). Amygdala volume and social network size in humans. Nature Neuroscience, 14(2), 163164. https://doi.org/10.1038/nn.2724CrossRefGoogle ScholarPubMed
Blevins, C. L., Sagui, S. J., & Bennett, J. M. (2017). Inflammation and positive affect: Examining the stress-buffering hypothesis with data from the National Longitudinal Study of Adolescent to Adult Health. Brain, Behavior, and Immunity, 61, 2126. https://doi.org/10.1016/j.bbi.2016.07.149Google Scholar
Blumen, H. M., & Verghese, J. (2019). Gray matter volume covariance networks associated with social networks in older adults. Social Neuroscience, 14(5), 559570. https://doi.org/10.1080/17470919.2018.1535999Google Scholar
Casaletto, K. B., Elahi, F. M., Staffaroni, A. M., Walters, S., Contreras, W. R., Wolf, A., Dubal, D., Miller, B., Yaffe, K., & Kramer, J. H. (2019). Cognitive aging is not created equally: Differentiating unique cognitive phenotypes in “normal” adults. Neurobiology of Aging, 77, 1319. https://doi.org/10.1016/j.neurobiolaging.2019.01.007Google Scholar
Conti, L., Riccitelli, G. C., Preziosa, P., Vizzino, C., Marchesi, O., Rocca, M. A., & Filippi, M. (2021). Effect of cognitive reserve on structural and functional MRI measures in healthy subjects: A multiparametric assessment. Journal of Neurology, 268(5), 17801791. https://doi.org/10.1007/s00415-020-10331-6Google Scholar
Dávid-Barrett, T., & Dunbar, R. I. M. (2013). Processing power limits social group size: Computational evidence for the cognitive costs of sociality. Proceedings of the Royal Society B: Biological Sciences, 280(1765), 20131151. https://doi.org/10.1098/rspb.2013.1151Google Scholar
Davis, S. W., Kragel, J. E., Madden, D. J., & Cabeza, R. (2012). The architecture of cross-hemispheric communication in the aging brain: Linking behavior to functional and structural connectivity. Cerebral Cortex, 22(1), 232242. https://doi.org/10.1093/cercor/bhr123Google Scholar
Dunbar, R. I. M. (2014). The social brain: Psychological underpinnings and implications for the structure of organizations. Current Directions in Psychological Science, 23(2), 109114. https://doi.org/10.1177/0963721413517118Google Scholar
Dziura, S. L., & Thompson, J. C. (2014). Social-network complexity in humans is associated with the neural response to social information. Psychological Science, 25(11), 20952101. https://doi.org/10.1177/0956797614549209Google Scholar
Ehlers, D. K., Daugherty, A. M., Burzynska, A. Z., Fanning, J., Awick, E. A., Chaddock-Heyman, L., Kramer, A. F., & McAuley, E. (2017). Regional brain volumes moderate, but do not mediate, the effects of group-based exercise training on reductions in loneliness in older adults. Frontiers in Aging Neuroscience, 9(APR). https://doi.org/10.3389/fnagi.2017.00110CrossRefGoogle Scholar
Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., Walhovd, K. B., & Alzheimer’s Disease Neuroimaging Initiative. (2014). What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Progress in Neurobiology, 117(2014), 2040. https://doi.org/10.1016/j.pneurobio.2014.02.004CrossRefGoogle ScholarPubMed
Foubert-Samier, A., Catheline, G., Amieva, H., Dilharreguy, B., Helmer, C., Allard, M., & Dartigues, J.-F. (2012). Education, occupation, leisure activities, and brain reserve: A population-based study. Neurobiology of Aging, 33(2), 423.e15423.e25. https://doi.org/10.1016/j.neurobiolaging.2010.09.023Google Scholar
Genon, S., Reid, A., Langner, R., Amunts, K., & Eickhoff, S. B. (2018). How to characterize the function of a brain region. Trends in Cognitive Sciences, 22(4), 350364. https://doi.org/10.1016/j.tics.2018.01.010Google Scholar
Gianaros, P. J., Kraynak, T. E., Kuan, D. C. H., Gross, J. J., McRae, K., Hariri, A. R., Manuck, S. B., Rasero, J., & Verstynen, T. D. (2020). Affective brain patterns as multivariate neural correlates of cardiovascular disease risk. Social Cognitive and Affective Neuroscience, 15(10), 10341045. https://doi.org/10.1093/scan/nsaa050Google Scholar
Gianaros, P. J., Marsland, A. L., Kuan, D. C. H., Schirda, B. L., Jennings, J. R., Sheu, L. K., Hariri, A. R., Gross, J. J., & Manuck, S. B. (2014). An inflammatory pathway links atherosclerotic cardiovascular disease risk to neural activity evoked by the cognitive regulation of emotion. Biological Psychiatry, 75(9), 738745. https://doi.org/10.1016/j.biopsych.2013.10.012Google Scholar
Gianaros, P. J., Marsland, A. L., Sheu, L. K., Erickson, K. I., & Verstynen, T. D. (2013). Inflammatory pathways link socioeconomic inequalities to white matter architecture. Cerebral Cortex, 23(9), 20582071. https://doi.org/10.1093/cercor/bhs191Google Scholar
Gianaros, P. J., & Wager, T. D. (2015). Brain-body pathways linking psychological stress and physical health. Current Directions in Psychological Science, 24(4), 313321. https://doi.org/10.1177/0963721415581476CrossRefGoogle ScholarPubMed
Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C., & Gage, F. H. (2010). Mechanisms underlying inflammation in neurodegeneration. Cell, 140(6), 918934. https://doi.org/10.1016/j.cell.2010.02.016Google Scholar
Habeck, C., Razlighi, Q., Gazes, Y., Barulli, D., Steffener, J., & Stern, Y. (2016). Cognitive reserve and brain maintenance: Orthogonal concepts in theory and practice. Cerebral Cortex, 1–8. https://doi.org/10.1093/cercor/bhw208Google Scholar
Hackett, R. A., Hamer, M., Endrighi, R., Brydon, L., & Steptoe, A. (2012). Loneliness and stress-related inflammatory and neuroendocrine responses in older men and women. Psychoneuroendocrinology, 37(11), 18011809. https://doi.org/10.1016/j.psyneuen.2012.03.016Google Scholar
Hampton, W. H., Unger, A., Von Der Heide, R. J., & Olson, I. R. (2016). Neural connections foster social connections: A diffusion-weighted imaging study of social networks. Social Cognitive and Affective Neuroscience, 11(5), 721727. https://doi.org/10.1093/scan/nsv153Google Scholar
Hermes, G. L., Rosenthal, L., Montag, A., & McClintock, M. K. (2006). Social isolation and the inflammatory response: Sex differences in the enduring effects of a prior stressor. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 290(2), R273R282. https://doi.org/10.1152/ajpregu.00368.2005Google Scholar
Jaremka, L. M., Fagundes, C. P., Peng, J., Bennett, J. M., Glaser, R., Malarkey, W. B., & Kiecolt-Glaser, J. K. (2013). Loneliness promotes inflammation during acute stress. Psychological Science, 24(7), 10891097. https://doi.org/10.1177/0956797612464059CrossRefGoogle ScholarPubMed
Joo, W., Kwak, S., Youm, Y., & Chey, J. (2017). Brain functional connectivity difference in the complete network of an entire village: The role of social network size and embeddedness. Scientific Reports, 7(1), 4465. https://doi.org/10.1038/s41598–017-04904-1CrossRefGoogle ScholarPubMed
Kalpouzos, G., Persson, J., & Nyberg, L. (2012). Local brain atrophy accounts for functional activity differences in normal aging. Neurobiology of Aging, 33(3), 623.e1623.e13. https://doi.org/10.1016/j.neurobiolaging.2011.02.021Google Scholar
Kanai, R., Bahrami, B., Duchaine, B., Janik, A., Banissy, M. J., & Rees, G. (2012). Brain structure links loneliness to social perception. Current Biology, 22(20), 19751979. https://doi.org/10.1016/j.cub.2012.08.045Google Scholar
Kanai, R., & Rees, G. (2011). The structural basis of inter-individual differences in human behaviour and cognition. Nature Reviews. Neuroscience, 12(4), 231242. https://doi.org/10.1038/nrn3000CrossRefGoogle ScholarPubMed
Karelina, K., Norman, G. J., Zhang, N., Morris, J. S., Peng, H., & DeVries, A. C. (2009). Social isolation alters neuroinflammatory response to stroke. Proceedings of the National Academy of Sciences, 106(14), 58955900. https://doi.org/10.1073/pnas.0810737106CrossRefGoogle ScholarPubMed
Kim, G. E., Han, J. W., Kim, T. H., Suh, S. W., Bae, J. Bin, Kim, J. H., & Kim, K. W. (2020). Hippocampus mediates the effect of emotional support on cognitive function in older adults. The Journals of Gerontology: Series A, 75(8), 15021507. https://doi.org/10.1093/gerona/glz183Google ScholarPubMed
Kirby, L. A., Moraczewski, D., Warnell, K., Velnoskey, K., & Redcay, E. (2018). Social network size relates to developmental neural sensitivity to biological motion. Developmental Cognitive Neuroscience, 30(March), 169177. https://doi.org/10.1016/j.dcn.2018.02.012Google Scholar
Kolb, B., Gibb, R., & Gorny, G. (2003). Experience-dependent changes in dendritic arbor and spine density in neocortex vary qualitatively with age and sex. Neurobiology of Learning and Memory, 79(1), 110. https://doi.org/10.1016/S1074–7427(02)00021-7CrossRefGoogle ScholarPubMed
Kolb, B., Mychasiuk, R., Muhammad, A., Li, Y., Frost, D. O., & Gibb, R. (2012). Experience and the developing prefrontal cortex. Proceedings of the National Academy of Sciences, 109, 1718617193. https://doi.org/10.1073/pnas.1121251109Google Scholar
Krol, S. A., Meyer, M. L., Lieberman, M. D., & Bartz, J. A. (2018). Social working memory predicts social network size in humans. Adaptive Human Behavior and Physiology, 4(4), 387399. https://doi.org/10.1007/s40750–018-0100-9Google Scholar
Kwak, S., Joo, W., Youm, Y., & Chey, J. (2018). Social brain volume is associated with in-degree social network size among older adults. Proceedings of the Royal Society B: Biological Sciences, 285(1871), 20172708. https://doi.org/10.1098/rspb.2017.2708Google Scholar
Lewis, P. A., Rezaie, R., Brown, R., Roberts, N., & Dunbar, R. I. M. (2011). Ventromedial prefrontal volume predicts understanding of others and social network size. NeuroImage, 57(4), 16241629. https://doi.org/10.1016/j.neuroimage.2011.05.030CrossRefGoogle ScholarPubMed
Lin, C., Keles, U., Tyszka, J. M., Gallo, M., Paul, L., & Adolphs, R. (2020). No strong evidence that social network index is associated with gray matter volume from a data-driven investigation. Cortex, 125, 307317. https://doi.org/10.1016/j.cortex.2020.01.021Google Scholar
Liu, X., Liu, S., Huang, R., Chen, X., Xie, Y., Ma, R., Luo, Y., Bu, J., & Zhang, X. (2018). Neuroimaging studies reveal the subtle difference among social network size measurements and shed light on new directions. Frontiers in Neuroscience, 12. https://doi.org/10.3389/fnins.2018.00461Google Scholar
Lockhart, S. N., & DeCarli, C. (2014). Structural imaging measures of brain aging. Neuropsychology Review, 24(3), 271289. https://doi.org/10.1007/s11065–014-9268-3Google Scholar
Lövdén, M., Bäckman, L., Lindenberger, U., Schaefer, S., & Schmiedek, F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin, 136(4), 659676. https://doi.org/10.1037/a0020080Google Scholar
Makinodan, M., Rosen, K. M., Ito, S., & Corfas, G. (2012). A Critical period for social experience-dependent oligodendrocyte maturation and myelination. Science, 337(6100), 13571360. https://doi.org/10.1126/science.1220845Google Scholar
Marques, P., Soares, J. M., Magalhães, R., Santos, N. C., & Sousa, N. (2015). The bounds of education in the human brain connectome. Scientific Reports, 5, 12812. https://doi.org/10.1038/srep12812Google Scholar
Marsland, A. L., Gianaros, P. J., Abramowitch, S. M., Manuck, S. B., & Hariri, A. R. (2008). Interleukin-6 covaries inversely with hippocampal grey matter volume in middle-aged adults. Biological Psychiatry, 64(6), 484490. https://doi.org/10.1016/j.biopsych.2008.04.016Google Scholar
Marsland, A. L., Gianaros, P. J., Kuan, D. C. H., Sheu, L. K., Krajina, K., & Manuck, S. B. (2015). Brain morphology links systemic inflammation to cognitive function in midlife adults. Brain, Behavior, and Immunity, 48, 195204. https://doi.org/10.1016/j.bbi.2015.03.015Google Scholar
McDonough, I. M., Haber, S., Bischof, G. N., & Park, D. C. (2015). The Synapse Project: Engagement in mentally challenging activities enhances neural efficiency. Restorative Neurology and Neuroscience, 33(6), 865882. https://doi.org/10.3233/RNN-150533Google Scholar
Meunier, D., Lambiotte, R., Fornito, A., Ersche, K. D., & Bullmore, E. T. (2009). Hierarchical modularity in human brain functional networks. Frontiers in Human Neuroscience, 3(October), 112. https://doi.org/10.3389/neuro.11.037.2009Google ScholarPubMed
Meunier, D., Stamatakis, E. A., & Tyler, L. K. (2014). Age-related functional reorganization, structural changes, and preserved cognition. Neurobiology of Aging, 35(1), 4254. https://doi.org/10.1016/j.neurobiolaging.2013.07.003Google Scholar
Meyer, M. L., Spunt, R. P., Berkman, E. T., Taylor, S. E., & Lieberman, M. D. (2012). Evidence for social working memory from a parametric functional MRI study. Proceedings of the National Academy of Sciences, 109(6), 18831888. https://doi.org/10.1073/pnas.1121077109Google Scholar
Molesworth, T., Sheu, L. K., Cohen, S., Gianaros, P. J., & Verstynen, T. D. (2014). Social network diversity and white matter microstructural integrity in humans. Social Cognitive and Affective Neuroscience, 10(9), 11691176. https://doi.org/10.1093/scan/nsv001Google Scholar
Ospina, J. P., Larson, A. G., Jalilianhasanpour, R., Williams, B., Diez, I., Dhand, A., Dickerson, B. C., & Perez, D. L. (2019). Individual differences in social network size linked to nucleus accumbens and hippocampal volumes in functional neurological disorder: A pilot study. Journal of Affective Disorders, 258, 5054. https://doi.org/10.1016/j.jad.2019.07.061Google Scholar
Pellis, S. M., Hastings, E., Shimizu, T., Kamitakahara, H., Komorowska, J., Forgie, M. L., & Kolb, B. (2006). The effects of orbital frontal cortex damage on the modulation of defensive responses by rats in playful and nonplayful social contexts. Behavioral Neuroscience, 120(1), 7284. https://doi.org/10.1037/0735-7044.120.1.72Google Scholar
Pillemer, S., Holtzer, R., & Blumen, H. M. (2016). Functional connectivity associated with social networks in older adults: A resting-state fMRI study. Social Neuroscience, 12(3), 242252. https://doi.org/10.1080/17470919.2016.1176599Google Scholar
Reed, B. R., Mungas, D., Farias, S. T., Harvey, D., Beckett, L., Widaman, K., Hinton, L., & DeCarli, C. (2010). Measuring cognitive reserve based on the decomposition of episodic memory variance. Brain, 133(8), 21962209. https://doi.org/10.1093/brain/awq154Google Scholar
Reuter-Lorenz, P. A., & Park, D. C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology Review, 24(3), 355370. https://doi.org/10.1007/s11065–014-9270-9Google Scholar
Rosano, C., Marsland, A. L., & Gianaros, P. J. (2012). Maintaining brain health by monitoring inflammatory processes: A mechanism to promote successful aging. Aging and Disease, 3(1), 1633. http://www.ncbi.nlm.nih.gov/pubmed/22500269Google Scholar
Rosenzweig, M. R., Bennett, E. L., & Diamond, M. C. (1972). Brain changes in response to experience. Scientific American, 226(2), 2229. https://doi.org/10.1038/scientificamerican0272–22Google Scholar
Sallet, J., Mars, R. B., Noonan, M. P., Andersson, J. L., O’Reilly, J. X., Jbabdi, S., Croxson, P. L., Jenkinson, M., Miller, K. L., & Rushworth, M. F. S. (2011). Social network size affects neural circuits in macaques. Science, 334(6056), 697700. https://doi.org/10.1126/science.1210027Google Scholar
Sato, W., Kochiyama, T., Uono, S., Sawada, R., Kubota, Y., Yoshimura, S., & Toichi, M. (2016). Structural neural substrates of reading the mind in the eyes. Frontiers in Human Neuroscience, 10(April), 151. https://doi.org/10.3389/fnhum.2016.00151Google Scholar
Sato, W., Kochiyama, T., Uono, S., Yoshimura, S., Kubota, Y., Sawada, R., Sakihama, M., & Toichi, M. (2017). Reduced Gray matter volume in the social brain network in adults with autism spectrum disorder. Frontiers in Human Neuroscience, 11. https://doi.org/10.3389/fnhum.2017.00395Google Scholar
Schurz, M., Radua, J., Aichhorn, M., Richlan, F., & Perner, J. (2014). Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neuroscience and Biobehavioral Reviews, 42, 934. https://doi.org/10.1016/j.neubiorev.2014.01.009Google Scholar
Shine, J. M. (2019). Neuromodulatory influences on integration and segregation in the brain. Trends in Cognitive Sciences, 23(7), 572583. https://doi.org/10.1016/j.tics.2019.04.002Google Scholar
Slavich, G. M., & Cole, S. W. (2013). The emerging field of human social genomics. Clinical Psychological Science, 1(3), 331348. https://doi.org/10.1177/2167702613478594CrossRefGoogle ScholarPubMed
Slavich, G. M., Way, B. M., Eisenberger, N. I., & Taylor, S. E. (2010). Neural sensitivity to social rejection is associated with inflammatory responses to social stress. Proceedings of the National Academy of Sciences, 107(33), 1481714822. https://doi.org/10.1073/pnas.1009164107Google Scholar
Smith, B. M., Yao, X., Chen, K. S., & Kirby, E. D. (2018). A Larger social network enhances novel object location memory and reduces hippocampal microgliosis in aged mice. Frontiers in Aging Neuroscience, 10(May), 142. https://doi.org/10.3389/fnagi.2018.00142CrossRefGoogle ScholarPubMed
Steffener, J., Gazes, Y., Habeck, C., & Stern, Y. (2016). The indirect effect of age group on switch costs via gray matter volume and task-related brain activity. Frontiers in Aging Neuroscience, 8(JUN), 111. https://doi.org/10.3389/fnagi.2016.00162Google Scholar
Steffener, J., & Stern, Y. (2012). Exploring the neural basis of cognitive reserve in aging. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 1822(3), 467473. https://doi.org/10.1016/j.bbadis.2011.09.012Google Scholar
Stiller, J., & Dunbar, R. I. M. (2007). Perspective-taking and memory capacity predict social network size. Social Networks, 29(1), 93104. https://doi.org/10.1016/j.socnet.2006.04.001CrossRefGoogle Scholar
Suárez, L. E., Markello, R. D., Betzel, R. F., & Misic, B. (2020). Linking structure and function in macroscale brain networks. Trends in Cognitive Sciences, 24(4), 302315. https://doi.org/10.1016/j.tics.2020.01.008CrossRefGoogle ScholarPubMed
Tavor, I., Jones, O. P., Mars, R. B., Smith, S. M., Behrens, T. E., & Jbabdi, S. (2016). Task-free MRI predicts individual differences in brain activity during task performance. Science, 352(6282), 216220. https://doi.org/10.1126/science.aad8127Google Scholar
Tomasi, D., & Volkow, N. D. (2012). Aging and functional brain networks. Molecular Psychiatry, 17(5), 549558. https://doi.org/10.1038/mp.2011.81Google Scholar
Uchino, B. N., Ruiz, J. M., Smith, T. W., Smyth, J. M., Taylor, D. J., Allison, M., & Ahn, C. (2015). The strength of family ties: Perceptions of network relationship quality and levels of C-reactive proteins in the North Texas Heart Study. Annals of Behavioral Medicine, 49(5), 776781. https://doi.org/10.1007/s12160–015-9699-yCrossRefGoogle ScholarPubMed
Valenzuela, M. J., Brayne, C., Sachdev, P., Wilcock, G., & Matthews, F. (2011). Cognitive lifestyle and long-term risk of dementia and survival after diagnosis in a multicenter population-based cohort. American Journal of Epidemiology, 173(9), 10041012. https://doi.org/10.1093/aje/kwq476Google Scholar
Valenzuela, M. J., Breakspear, M., & Sachdev, P. (2007). Complex mental activity and the aging brain: Molecular, cellular and cortical network mechanisms. Brain Research Reviews, 56(1), 198213. https://doi.org/10.1016/j.brainresrev.2007.07.007Google Scholar
Valenzuela, M. J., Sachdev, P., Wen, W., Chen, X., & Brodaty, H. (2008). Lifespan mental activity predicts diminished rate of hippocampal atrophy. PLoS ONE, 3(7), 16. https://doi.org/10.1371/journal.pone.0002598Google Scholar
Van Overwalle, F. (2009). Social cognition and the brain: A meta-analysis. Human Brain Mapping, 30(3), 829858. https://doi.org/10.1002/hbm.20547Google Scholar
Vemuri, P., Lesnick, T. G., Przybelski, S. A., Knopman, D. S., Lowe, V. J., Graff-Radford, J., Roberts, R. O., Mielke, M. M., Machulda, M. M., Petersen, R. C., & Jack, C. R. (2017). Age, vascular health, and Alzheimer disease biomarkers in an elderly sample. Annals of Neurology, 82(5), 706718. https://doi.org/10.1002/ana.25071Google Scholar
Von der Heide, R., Vyas, G., & Olson, I. R. (2013). The social network–network: Size is predicted by brain structure and function in the amygdala and paralimbic regions. Social Cognitive and Affective Neuroscience, 9(12), 19621972. https://doi.org/10.1093/scan/nsu009Google Scholar
Wang, Y., & Olson, I. R. (2018). The original social network: White matter and social cognition. Trends in Cognitive Sciences, 22(6), 504516. https://doi.org/10.1016/j.tics.2018.03.005Google Scholar
Warren, K. N., Beason-Held, L. L., Carlson, O., Egan, J. M., An, Y., Doshi, J., Davatzikos, C., Ferrucci, L., & Resnick, S. M. (2018). Elevated markers of inflammation are associated with longitudinal changes in brain function in older adults. The Journals of Gerontology: Series A, 73(6), 770778. https://doi.org/10.1093/gerona/glx199Google Scholar
Zou, L., Yang, Z., Wang, Y., Lui, S. S. Y., Chen, A., Cheung, E. F. C., & Chan, R. C. K. (2016). What does the nose know? Olfactory function predicts social network size in human. Scientific Reports, 6, 25026. https://doi.org/10.1038/srep25026Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×