Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-14T17:58:47.457Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 May 2014

Giuseppe Da Prato
Affiliation:
Scuola Normale Superiore, Pisa
Jerzy Zabczyk
Affiliation:
Polish Academy of Sciences
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Acquistapace, P. & Terreni, B. (1984) An approach to Ito linear equations in Hilbert spaces by approximation of white noise with coloured noise, Stochastic Anal. Appl., 2, no. 2, 131–186.CrossRefGoogle Scholar
[2] Acquistapace, P. & Terreni, B. (1987) Holder classes with boundary conditions as interpolation spaces, Math. Z., 195, no. 4, 451–471.CrossRefGoogle Scholar
[3] Adams, R. A. (1975) Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press.Google Scholar
[4] Agmon, S. A. (1962) On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Commun. Pure Appl. Math., 15, 119–147.CrossRefGoogle Scholar
[5] Agmon, S. A. (1965) Lectures on Elliptic Boundary Value Problems, Van Nostrand.Google Scholar
[6] Ahmed, N., Fuhrman, M. & Zabczyk, J. (1997) On filtering equations in infinite dimensions, J. Funct. Anal., 143, no. 1, 180–204.CrossRefGoogle Scholar
[7] Alabert, A. & Gyongy, I. (2001) On stochastic reaction-diffusion equations with singular force term, Bernoulli, 7, no. 1, 145–164.CrossRefGoogle Scholar
[8] Albeverio, S., Brzezniak, Z. & Daletski, A. (2003) Stochastic differential equations on product loop manifolds, Bull. Sci. Math., 127, no. 7, 649–667.CrossRefGoogle Scholar
[9] Albeverio, S. & Cruzeiro, A. B. (1990) Global flows with invariant (Gibbs) measures for Euler and Navier-Stokes two dimensional fluids, Commun. Math. Phys., 129, no. 3, 431–444.CrossRefGoogle Scholar
[10] Albeverio, S. & Ferrario, B. (2008) Some methods of infinite dimensional analysis in hydrodynamics: an introduction. In SPDE in Hydrodynamic: Recent Progress and Prospects, G. Da, Prato and M., Rockner (eds.), Lecture Notes in Mathematics, no. 1942, Springer-Verlag, 1–50.CrossRefGoogle Scholar
[11] Albeverio, S., Kondratiev, Yu., Rockner, M. & Tsikalenko, T. V. (2001) Glauber dynamics for quantum lattice systems, Rev. Math. Phys., 13, no. 1, 51–124.CrossRefGoogle Scholar
[12] Albeverio, S., Kondratiev, Y., Kozitsky, Y. & Rockner, M. (2009) The Statistical Mechanics of Quantum Lattice Systems. A Path Integral Approach, EMS Tracts in Mathematics, 8.
[13] Albeverio, S. & Röckner, M. (1989) Classical Dirichlet forms on topological vector spaces – the construction of the associated diffusion process, Probab. Theory Relat. Fields, 83, no. 3, 405–434.CrossRefGoogle Scholar
[14] Albeverio, S. & Rockner, M. (1991) Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms, Probab. Theory Relat. Fields, 89, no. 3, 347–386.CrossRefGoogle Scholar
[15] Albeverio, S., Wu, J. L. & Zhang, T. S. (1998) Parabolic SPDEs driven by Poissonian noise, Stochastic Process. Appl., 74, no. 1, 21–36.CrossRefGoogle Scholar
[16] Allen, E. J., Novosel, S. J. & Zhang, Z. (1998) Finite element and difference approximation of some linear stochastic partial differential equations, Stochastics Stochastics Rep., 64, no. 1-2, 117–142.Google Scholar
[17] Alos, E. & Bonaccorsi, S. (2002) Stochastic partial differential equations with Dirichlet white-noise boundary conditions, Ann. Inst. H. Poincare Probab. Stat., 38, no. 2, 125–154.CrossRefGoogle Scholar
[18] Alos, E. & Bonaccorsi, S. (2002) Stability for stochastic partial differential equations with Dirichlet white-noise boundary conditions, Infin. Dimens. Anal. Quantum Probab. Relat. Topics, 5, no. 4, 465–481.CrossRefGoogle Scholar
[19] Ambrosio, L. (2004) Transport equation and Cauchy problem For BV vector fields, Invent. Math., 158, no. 2, 227–260.CrossRefGoogle Scholar
[20] Ambrosio, L. & Figalli, A. (2009) On flows associated to Sobolev vector fields in Wiener spaces: an approach a la Di Perna-Lions, J. Funct. Anal., 256, no. 1, 179–214.CrossRefGoogle Scholar
[21] Ambrosio, L., Savare, G. & Zambotti, L. (2009) Existence and stability for Fokker-Planck equations with log-concave reference measure, Probab. Theory Relat. Fields, 145, no. 3-4, 517–564.CrossRefGoogle Scholar
[22] Antoniadis, A. & Carmona, R. (1987) Eigenfunctions expansions for infinite dimensional Ornstein-Uhlenbeck processes, Probab. Theory Relat. Fields, 74, no. 1, 31–54.CrossRefGoogle Scholar
[23] Applebaum, D. (2004) Levy Processes and Stochastic Calculus, Cambridge University Press.CrossRefGoogle Scholar
[24] Applebaum, D. & Wu, J. L. (2000) Stochastic partial differential equations driven by Levy space-time white noise, Random Oper. Stochastic Equations, 8, no. 3, 245–261.CrossRefGoogle Scholar
[25] Arnold, L. (1974) Stochastic Differential Equations, Wiley Interscience.Google Scholar
[26] Arnold, L. (1981) Mathematical Models of Chemical Reactions, Stochastic Systems, M., Hazewinkel and J., Willems (eds.), Dordrecht.Google Scholar
[27] Arnold, L., Curtain, R. F. & Kotelenez, P. (1980) Nonlinear evolution equations in Hilbert spaces, Forschungsschwerpunkt Dynamische Systeme, Universitat Bremen, Report no. 17.Google Scholar
[28] Aronsond, G. (1986) The porous medium equation. In Nonlinear Diffusion Problems (Montecatini Terme 1985), Lecture Notes in Mathematics, no. 1224, Springer-Verlag, 1–46.Google Scholar
[29] Aubin, J. P. (1979) Applied Functional Analysis, Wiley Interscience.Google Scholar
[30] Aubin, J. P. & Da Prato, G. (1990) Stochastic viability and invariance, Ann. Scuola Norm. Sup. Pisa, 17, no. 4, 595–613.Google Scholar
[31] Aubin, J. P. & Frankowska, H. (1990) Set Valued Analysis, Systems and Control: Foundations and Applications, Birkhauser.Google Scholar
[32] Balakrishnan, A. V. (1971) Introduction to Optimization Theory in a Hilbert Space, Springer-Verlag.CrossRefGoogle Scholar
[33] Ball, J. M. (1977) Strongly continuous semigroups, weak solutions and the variation of constants formula, Proc. Am. Math. Soc., 63, no. 2, 370–373.Google Scholar
[34] Banas, L., Brzezniak, Z. & Prohl, A. (2012) Convergent finite element based discretization of the stochastic Landau-Lifshitz-Gilbert equations, Preprint, Universität Tübingen, Numerical Analysis Group.Google Scholar
[35] Bang, O., Christiansen, P. L. & Rasmussen, K. O. (1994) Temperature effects in a nonlinear model of monolayer Scheibe aggregates, Phys. Rev. E, 49, 4627–4636.CrossRefGoogle Scholar
[36] Baras, J. S., Blankenship, G. L. & Hopkins, W. E. (1983) Existence, uniqueness and asymptotic behaviour of solutions to a class of Zakai equations with unbounded coefficients, IEEE Trans. Automat. Control, 28, no. 2, 203–214.CrossRefGoogle Scholar
[37] Barbu, B., Blanchard, P., Da Prato, G. & Röckner, M. (2009) Self-organized criticality via stochastic partial differential equations. In Potential Theory and Stochastics, Albac, Aurel Cornea Memorial Volume, Theta Series in Advanced Mathematics, Bucharest, 11–19.Google Scholar
[38] Barbu, V. & Da Prato, G. (2002) The two phase stochastic Stefan problem, Probab. Theory Relat. Fields, 124, no. 4, 544–560.CrossRefGoogle Scholar
[39] Barbu, V. & Da Prato, G. (2007) Existence and ergodicity for the two-dimensional stochastic magneto-hydrodynamics equations, Appl. Math. Optim., 56, no. 2, 145–168.CrossRefGoogle Scholar
[40] Barbu, V. & Da Prato, G. (2011) Ergodicity for the phase-field equations perturbed by Gaussian noise, Infin. Dimens. Anal. Quantum Probab. Relat. Topics, 14, no. 1, 35–55.CrossRefGoogle Scholar
[41] Barbu, V., Da Prato, G. & Rockner, M. (2008) Existence and uniqueness of nonnegative solutions to the stochastic porous media equation, Indiana Univ. Math. J., 57, no. 1, 187–212.Google Scholar
[42] Barbu, V., Da Prato, G. & Rockner, M. (2008) Existence of strong solutions for stochastic porous media equation under general monotonicity conditions, Ann Probab, 37, no. 2, 428–452.Google Scholar
[43] Barbu, V., Da Prato, G. & Rockner, M. (2009) Stochastic porous media equation and self-organized criticality, Commun Math Phys, 285, no. 3, 901–923.CrossRefGoogle Scholar
[44] Barbu, V., Da Prato, G. & Rockner, M. (2009) Finite time extinction for solutions to fast diffusion stochastic porous media equations, C. R. Acad. Sci. Paris, Ser. I, 347, no. 1-2, 81–84.CrossRefGoogle Scholar
[45] Barbu, V., Da Prato, G. & Tubaro, L. (2009) Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert space, Ann. Probab., 37, no. 4, 1427–1458.CrossRefGoogle Scholar
[46] Barbu, V., Da Prato, G. & Tubaro, L. (2011) Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert Space Ii, Ann. Inst. H. Poincare Probab. Stat., 47, no. 3, 699–724.CrossRefGoogle Scholar
[47] Barbu, V. & Precupanu, Th. (1978) Convexity and Optimization in Banach Spaces, Sijthoff & Noordhoff.Google Scholar
[48] Barbu, V., Rockner, M. & Russo, F. (2011) Probabilistic representation for solutions of an irregular porous media type equation: the degenerate case, Probab. Theory Relat. Fields, 151, no. 1-2, 1–43.CrossRefGoogle Scholar
[49] Barski, M. & Zabczyk, J. (2012) Heath-Jarrow-Morton-Musiela equation with Levy perturbation, J. Differential Equations, 253, no. 9, 2657–2697.CrossRefGoogle Scholar
[50] Barton Smith, M., Debussche, A. & Dimenza, L. (2005) Numerical study of two-dimensional Stochastic, NLS equations, Numer. Methods Partial Differential Equations, 21, no. 4, 810–842.CrossRefGoogle Scholar
[51] Basson, A. (2008) Spatially homogeneous solutions of 3D stochastic Navier-Stokes equations and local energy inequality, Stochastic Process. Appl., 118, no. 3, 417–451.CrossRefGoogle Scholar
[52] Belopolskaya, T. & Daleckij, Yu. L. (1990) Stochastic Equations on Manifolds, Kluwer.Google Scholar
[53] Bensoussan, A. (1971) Filtrage Optimal des Systemes Lineaires, Dunod.Google Scholar
[54] Bensoussan, A. (1973) Generalisation du Theoreme de Girsanov, Univ. Naz. Rosario, Separato de Math. Notae, no. 23.Google Scholar
[55] Bensoussan, A. (1983) Stochastic maximum principle for distributed parameter systems, J. Franklin Inst., 315, no. 5-6, 387–406.CrossRefGoogle Scholar
[56] Bensoussan, A. (1992) Some existence results for stochastic partial differential equations, Pitman Res. Notes Math., no. 268, G. Da, Prato and L., Tubaro (eds.), 37–53.Google Scholar
[57] Bensoussan, A., Glowinski, R. & Rascanu, A. (1989) Approximation of Zakai equation by the splitting up method, Research Report U.H.M.D. no. 55, Department of Mathematics, University of Houston.Google Scholar
[58] Bensoussan, A. & Temam, R. (1972) liquations aux derivees partielles stochastiques nonlineaires, Isr. J. Math., 11, 95–121.CrossRefGoogle Scholar
[59] Bensoussan, A. & Temam, R. (1973) Equations stochastiques du type Navier-Stokes, J.Funct. Anal., 13, 195–222.CrossRefGoogle Scholar
[60] Bensoussan, A. & Viot, M. (1975) Optimal control of stochastic linear distributed parameter systems, SIAM J. Control Optim., 13, 904–926.Google Scholar
[61] Benzi, R., Parisi, G., Sutera, A. & Vulpiani, A. (1982) Stochastic resonance in climatic change. Tellus 34, (1): 10–16. doi:10.1111/j.2153-3490.1982.CrossRefGoogle Scholar
[62] Benzi, R., Sutera, A. & Vulpiani, A. (1985) Stochastic resonance in the Landau-Ginzburg equation. J Phys. A, 18, no. 12, 2239–2245.CrossRefGoogle Scholar
[63] Berryman, J.G. & Holland, C. J. (1980) Stability of the separable solution for fast diffusion, Arch. Rational Mech. Anal., 74, no. 4, 379–388.CrossRefGoogle Scholar
[64] Bertini, L., Cancrini, N. & Jona-Lasinio, G. (1994) The stochastic Burgers equation, Commun. Math. Phys., 165, no. 2, 211–232.CrossRefGoogle Scholar
[65] Bertini, L. & Giacomin, G. (1997) Stochastic Burgers and kpz equations from particle systems, Commun. Math. Phys., 183, no. 3, 571–607.CrossRefGoogle Scholar
[66] Bessaih, H. (1999) Stochastic PDEs of Euler type, PhD Thesis, Scuola Normale Superiore, Pisa.Google Scholar
[67] Bessaih, H. (1999) Martingale solutions for stochastic Euler equations, Stochastic Anal. Appl., 17, no. 5, 713–725.CrossRefGoogle Scholar
[68] Bessaih, H. & Flandoli, F. (1999) 2D Euler equation perturbed by noise, Nonlinear Differential Equations Appl., 6, no. 1, 35–54.CrossRefGoogle Scholar
[69] Bessaih, H. & Millet, A. (2009) Large deviation principle and inviscid shell models, Electron. J. Probab., 14, no. 89, 2551–2579.CrossRefGoogle Scholar
[70] Beyn, W., Gess, B., Lescot, P. & Röckner, M.The global random attractor for a class of stochastic porous media equations, arXiv:1010.0551.CrossRef
[71] Bierkens, J., Van Gaans, O. & Lunel, S.V. (2009) Existence of an invariant measure for stochastic evolutions driven by an eventually compact semigroup, J. Evol. Equations, 9, 771–786.CrossRefGoogle Scholar
[72] Biryuk, A. (2006) On invariant measures of the 2D Euler equation, J. Stat. Phys., 122, no. 4, 597–616.CrossRefGoogle Scholar
[73] Bismut, J. M. (1973) Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl., 44, 384–404.CrossRefGoogle Scholar
[74] Bismut, J. M. (1984) Large Deviations and the Malliavin Calculus, Birkhauser.Google Scholar
[75] Bjork, T., Christensen, B. J. & Bent, J. (1999) Interest dynamics and consistent forward rate curves, Math. Finance, 9, no. 4, 323–348.CrossRefGoogle Scholar
[76] Blanchard, P., Rockner, M. & Russo, F. (2010) Probabilistic representation for solutions of an irregular porous media type equation, Ann. Probab., 38, no. 5, 1870–1900.CrossRefGoogle Scholar
[77] Blomker, D., Flandoli, F. & Romito, M. (2009) Markovianity and ergodicity for a surface Growth PDE, Ann. Probab., 37, no. 1, 275–313.CrossRefGoogle Scholar
[78] Blomker, D. & Gugg, C. (2002) On the existence of solutions for amorphous molecular beam epitaxy, Nonlinear Anal., 3, no. 1, 61–73.Google Scholar
[79] Blomker, D. & Gugg, C. (2004) Thin-film-growth-models: on local solutions. In Recent Developments in Stochastic Analysis and Related Topics, World Scientific, 66–77.Google Scholar
[80] Blomker, D., Gugg, C. & Raible, M. (2002) Thin-film-growth models: Roughness and correlation functions, Eur. J. Appl. Math., 13, no. 4, 385–402.CrossRefGoogle Scholar
[81] Blomker, D. & Hairer, M. (2004) Multiscale expansion of invariant measures for SPDEs, Commun. Math. Phys. 251, no. 3, 515–555.CrossRefGoogle Scholar
[82] Blomker, D., Hairer, M. & Pavliotis, G. A. (2005) Modulation equations: stochastic bifurcation in large domains, Commun. Math. Phys. 258, no. 2, 479–512.CrossRefGoogle Scholar
[83] Blomker, D., Hairer, M. & Pavliotis, G. A. (2007) Multiscale analysis for stochastic partial differential equations with quadratic nonlinearities, Nonlinearity, 20, no. 7, 1721–1744.CrossRefGoogle Scholar
[84] Blowey, J. F. & Elliott, C. M. (1994) A phase-field model with a double obstacle potential. In Motion by Mean Curvature, G., Buttazzo and A., Visintin (eds.), De Gruyter.Google Scholar
[85] Bogachev, V., Da Prato, G. & Rockner, M. (2008) On parabolic equations for measures, Commun. Partial Differential Equations, 33, no. 1–3, 397–418.CrossRefGoogle Scholar
[86] Bogachev, V., Da Prato, G. & Rockner, M. (2008) Parabolic equations for measures on infinite-dimensional spaces, Dokl. Math., 78, no. 1, 544–549.CrossRefGoogle Scholar
[87] Bogachev, V., Da Prato, G. & Rockner, M. (2009) Fokker-Planck equations and maximal dissipativity for Kolmogorov operators with time dependent singular drifts in Hilbert spaces, J. Funct. Anal., 256, no. 4, 1269–1298.CrossRefGoogle Scholar
[88] Bogachev, V., Da Prato, G. & Rockner, M. (2010) Existence and uniqueness of solutions for Fokker-Planck equations on Hilbert spaces, J. Evol. Equations, 10, no. 3, 487–509.CrossRefGoogle Scholar
[89] Bogachev, V., Da Prato, G. & Rockner, M. (2011) Uniqueness for solutions of Fokker-Planck equations on infinite dimensional spaces, Commun. Partial Differential Equations, 36, no. 6, 925–939.CrossRefGoogle Scholar
[90] Bogachev, V., Da Prato, G., Rockner, M. & Stannat, W. (2007) Uniqueness of solutions to weak parabolic equations for measures, Bull. London Math. Soc., no. 4, 631–640.Google Scholar
[91] Bojdecki, T. & Gorostiza, L. G. (1986) Langevin equations for S'-valued Gaussian processes and fluctuations limits of infinite particle systems, Probab. Theory Relat. Fields, 73, no. 2, 227–244.CrossRefGoogle Scholar
[92] Borkar, V.S., Chari, R. T. & Mitter, S. K. (1988) Stochastic quantization field theory in finite and infinite volume, J. Funct. Anal., 81, no. 1, 184–206.CrossRefGoogle Scholar
[93] Bourgain, J. (1993) Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part II. The KdV-equation, Geom. Funct. Anal., 3, no. 3, 209–262.CrossRefGoogle Scholar
[94] Briand, Ph. & Confortola, F. (2008) Differentiability of backward stochastic differential equations in Hilbert spaces with monotone generators, Appl. Math. Optim., 57, no. 2, 149–176.CrossRefGoogle Scholar
[95] Briand, Ph., & Confortola, F. (2008) BSDEs with stochastic Lipschitz condition and quadratic PDEs in Hilbert spaces, Stochastic Process. Appl., 118, no. 5, 818–838.CrossRefGoogle Scholar
[96] Briand, Ph. & Confortola, F. (2008) Quadratic BSDEs with random terminal time and elliptic PDEs in infinite dimension, Electron. J. Probab., 13, no. 54, 1529–1561.Google Scholar
[97] Briand, Ph., Delyon, B., Hu, Y., Pardoux, E. & Stoica, L. (2003), Lp solutions of backward stochastic differential equations, Stochastic Process. Appl., 108, no. 1, 109–129.CrossRefGoogle Scholar
[98] Briand, Ph. & Hu, Y. (2006) BSDE with quadratic growth and unbounded terminal value, Probab. Theory Relat. Fields, 136, no. 4, 604–618.CrossRefGoogle Scholar
[99] Bricmont, J., Kupiainen, A., & Lefevere, R. (2002) Exponential mixing for the 2D stochastic Navier-Stokes dynamics, Commun. Math. Phys., 230, no. 1, 87–132.CrossRefGoogle Scholar
[100] Brzezniak, Z. (1995) Stochastic partial differential equations in M-type 2 Banach spaces, Potential Anal., 4, no. 1, 1–45.CrossRefGoogle Scholar
[101] Brzezniak, Z. (1997) On stochastic convolution in Banach spaces and applications, Stochastics Stochastics Rep., 61, 245–295.Google Scholar
[102] Brzezniak, Z., Capinski, M. & Flandoli, F. (1988) A convergence result for stochastic partial differential equations, Stochastics, 24, no. 4, 423–445.CrossRefGoogle Scholar
[103] Brzezniak, Z., Capinski, M. & Flandoli, F. (1991) Stochastic partial differential equations and turbulence, Math. Models Methods Appl. Sci., 1, no. 1, 41–59.CrossRefGoogle Scholar
[104] Brzezniak, Z., Capinski, M. & Flandoli, F. (1992) Stochastic Navier-Stokes equations with multiplicative noise, Stochastic Anal. Appl., 10, no. 5, 523–532.CrossRefGoogle Scholar
[105] Brzezniak, Z. & Debbi, L. (2007) On Stochastic Burgers equation driven by a fractional Laplacian and space-time white noise. In Stochastic Differential Equations: Theory and Applications, a Volume in Honor of Professor Boris L., Rozovskii, P. H., Baxendale & S. V., Lototsky (eds.), Interdiscip. Math. Sci., 2, World Scientific, 135–167.Google Scholar
[106] Brzezniak, Z. & Flandoli, F. (1992) Regularity of solutions and random evolution operator for stochastic parabolic equations, Pitman Res. Notes Math., no. 268, G. Da, Prato and L., Tubaro (eds.), 54–71.Google Scholar
[107] Brzezniak, Z. & Gatarek, D. (1999) Martingale solutions and invariant measures for stochastic evolution equations in Banach spaces, Stochastic Process. Appl., 84, no. 4, 187–226.CrossRefGoogle Scholar
[108] Brzezniak, Z., Goldys, B., Imkeller, P., Peszat, S., Priola, E. & Zabczyk, J. (2010) Time irregularity of generalized Ornstein-Uhlenbeck processes, C. R. Acad. Sci. Paris, Ser. I, 348, no. 5-6, 273–276.Google Scholar
[109] Brzezniak, Z., Goldys, B. & Jegaraj, T. (2013) Weak solutions of the stochastic Landau-Lifshitz-Gilbert equation, Appl. Math. Res. Express. AMRX, no. 1, 1–33.Google Scholar
[110] Brzezniak, Z., Goldys, B. & Jegaraj, T. (2012) Large deviations for a stochastic Landau-Lifschitz equation, extended version, arXiv:1202.0370 [math.PR].Google Scholar
[111] Brzezniak, Z., Goldys, B. & Ondrejat, M. (2012) Partial differential equations. In New Trends in Stochastic Analysis and Related Topics, 132, Interdiscip. Math. Sci., 12, World Scientific.Google Scholar
[112] Brzezniak, Z. & Ondrejat, M. (2011) Weak solutions to stochastic wave equations with values in Riemannian manifolds, Commun. Partial Differential Equations, 36, no. 9, 1624–1653.CrossRefGoogle Scholar
[113] Brzezniak, Z., Goldys, B., Peszat, S. & Russo, F. (2007) PDEs with the noise on the boundary, in preparation.Google Scholar
[114] Brzezniak, Z. & Hausenblas, E. (2009) Maximal regularity for stochastic convolutions driven by Levy processes, Probab. Theory Relat. Fields, 145, 615–637.CrossRefGoogle Scholar
[115] Brzezniak, Z. & Li, Y. (2006) Asymptotical compactness of 2D stochastic Navier-Stokes equations on some unbounded domains, Trans. Am. Math. Soc., 358, no. 12, 5587–5629.CrossRefGoogle Scholar
[116] Brzezniak, Z., Long, H. & Simao, I. (2010) Invariant measures for stochastic evolution equations in M-type 2 Banach spaces, J. Evol. Equations, 10, no. 4, 785–810.CrossRefGoogle Scholar
[117] Brzezniak, Z., Maslowski, B. & Seidler, J. (2005) Stochastic nonlinear beam equations, Probab. Theory Relat. Fields, 132, no. 1, 119–149.CrossRefGoogle Scholar
[118] Brzezniak, Z. & Ondrejat, M. (2007) Strong solutions to stochastic wave equations with values in Riemannian manifolds, J. Funct. Anal., 253, no. 2, 449–481.CrossRefGoogle Scholar
[119] Brzezniak, Z., Ondrejat, M. & Seidler, J. (2012) Invariant measures for stochastic nonlinear beam and wave equations, preprint.Google Scholar
[120] Brzezniak, Z. & Peszat, S. (1999) Space-time continuous solutions to SPDEs driven by a homogeneous Wiener process, Studia Math., 137, no. 3, 261–299.Google Scholar
[121] Brzezniak, Z. & Peszat, S. (2000) Maximal inequalities and exponential estimates for stochastic convolutions in Banach spaces. In Stochastic Processes, Physics and Geometry: New Interplays, I (Leipzig), CMS Conf. Proc., Am. Math. Soc., Providence, RI, 28, 55–64.Google Scholar
[122] Brzezniak, Z. & Peszat, S. (2001) Stochastic two dimensional Euler equations, Ann. Probab., 29, no. 4, 1796–1832.Google Scholar
[123] Brzezniak, Z. & Peszat, S. (2010) Hyperbolic equations with random boundary conditions. In Recent Development in Stochastic Dynamics and Stochastic Analysis, J., Duan, S., Luo and C., Wang (eds.), Interdisciplinary Mathematical Sciences, 8, World Scientific, 1–22.Google Scholar
[124] Brzezniak, Z., Peszat, S. & Zabczyk, J. (2001) Continuity of stochastic convolutions, Czech. Math. J., 51, no. 126, 679–684.CrossRefGoogle Scholar
[125] Brzezniak, Z. & Van Neerven, J. (2003) Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise, J. Math. Kyoto Univ., 43, no. 2, 261–303.CrossRefGoogle Scholar
[126] Brzezniak, Z., Van Neerven, J., Veraar, M. & Weis, L. (2008) Ito's formula In UMD Banach spaces and regularity of solutions of the Zakai equation, J. Differential Equations, 245, no. 1, 30–58.CrossRefGoogle Scholar
[127] Brzezniak, Z. & Zabczyk, J. (2010) Regularity of Ornstein-Uhlenbeck processes driven by a Levy white noise, Potential Anal., 32, no. 2, 153–188.CrossRefGoogle Scholar
[128] Buckdahn, R. & Pardoux, E. (1990) Monotonicity methods for white noise driven quasi linear SPDE's. In Diffusion Processes and Related Problems in Analysis, M., Pinsky (ed.), Progress in Probability, 22, Birkhauser, 219–233.Google Scholar
[129] Budhiraja, A., Dupuis, P. & Maroulas, V. (2008) Large deviations for infinite dimensional stochastic dynamical systems, Ann. Probab., 36, no. 4, 1390–1420.CrossRefGoogle Scholar
[130] Burgers, J. M. (1939) Mathematical examples illustrating relations occur-ing in the theory of turbulent fluid motion, Verh. Ned. Akad. Wetensch. Afd. Natuurk., 17, no. 2, 1–53.Google Scholar
[131] Butzer, P. L. & Berens, H. (1967) Semigroups of Operators and Approximations, Springer-Verlag.CrossRefGoogle Scholar
[132] Cabana, E. (1970) The vibrating string forced by white noise, Z. Wahrsch. Verw. Gebiete, 15, 111–130.CrossRefGoogle Scholar
[133] Cahn, J. W. & Hilliard, J. E. (1958) Free energy for a non-uniform System I. Interfacial free energy, J. Chem. Phys., 2, 258–267.Google Scholar
[134] Cannarsa, P. & Da Prato, G. (1991) A semigroup approach to Kolmogo-roff equations in Hilbert spaces, Appl. Math. Lett., 4, no. 1, 49–52.CrossRefGoogle Scholar
[135] Cannarsa, P. & Da Prato, G. (1991) Second-order Hamilton-Jacobi equations in infinite dimensions, Siam J. Control Optim., 29, no. 2, 474–492.CrossRefGoogle Scholar
[136] Cannarsa, P. & Vespri, V. (1985) Existence and uniqueness of solutions to a class of stochastic partial differential equations, Stochastic Anal. Appl., 3, no. 3, 315–339.CrossRefGoogle Scholar
[137] Cannarsa, P. & Vespri, V. (1985) Generation of analytic semigroups by elliptic operators with unbounded coefficients, Siam J. Math. Anal., 18, no. 3, 857–872.Google Scholar
[138] Cannarsa, P. & Vespri, V. (1987) Existence and uniqueness results for a nonlinear stochastic partial differential equation. In Stochastic Partial Differential Equations and Applications, G. Da, Prato and L., Tubaro (eds.), Lecture Notes in Mathematics, no. 1236, Springer-Verlag, 1–24.Google Scholar
[139] Capinski, M. & Cutland, N. (1994) Statistical solutions of stochastic Navier-Stokes equations, Indiana Univ. Math. J., 43, no. 3, 927–940.CrossRefGoogle Scholar
[140] Capinski, M. & Cutland, N. (1999) Stochastic Euler equations on the torus, Ann. Appl. Probab., 9, no. 3, 688–705.Google Scholar
[141] Capinski, M. & Gatarek, D. (1994) Stochastic equations in Hilbert spaces with applications to Navier-Stokes equations in any dimension, J. Funct. Anal., 126, no. 1, 26–35.CrossRefGoogle Scholar
[142] Cardon-Weber, C. (1999) Large deviations for a Burgers'-type SPDE, Stochastic Process. Appl., 84, no. 1, 53–70.CrossRefGoogle Scholar
[143] Carelli, E., Hausenblas, E. & Prohl, A. (2009) Time-splitting methods to solve the stochastic incompressible Stokes equation. Preprint, Univer-sitat Tübingen, Numerical Analysis Group.Google Scholar
[144] Caruana, M. & Friz, P. (2009) Partial differential equations driven by rough paths, J. Differential Equations, 247, no. 1, 140–173.CrossRefGoogle Scholar
[145] Caruana, M., Friz, P. & Oberhauser, H. (2011) A (rough) pathwise approach to a class of non-linear stochastic partial differential equations, Ann. Inst. H. Poincare, Anal. Non Lineaire, 28, 1294–1449.CrossRefGoogle Scholar
[146] Carverhill, A. P. & Elworthy, K. D. (1983) Flow of stochastic dynamical systems: the Functional Analysis approach, Z. Wahrsch. Verw. Gebiete, 65, no. 2, 245–267.CrossRefGoogle Scholar
[147] Cazenave, T. (2003) Semilinear Schrodinger Equations, Courant Lecture Notes in Mathematics, no. 10. Am. Math. Soc., Providence, RI.CrossRefGoogle Scholar
[148] Cepa, E. (1998) Probleme de Skorohod multivoque, Ann. Probab., 26, no. 2, 500–532.CrossRefGoogle Scholar
[149] Cerrai, S. (2001). Second Order PDEs in Finite and Infinite Dimensions. A Probabilistic Approach, Lecture Notes in Mathematics, no. 1762, Springer-Verlag.CrossRefGoogle Scholar
[150] Cerrai, S. (2003) Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term, Probab. Theory Relat. Fields, 125, no. 2, 271–304.CrossRefGoogle Scholar
[151] Cerrai, S. (2009) Normal deviations from the averaged motion for some reaction-diffusion equations with fast oscillating perturbation, J. Math. Pures Appl., 91, no. 6, 614–647.CrossRefGoogle Scholar
[152] Cerrai, S. (2009) A Khasminskii type averaging principle for stochastic reaction-diffusion equations, Ann. Appl. Probab., 19, no. 3, 899–948.CrossRefGoogle Scholar
[153] Cerrai, S., Da Prato, G. & Flandoli, F.Pathwise uniqueness for stochastic reaction-diffusion equations in Banach spaces with an Holder drift component, Ann. Probab. (to appear), arXiv:1212.5376.
[154] Cerrai, S. & Freidlin, M. (2006) On the Smoluchowski-Kramers approximation for a system with an infinite number of degrees of freedom, Probab. Theory Relat. Fields, 135, no. 3, 363–394.CrossRefGoogle Scholar
[155] Cerrai, S. & Freidlin, M. (2006) Smoluchowski-Kramers approximation for a general class of SPDEs, J. Evol. Equations, 6, no. 4, 657–689.CrossRefGoogle Scholar
[156] Cerrai, S. & Freidlin, M. (2009) Averaging principle for a class of stochastic reaction-diffusion equations, Probab. Theory Relat. Fields, 144, no. 1–2, 137–177.CrossRefGoogle Scholar
[157] Cerrai, S. & Rockner, M. (2004) Large deviations for stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term, Ann. Probab., 32, no. 1B, 1100–1139.Google Scholar
[158] Cerrai, S. & Rockner, M. (2005) Large deviations for invariant measures of stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term, Ann. Inst. H. Poincare Probab. Statist., 41, no. 1, 69–105.CrossRefGoogle Scholar
[159] Chaleyat-Maurel, M. (1987) Continuity in nonlinear filtering. Some different approaches. In Stochastic Partial Differential Equations and Applications, G. Da, Prato and L., Tubaro (eds.), Lecture Notes in Mathematics, no. 1236, Springer-Verlag, 25–39.Google Scholar
[160] Chaleyat-Maurel, M. & Michel, D. (1989) The support of the density of a filter in the uncollerated case. In Stochastic Partial Differential Equations and Applications Ii, G. Da, Prato and L., Tubaro (eds.), Lecture Notes in Mathematics, no. 1390, Springer-Verlag, 33–41.Google Scholar
[161] Chang, M.-H. (1996) Large deviations for Navier-Stokes equations with small stochastic perturbations, Appl. Math. Comput., 76, 65–93.Google Scholar
[162] Chenal, F. & Millet, A. (1997) Uniform large deviations for parabolic SPDEs and applications, Stochastic Process. Appl., 72, no. 2, 161–186.CrossRefGoogle Scholar
[163] Chojnowska-Michalik, A. (1977) Stochastic differential equations in Hilbert spaces and some of their applications, Thesis, Institute of Mathematics, Polish Academy of Sciences.Google Scholar
[164] Chojnowska-Michalik, A. (1978) Representation theorem for general stochastic delay equations, Bull. Acad. Pol. Sci. Ser. Sci. Math., 26, 7, 634–641.Google Scholar
[165] Chojnowska-Michalik, A. (1987) On processes of Ornstein-Uhlenbeck type in Hilbert spaces, Stochastics, 21, no. 3, 251–286.Google Scholar
[166] Chow, P. L. (1978) Stochastic partial differential equations in turbulence. In A. T., Bharucha-Reid (ed.), Probabilistic Analysis and Related Topics, vol.1, Academic Press, 1–43.Google Scholar
[167] Chow, P. L. (1987) Expectation functionals associated with some stochastic evolution equations. In Stochastic Partial Differential Equations and Applications, G. Da, Prato and L., Tubaro (eds.), Lecture Notes in Mathematics, no. 1236, Springer-Verlag, 40–56.Google Scholar
[168] Chow, P. L. (1992) Large deviation problem for some parabolic Ito equations, Commun. Pure Appl. Math., 45, no. 1, 97–120.CrossRefGoogle Scholar
[169] Chow, P. L. (2007) Stochastic Partial Differential Equations, Applied Mathematics and Nonlinear Science Series, Chapman & Hall/CRC.Google Scholar
[170] Chow, P. L. & Menaldi, J. L. (1989) Variational inequalities for the control of stochastic partial differential equations. In Stochastic Partial Differential Equations and Applications II, G. Da, Prato and L., Tubaro (eds.), Lecture Notes in Mathematics, no. 1390, Springer-Verlag, 42–52.Google Scholar
[171] Chueshov, I. & Millet, A. (2010) Stochastic 2D hydrodynamical type systems: well posedness and large deviations, Appl. Math. Optim., 61, no. 3, 379–420.CrossRefGoogle Scholar
[172] Confortola, F. (2007) Dissipative backward stochastic differential equations with locally Lipschitz nonlinearity, Stochastic Process. Appl., 117, no. 5, 613–628.CrossRefGoogle Scholar
[173] Constantin, P. & Foias, C. (1988) Navier-Stokes Equations, Chicago Lectures in Mathematics. University of Chicago Press.Google Scholar
[174] Crisan, D. & Lyons, T. (2002) Minimal entropy approximations and optimal algorithms, Monte Carlo Methods Appl., 8, no. 4, 343–355.CrossRefGoogle Scholar
[175] Cuerno, R., Makse, H. A., Tomassone, S., Harrington, S. T. & Stanley, H. E. (1995) Stochastic model for surface erosion via ion sputtering: dynamical evolution from ripple morphology to rough morphology, Phys. Rev. Lett., 75, 4464–4467.CrossRefGoogle ScholarPubMed
[176] Curtain, R. F. & Falb, P. (1971) Stochastic differential equations in Hilbert spaces, J. Differential Equations, 10, 412–430.CrossRefGoogle Scholar
[177] Curtain, R. F. & Pritchard, A. J. (1978) Infinite Dimensional Linear Systems Theory, Lecture Notes in Control and Information Sciences, no. 8, Springer-Verlag.CrossRefGoogle Scholar
[178] Cruzeiro, A. B., Flandoli, F. & Malliavin, P. (2007) Brownianmotion on volume preserving diffeomorphisms group and existence of global solutions of 2D stochastic Euler equation, J. Funct. Anal., 242, no. 1, 304–326.CrossRefGoogle Scholar
[179] Dalang, R. C. & Frangos, N. (1998) The stochastic wave equation in two spatial dimensions, Ann. Probab., 26, no. 1, 187–212.Google Scholar
[180] Dalang, R. C., Khoshnevisan, D., Mueller, C., Nualart, D. & Xiao, Y. (2009) A Minicourse on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, no. 1962, Springer-Verlag.Google Scholar
[181] Dalang, R. C., Mueller, C. & Zambotti, L. (2006) Hitting properties of parabolic s.p.d.e.'s with reflection, Ann. Probab., 34, no. 4, 1423–1450.CrossRefGoogle Scholar
[182] Dalang, R. C. & Sanz-Sole, M. (2009) Holder-Sobolev Regularity of the Solution to the Stochastic Wave Equation in Dimension Three, Mem. Am. Math. Soc., 199, no. 931.Google Scholar
[183] Daleckii, Yu. L. (1966) Differential equations with functional derivatives and stochastic equations for generalized randomprocesses, Dokl. Akad. Nauk SSSR, 166, 1035–1038.Google Scholar
[184] Daleckij, Yu. L. & Fomin, S.V. (1991) Measures and Differential Equations in Infinite-Dimensional Space. Translated from the Russian. With additional material by V. R., Steblovskaya, Yu. V., Bogdansky and N. Yu., Gon-charuk. Mathematics and its Applications (Soviet Series), no. 76, Kluwer.CrossRefGoogle Scholar
[185] Da Prato, G. (1976) Applications Croissantes et liquations d'Evolution dans les Espaces de Banach, Academic Press.Google Scholar
[186] Da Prato, G. (1982) Regularity results of a convolution stochastic integral and applications to parabolic stochastic equations in a Hilbert space, Conferenze del Seminario Matematico dell'Universita di Bari, no. 182, Laterza.Google Scholar
[187] Da Prato, G. (1983) Some results on linear stochastic differential equations in Hilbert spaces by semi-groups methods, Stochastic Anal. Appl., 1, 57–88.CrossRefGoogle Scholar
[188] Da Prato, G. & Debussche, A. (1996) Stochastic Cahn-Hilliard equation, Nonlinear Anal., 26, no. 2, 241–263.CrossRefGoogle Scholar
[189] Da Prato, G. & Debussche, A. (2002) 2D Navier-Stokes equations driven by a space-time white noise, J. Funct. Anal., 196, no. 1, 180–210.CrossRefGoogle Scholar
[190] Da Prato, G. & Debussche, A. (2003) Ergodicity for the 3D stochastic Navier-Stokes equations, J. Math. Pures Appl., 82, 877–947.CrossRefGoogle Scholar
[191] Da Prato, G. & Debussche, A. (2003) Strong solutions to the stochastic quantization equations, Ann. Probab., 31, no. 4, 1900–1916.Google Scholar
[192] Da Prato, G. & Debussche, A. (2008) 2D stochastic Navier-Stokes equations with a time-periodic forcing term, J. Dynam. Differential Equations, 20, no. 2, 301–335.CrossRefGoogle Scholar
[193] Da Prato, G. & Debussche, A. (2008) On the martingale problem associated to the 2D and 3D stochastic Navier-Stokes equations, Rend. Lincei Math. Appl., 19, no. 3, 247–264.Google Scholar
[194] Da Prato, G., Debussche, A. & Temam, R. (1994) Stochastic Burgers' equation, Nonlinear Differential Equations Appl., 1, no. 4, 389–402.CrossRefGoogle Scholar
[195] Da Prato, G., Debussche, A. & Tubaro, L. (2004) Irregular semi-convex gradient systems perturbed by noise and application to the stochastic Cahn-Hilliard equation, Ann. Inst. H. Poincare Probab. Statist., 40, no. 1, 73–88.CrossRefGoogle Scholar
[196] Da Prato, G., Debussche, A. & Tubaro, L. (2005) Coupling for some partial differential equations driven by white noise, Stochastic Process. Appl., 115, 1384–1407.CrossRefGoogle Scholar
[197] Da Prato, G., Debussche, A. & Tubaro, L. (2007) A modified Kardar-Parisi-Zhang model, Electron. Commun. Probab., 12, 442–453.CrossRefGoogle Scholar
[198] Da Prato, G. & Flandoli, F. (2010) Pathwise uniqueness for a class of SDE in Hilbert spaces and applications, J. Funct. Anal., 259, no. 1, 243–267.CrossRefGoogle Scholar
[199] Da Prato, G. & Gatarek, D. (1995) Stochastic Burgers equation with correlated noise, Stochastics Stochastics Rep., 52, no. 1-2, 29–41.Google Scholar
[200] Da Prato, G., Gatarek, D. & Zabczyk, J. (1992) Invariant measures for semilinear stochastic equations, Stochastic Anal. Appl., 10, no. 4, 387–408.CrossRefGoogle Scholar
[201] Da Prato, G. & Grisvard, P. (1979) Equations d'evolution abstraites non lineaires de type parabolique, Ann. Mat. Pura Appl., 120, no. 4, 329–396.CrossRefGoogle Scholar
[202] Da Prato, G., Iannelli, M. & Tubaro, L. (19811982) Some results on linear stochastic differential equations in Hilbert spaces, Stochastics, 6, no. 2, 105–116.Google Scholar
[203] Da Prato, G., Iannelli, M. & Tubaro, L. (19811982) On the path regularity of a stochastic process on a Hilbert space, Stochastics, 6, no. 3–4, 315–322.Google Scholar
[204] Da Prato, G. & Ichikawa, A. (1985) Stability and quadratic control for linear stochastic equations with unbounded coefficients, Boll. Unione Mat. Ital. B, 4, no. 3, 987–1001.Google Scholar
[205] Da Prato, G., Kwapien., S. & Zabczyk, J. (1987) Regularity of solutions of linear stochastic equations in Hilbert Spaces, Stochastics, 23, no. 1, 1–23.Google Scholar
[206] Da Prato, G. & Lunardi, A. (1998) Maximal regularity for stochastic convolutions in Lp spaces, Rend. Mat. Acc. Lincei, 9, no. 4, 25–29.Google Scholar
[207] Da Prato, G., Pritchard, A. J. & Zabczyk, J. (1991) On minimum energy problems, Siam J. Control Optim., 29, no. 1, 209–221.CrossRefGoogle Scholar
[208] Da Prato, G. & Rockner, M. (2002) Singular dissipative stochastic equations in Hilbert spaces, Probab. Theory Relat. Fields, 124, no. 2, 261–303.CrossRefGoogle Scholar
[209] Da Prato, G., Rockner, M., Rozovskii, B. L. & Wang, F. (2006) Strong solutions of stochastic generalized porous media equations: existence, uniqueness, and ergodicity, Commun. Partial Differential Equations, 31, no. 1-3, 277–291.CrossRefGoogle Scholar
[210] Da Prato, G., Rockner, M. & Wang, F. Y. (2009) Singular stochastic equations on Hilbert spaces: Harnack inequalities for their transition semigroups, J. Funct. Anal., 257, no. 4, 992–1017.CrossRefGoogle Scholar
[211] Da Prato, G. & Tubaro, L. (1985) Some results on semilinear stochastic differential equations in Hilbert spaces, Stochastics, 15, no. 4, 271–281.CrossRefGoogle Scholar
[212] Da Prato, G. & Tubaro, L. (2000) Self-adjointness of some infinite-dimensional elliptic operators and application to stochastic quantization, Probab. Theory Relat. Fields, 118, no. 1, 131–145.CrossRefGoogle Scholar
[213] Da Prato, G. & Zabczyk, J. (1988) A note on semilinear stochastic equations, Differential Integral Equations, 1, no. 2, 143–155.Google Scholar
[214] Da Prato, G. & Zabczyk, J. (1991) Smoothing properties of transition semigroups in Hilbert spaces, Stochastics, 35, no. 2, 63–77.Google Scholar
[215] Da Prato, G. & Zabczyk, J. (1992) Non explosion, boundedness and ergodicity for stochastic semilinear equations, J. Differential Equations, 98, no. 1, 181–195.CrossRefGoogle Scholar
[216] Da Prato, G. & Zabczyk, J. (1992) Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, Cambridge University Press.CrossRefGoogle Scholar
[217] Da Prato, G. & Zabczyk, J. (1992) A note on stochastic convolution, Stochastic Anal. Appl., 10, no. 2, 143–153.CrossRefGoogle Scholar
[218] Da Prato, G. & Zabczyk, J. (1993). Evolution equations with white-noise boundary conditions, Stochastics Stochastics Rep., 42, no. 3–4, 167–182.Google Scholar
[219] Da Prato, G. & Zabczyk, J. (1995) Convergence to equilibrium for classical and quantum spin systems, Probab. Theory Relat. Fields, 103, 529–552.CrossRefGoogle Scholar
[220] Da Prato, G. & Zabczyk, J. (1996) Ergodicity for Infinite Dimensional Systems, London Mathematical Society Lecture Notes, no. 229, Cambridge University Press.CrossRefGoogle Scholar
[221] Da Prato, G. & Zabczyk, J. (1997) Differentiability of the Feynman-Kac semigroup and a control application, Rend. Lincei Math. Appl., 8, no. 3, 183–188.Google Scholar
[222] Da Prato, G. & Zabczyk, J. (2002) Second Order Partial Differential Equations in Hilbert spaces, London Mathematical Society Lecture Notes, no. 293, Cambridge University Press.CrossRefGoogle Scholar
[223] Datko, R. (1970) Extending a theorem of A. M. Liapunov to Hilbert space, J. Math. Anal. Appl., 32, 610–616.CrossRefGoogle Scholar
[224] Davies, E. B. (1980) One-Parameter Semigroups, London Mathematical Society Monographs, no. 15, Academic Press.Google Scholar
[225] Dawson, D. A. (1972) Stochastic evolution equations, Math. Biosci., 154, no. 3–4, 187–316.Google Scholar
[226] Dawson, D. A. (1975) Stochastic evolution equations and related measures processes, J. Multivariate Anal., 5, 1–52.CrossRefGoogle Scholar
[227] Dawson, D. A. & Gorostiza, L. G. (1989) Generalized solutions of stochastic evolution equations. In Stochastic Partial Differential Equations and Applications II, G. Da, Prato and L., Tubaro (eds.), Lecture Notes in Mathematics, no. 1390, Springer-Verlag, 53–64.Google Scholar
[228] Dawson, D. A. & Salehi, H. (1980) Spatially homogeneous random evolutions, J. Multivariate Anal., 10, no. 2, 141–180.CrossRefGoogle Scholar
[229] De Acosta, A. (2000) A general non-convex large deviation result with applications to stochastic equations, Probab. Theory Relat. Fields, 118, no. 4, 483–521.CrossRefGoogle Scholar
[230] De Bouard, A. & Debussche, A. (1998) On the stochastic Korteweg-de Vries equation, J. Funct. Anal., 154, no. 1, 215–251.CrossRefGoogle Scholar
[231] De Bouard, A. & Debussche, A. (1999) A stochastic nonlinear Schrodinger equation with multiplicative noise, Commun. Math. Phys., 205, no. 1, 161–181.CrossRefGoogle Scholar
[232] De Bouard, A. & Debussche, A. (2002) On the effect of a noise on the solutions of the focusing supercritical nonlinear Schrodinger equation, Probab. Theory Relat. Fields, 123, no. 1, 76–96.CrossRefGoogle Scholar
[233] De Bouard, A. & Debussche, A. (2003) The stochastic nonlinear Schrodinger equation in H1, Stochastic Anal. Appl., 21, no. 1, 97–126.CrossRefGoogle Scholar
[234] De Bouard, A. & Debussche, A. (2004) A semi-discrete scheme for the stochastic nonlinear Schrodinger equation, Numer. Math., 96, no. 4, 733–770.CrossRefGoogle Scholar
[235] De Bouard, A. & Debussche, A. (2005) Blow-up for the stochastic nonlinear Schrodinger equation with multiplicative noise, Ann. Probab., 33, no. 3, 1078–1110.CrossRefGoogle Scholar
[236] De Bouard, A. & Debussche, A. (2006) Weak and strong order of convergence of a semi discrete scheme for the stochastic nonlinear Schrodinger equation, Appl. Math. Optim., 54, no. 3, 369–399.CrossRefGoogle Scholar
[237] De Bouard, A. & Debussche, A. (2007) The Korteweg-de Vries equation with multiplicative homogeneous noise. In Stochastic Differential Equations -Theory and Applications, P., Baxendale and S., Lototsky (eds.), World Scientific.Google Scholar
[238] De Bouard, A. & Debussche, A. (2007) Random modulation of solitons for the stochastic Korteweg-de Vries equation, Ann. Inst. H. Poincare, Anal. Non Limaire, 24, no. 2, 251–278.Google Scholar
[239] De Bouard, A. & Debussche, A. (2009) Soliton dynamics for the Korteweg-de Vries equation with multiplicative homogeneous noise, Electron. J. Probab., 14, no. 58, 1727–1744.CrossRefGoogle Scholar
[240] De Bouard, A. & Debussche, A. (2010) The nonlinear Schrodinger equation with white noise dispersion, J. Funct. Anal., 259, no. 5, 1300–1321.CrossRefGoogle Scholar
[241] De Bouard, A., Debussche, A. & Tsutsumi, Y. (1999) White noise driven Korteweg-de Vries equation, J. Funct. Anal., 169, no. 2, 532–558.CrossRefGoogle Scholar
[242] De Bouard, A., Debussche, A. & Tsutsumi, Y. (20042005) Periodic solutions of the Korteweg-de Vries equation driven by white noise, Siam J. Math. Anal., 36, no. 3, 815–855 (electronic).Google Scholar
[243] Debussche, A. (2011) Weak approximation of stochastic partial differential equations: the nonlinear case, Math. Comput., 80, no. 273, 89–117.Google Scholar
[244] Debussche, A. & Dettori, L. (1995) On the Cahn-Hilliard equation with a logarithmic free energy, Nonlinear Anal., 24, no. 10, 1491–1514.CrossRefGoogle Scholar
[245] Debussche, A. & Di Menza, L. (2002) Numerical resolution of stochastic Focusing NLS equations, Appl. Math. Lett., 15, no. 6, 661–669.CrossRefGoogle Scholar
[246] Debussche, A. & Gautier, E. (2008) Small noise asymptotic of the timing jitter in soliton transmission, Ann. Appl. Probab., 18, no. 1, 178–208.CrossRefGoogle Scholar
[247] Debussche, A., Glatt-Holtz, N. & Temam, R. (2010) Local martingale and pathwise solutions for an abstract fluids model, arXiv:1007.2831.Google Scholar
[248] Debussche, A., Glatt-Holtz, N., Temam, R. & Ziane, M. (2012) Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise, Nonlinearity, 25, 2093–2118.CrossRefGoogle Scholar
[249] Debussche, A. & Goudenege, L. (2009) Stochastic Cahn-Hilliard equation with double singular nonlinearities and two reflections, Prepublication, IRMAR 2009-29.Google Scholar
[250] Debussche, A., Hu, Y., & Tessitore, G. (2011) Ergodic BSDEs under weak dissipative assumptions, Stochastic Process. Appl., 121, no. 3, 407–426.CrossRefGoogle Scholar
[251] Debussche, A. & Odasso, C. (2006) Markov solutions for the 3D stochastic Navier-Stokes equations with state dependent noise, J. Evol. Equations, 6, no. 2, 305–324.CrossRefGoogle Scholar
[252] Debussche, A. & Printems, J. (2009) Weak order for the discretization of the stochastic heat equation, Math. Comput., 78, no. 266, 845–863.Google Scholar
[253] Debussche, A. & Tsutsumi, Y. (2011) 1D quintic nonlinear Schrodinger equation with white noise dispersion, Journal Math. Pures Appl., 96, no. 4, 363–376.CrossRefGoogle Scholar
[254] Debussche, A. & Vovelle, J. (2010) Scalar conservation laws with stochastic forcing, J. Funct. Anal., 259, no. 4, 1014–1042.CrossRefGoogle Scholar
[255] Debussche, A. & Zambotti, L. (2007) Conservative stochastic Cahn-Hilliard equation with reflection, Ann. Probab., 35, no. 5, 1706–1739.CrossRefGoogle Scholar
[256] Delfour, M. C. (1980) The largest class of hereditary systems defining a C0 semigroup on the product space, Can. J. Math., 32, no. 4, 969–978.CrossRefGoogle Scholar
[257] Delfour, M. C. & Karrakchou, J. (1987) State space theory of linear time invariant systems with delays in state, control and observation variables, I, II, J. Math. Anal. Appl., 125, no. 2, 361–450.Google Scholar
[258] Delfour, M. C. & Mitter, S. K. (1972) Hereditary differential systems with constant delay, J. Differential Equations, 12, 213–235; erratum, (1973), 397.CrossRefGoogle Scholar
[259] Dettweiler, E. (1989) On the martingale problem for Banach space Valued SDE, J. Theor. Probab., 2, no. 2159–197.CrossRefGoogle Scholar
[260] Di Blasio, G. (1993) Holomorphic semigroups in interpolation and extrapolation spaces, Semigroup Forum, 47, no. 1, 105–114.CrossRefGoogle Scholar
[261] Dieudonne, J. (1960) Foundation of Modern Analysis, Academic Press.Google Scholar
[262] Di Perna, R. J. & Lions, P. L. (1989) Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98, no. 3, 511–547.Google Scholar
[263] Donati-Martin, C. & Pardoux, E. (1993) White noise driven SPDEs with reflection, Probab. Theory Relat. Fields, 95, no. 1, 413–425.CrossRefGoogle Scholar
[264] Doob, J. L. (1948) Asymptotic properties of Markoff transitionprobabilities, Trans. Am. Math. Soc., 63, 394–421.Google Scholar
[265] Doss, H. & Royer, G. (19781979) Processus de diffusion associe aux mesures de Gibbs sur Rzd, Z. Wahrsch. Verw. Gebiete, 46, no. 1, 107–124.CrossRefGoogle Scholar
[266] Du, K., Qiu, J. & Tang, S. (2012) Lp theory for super-parabolic backward stochastic partial differential equations in the whole space, Appl. Math. Optim., 65, no. 2, 175–219.CrossRefGoogle Scholar
[267] Duan, J. & Ervinv, J. (2001) On the stochastic Kuramoto-Sivashinsky equation, Nonlinear Anal., 44, no. 2, 205–216.CrossRefGoogle Scholar
[268] Duan, J. & Millet, A. (2009) Large deviations for the Boussinesq equation under random influences, Stochastic Process. Appl., 119, no. 6, 2052–2081.CrossRefGoogle Scholar
[269] Duncan, T. E., Maslowski, B. & Pasik-Duncan, B. (2005) Stochastic equations in Hilbert space with a multiplicative fractional Gaussian noise, Stochastic Process. Appl., 115, no. 8, 1357–1383.CrossRefGoogle Scholar
[270] Duncan, T. E., Pasik-Duncan, B. & Maslowski, B. (2002) Fractional Brownian motion and stochastic equations in Hilbert spacesStoch. Dyn., 2, no. 2, 225–250.CrossRefGoogle Scholar
[271] Dunford, N. & Schwartz, J. T. (1963) Linear Operators. Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (with the assistance of William G. Bade and Robert G. Bartle), Interscience Publishers John Wiley & Sons.Google Scholar
[272] Dunford, N. & Schwartz, J. T. (1988) Linear Operators. Part I: General Theory (with the assistance of William G. Bade and Robert G. Bartle), reprint of the 1958 original, Interscience Publishers John Wiley & Sons.Google Scholar
[273] Dunst, T., Hausemblas, E. & Prohl, A.Approximate Euler method for parabolic stochastic partial differential equations driven by space-time Levy noise, preprint.
[274] Dynkin, E. B. (1965) Markov Processes, Vols. I, II, translated with the authorization and assistance of the author by J. Fabius, V. Greenberg, A. Maitra, G. Majone. Die Grundlehren der Mathematischen Wissenschaften, Bnde 121, 122, Academic Press.CrossRefGoogle Scholar
[275] E, W., Khanin, K., Mazel, A. & Sinai, Ya. (2000) Invariant measures for Burgers equation with stochastic forcing, Ann. Math., 151, no. 3, 877–960.CrossRefGoogle Scholar
[276] E, W., Mattingly, J. C. & Sinai, Ya. (2001) Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation, Commun. Math. Phys., 224, no. 1, 83–106.CrossRefGoogle Scholar
[277] Elezovic, N. & Mikelic, A. (1991) On the stochastic Cahn-Hilliard equation, Nonlinear Anal., 16, no. 12, 1169–1200.CrossRefGoogle Scholar
[278] El Karoui, N., Peng, S. & Quenez, M. C. (1997) Backward stochastic differential equations in finance, Math. Finance, 7, no. 1, 1–71.CrossRefGoogle Scholar
[279] Elliot, C. M. & Ockendon, J. R. (1982) Weak and Variational Methods for Moving Boundary Problems, Pitman Research Notes in Mathematics, no. 59, Pitman Publishing.Google Scholar
[280] Elworthy, K. D. (1982) Stochastic Differential Equations on Manifolds, LMS Lecture Notes Series, no. 70, Cambridge University Press.CrossRefGoogle Scholar
[281] Elworthy, K. D. (1992) Stochastic flows on Riemannian manifolds. In Diffusion Processes and Related Problems in Analysis, Vol. II, M. A., Pinsky and V., Wihstutz (eds.), Birkhauser, 33–72.Google Scholar
[282] Engel, K.-J. & Nagel, R. (2000) One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag.Google Scholar
[283] ES-Sarhir, A. & Von Renesse, M. (2012) Ergodicity of stochastic curve shortening flow in the plane, Siam J. Math. Anal., 44, no. 1, 224–244.CrossRefGoogle Scholar
[284] ES-Sarhir, A., Von Renesse, M. & Stannat, W. (2012) Estimates for the ergodic measure and polynomial stability of plane stochastic curve shortening flow, Nonlinear Differential Equations Appl., 19, no. 6, 663–675.CrossRefGoogle Scholar
[285] Evans, L. C. (1998). Partial Differential Equations, Am. Math. Soc.Google Scholar
[286] Ewald, B., Petcu, M. & Temam, R. (2007) Stochastic solutions of the two-dimensional primitive equations of the ocean and atmosphere with an additive noise, Anal. Appl. (Singapore), 5, no. 2, 183–198.Google Scholar
[287] Fang, S. & Luo, D. (2010) Transport equations and quasi-invariant flows on the Wiener space, Bull. Sci. Math., 134, no. 3, 295–328.CrossRefGoogle Scholar
[288] Faris, W. G. & Jona-Lasinio, G. (1982) Large fluctuations for a nonlinear heat equation with noise, J. Phys. A: Math. Gen., 15, 3025–3055.CrossRefGoogle Scholar
[289] Feng, J. & T. Kurtz, T. (2006) Large Deviations for Stochastic Processes, Mathematical Surveys and Monographs, no. 131, Am. Math. Soc., Providence, RI.CrossRefGoogle Scholar
[290] Feng, J. & Nualart, D. (2008) Stochastic scalar conservation laws, J. Funct. Anal., 255, no. 2, 313–373.CrossRefGoogle Scholar
[291] Fernique, X. (1975) Regularite des trajectoires des fonctions aleatoires Gaussiennes, Ecole d'Ete de Probabilites de Saint-Flour IV-1974, P., Hen-nequin (ed.), Lecture Notes in Mathematics, no. 480, Springer-Verlag, 296.Google Scholar
[292] Ferrario, B. (2008) Invariant mesures for a stochastic Kuramoto-Sivashinsky equation, Stochastic Anal. Appl., 26, no. 2, 379–407.CrossRefGoogle Scholar
[293] Filipović, D. (2001) Consistency Problemsfor Heath-Jarrow-Morton Interest Rate Models, Lecture Notes in Mathematics, no. 1760, Springer-Verlag.CrossRefGoogle Scholar
[294] Filipovic, D., Tappe, S. & Teichman, J. (2010) Term structure models driven by Wiener processes and Poisson measures: existence and positivity, Siam J. Financial Math., 1, 523–554.CrossRefGoogle Scholar
[295] Flandoli, F. (1990) Solution and control of a bilinear stochastic delay equation, Siam J. Control Optim., 28, no. 4, 936–949.CrossRefGoogle Scholar
[296] Flandoli, F. (1990) Dirichlet boundary value problem for stochastic parabolic equations: compatibility relations and regularity of solutions, Stochastics Stochastics Rep., 29, no. 3, 331–357.Google Scholar
[297] Flandoli, F. (1991) Stochastic flow and Liapunov exponents for abstract stochastic PDEs of parabolic type, Lyapunov Exponents (Oberwolfach, 1990), Lecture Notes in Mathematics, no. 1486, Springer-Verlag, 196–205.Google Scholar
[298] Flandoli, F. (1991) A stochastic reaction-diffusion equation with multiplicative noise, Appl. Math. Lett., 4, 45–48.CrossRefGoogle Scholar
[299] Flandoli, F. (1992) On the semi-group approach to stochastic evolution equations, Stochastic Anal. Appl., 10, no. 2, 181–203.CrossRefGoogle Scholar
[300] Flandoli, F. (1992) Stochastic evolution equations with non coercive monotone operators. In Stochastic Partial Differential Equations and their Applications (Charlotte, NC, 1991), Lecture Notes in Control and Inform. Sci., no. 176, Springer-Verlag, 70–80.Google Scholar
[301] Flandoli, F. (1994) Dissipativity and invariant measures for stochastic Navier-Stokes equations, Nonlinear Differential Equations Appl., 1, no. 4, 403–423.CrossRefGoogle Scholar
[302] Flandoli, F. (2008) An introduction to 3D stochastic Fluid Dynamics. In SPDE in Hydrodynamics: Recent Progress and Prospects, G. Da, Prato and M., Rockner (eds.), CIME Lecture notes in Mathematics, no. 1942, Springer-Verlag.Google Scholar
[303] Flandoli, F. (2011) Random Perturbations of PDEs and Fluid Dynamics Models, Ecole d'Ete de Probabilites de Saint-Flour, XL-2010, Springer-Verlag.Google Scholar
[304] Flandoli, F. & Gatarek, D. (1995) Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Relat. Fields, 102, no. 3, 367–391.CrossRefGoogle Scholar
[305] Flandoli, F., Gubinelli, M. & Priola, E. (2010) Well-posedness of the transport equation by stochastic perturbation, Invent. Math., 180, no. 1, 1–53.CrossRefGoogle Scholar
[306] Flandoli, F. & Maslowski, B. (1995) Ergodicity of the 2D Navier-Stokes equation under random perturbations, Commun. Math. Phys., 172, no. 1, 119–141.CrossRefGoogle Scholar
[307] Flandoli, F. & Romito, M. (2002) Partial regularity for the stochastic Navier-Stokes equations, Trans. Am. Math. Soc., 354, no. 6, 2207–2241.CrossRefGoogle Scholar
[308] Flandoli, F. & Romito, M. (2008) Selections for the 3D stochastic Navier-Stokes equations, Probab. Theory Relat. Fields, 140, no. 3–4, 407–458.Google Scholar
[309] Flandoli, F. & Schaumlöffel, K. U. (1990) Stochastic parabolic equations in bounded domains: random evolution operator and Lyapunov exponents, Stochastics Stochastics Rep., 29, no. 4, 461–485.Google Scholar
[310] Flandoli, F. & Schaumlöffel, K. U. (1991) A multiplicative ergodic theorem with applications to a first order stochastic hyperbolic equation in a bounded domain, Stochastics Stochastics Rep., 34, no. 3–4, 241–255.Google Scholar
[311] Fleming, W.H. (1975) Distributed parameter stochastic systems in population biology. In Control Theory, Numerical Methods and Computer Systems Modeling, A., Bensoussan and J. L., Lions (eds.), Lecture Notes in Economics & Mathematical Systems, no. 107, Springer-Verlag, 179–191.Google Scholar
[312] Fleming, W. H. & Mitter, S. K. (1982) Optimal control and nonlinear filtering for nondegenerated diffusion processes, Stochastics, 8, no. 1, 63–77.CrossRefGoogle Scholar
[313] Follmer, H. (1990) Martin boundaries on Wiener spaces. In Diffusion Processes and Related Problems in Analysis, M., Pinsky (ed.), Birkhäuser.Google Scholar
[314] Follmer, H. & Wakolbinger, A. (1986) Time reversal of infinite dimensional diffusions, Stochastic Process. Appl., 22, no. 1, 59–77.CrossRefGoogle Scholar
[315] Freidlin, M. I. (1988) Random perturbations of reaction-diffusion equations: the quasi-deterministic approximation, Trans. Am. Math. Soc., 305, no. 2, 665–697.Google Scholar
[316] Freidlin, M. I. & Ventzell, A. (1984) Random Perturbations of Dynamical Systems, Springer-Verlag.CrossRefGoogle Scholar
[317] Freidlin, M. I. & Ventzell, A. (1992) Reaction-diffusion equation with randomly perturbed boundary condition, Ann. Probab., 20, no. 2, 963–986.CrossRefGoogle Scholar
[318] Frisch, U. (1968) Wave propagation in random media. In Probabilistic Methods in Applied Mathematics, A. T., Bharucha-Reid (ed.), Academic Press.Google Scholar
[319] Fritz, J. (1982) Infinite lattice systems of interacting diffusion processes, existence and regularity properties, Z. Wahrsch. Verw. Gebiete, 59, no. 3, 291–309.CrossRefGoogle Scholar
[320] Friz, P. & Oberhauser, H. (2011) On the splitting-up method for rough (partial) differential equations, J. Differential Equations, 251, no. 2, 316–338.CrossRefGoogle Scholar
[321] Friz, P. & Oberhauser, H. (2010) Rough path stability of SPDEs arising in non-linear filtering, arXiv:1005.1781.Google Scholar
[322] Friz, P. & Victoir, N. (2010) Multidimensional Stochastic Processes as Rough Paths. Theory and Applications, Cambridge Stud. Adv. Math., 120, Cambridge University Press.CrossRefGoogle Scholar
[323] Fuhrman, M. & Hu, Y. (2007) Backward stochastic differential equations in infinite dimensions with continuous driver and applications, Appl. Math. Optim., 56, no. 2, 265–302.CrossRefGoogle Scholar
[324] Fuhrman, M., Masiero, F. & Tessitore, G. (2010) Stochastic equations with delay: optimal control via BSDEs and regular solutions of Hamilton-Jacobi-Bellman equations, Siam J. Control Optim., 48, no. 7, 4624–4651.CrossRefGoogle Scholar
[325] Fuhrman, M. & Tessitore, G. (2002) Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic differential equations approach and applications to optimal control, Ann. Probab., 30, no. 3, 1397–1465.Google Scholar
[326] Fuhrman, M. & Tessitore, G. (2002) The Bismut-Elworthy formula for backward SDEs and applications to nonlinear Kolmogorov equations and control in infinite dimensional spaces, Stochastics Stochastics Rep., 74, no. 1-2, 429–464.Google Scholar
[327] Fuhrman, M. & Tessitore, G. (2004). Infinite horizon backward stochastic differential equations and elliptic equations in Hilbert spaces, Ann. Probab., 32, no. 1B, 607–660.Google Scholar
[328] Fuhrman, M. & Tessitore, G. (2005) Generalized directional gradients, backward stochastic differential equations and mild solutions of semilinear parabolic equations, Appl. Math. Optim., 51, no. 3, 279–332.CrossRefGoogle Scholar
[329] Fuhrman, M., Tessitore, G. & Hu, Y. (2009) Ergodic BSDES and optimal ergodic control in Banach spaces, Siam J. Control Optim., 48, no. 3, 1542–1566.CrossRefGoogle Scholar
[330] Fujisaki, M., Kallianpur, G. & Kunita, H. (1972) Stochastic differential equations for the nonlinear filtering problem, Osaka J. Math., 9, 19–40.Google Scholar
[331] Funaki, T. (1983) Random motions of string and related stochastic evolution equations, Nagoya Math. J., 89, 129–193.CrossRefGoogle Scholar
[332] Funaki, T. (1992) A stochastic partial differential equation with values in a manifold, J. Funct. Anal., 109, no. 2, 257–288.CrossRefGoogle Scholar
[333] Funaki, T. (1999) Singular limit for stochastic reaction-diffusion equation and generation of random interfaces, Acta Math. Sin. (Engl. Ser.), 15, no. 3, 407–438.Google Scholar
[334] Funaki, T. & Olla, S. (2001) Fluctuations for V0 interface model on a wall, Stochastic Process. Appl., 94, no. 1, 1–27.CrossRefGoogle Scholar
[335] Garsia, A. M., Rademich, E. & Rumsay, H. Jr. (19701971) A real variable lemma and the continuity of paths of some Gaussian process, Indiana Univ. Math. J., 20, 565–578.CrossRefGoogle Scholar
[336] Gatarek, D. & Goldys, B. (1992) On solving stochastic evolution equations by the change of drift with applications to optimal control. In Stochastic Partial Differential Equations and Applications (Trento 1990), Pitman Res. Notes Math., no. 268, G. Da, Prato and L., Tubaro (eds.), 180–190.Google Scholar
[337] Gatarek, D. & Goldys, B. (1994) On weak solutions of stochastic equations in Hilbert spaces, Stochastics Stochastics Rep., 46, no. 1-2, 41–51.Google Scholar
[338] Gatarek, D. & Goldys, B. (1996) Existence, uniqueness and ergodicity for the stochastic quantization equation, Studia Math., 119, no. 2, 179–193.Google Scholar
[339] Gautier, E. (2005) Large deviations and support results for nonlinear Schrodinger equations with additive noise and applications, ESAIM Probab. Stat., 9, 74–97 (electronic).CrossRefGoogle Scholar
[340] Gavarecki, L. & Mandrekar, V. (2010) Stochastic Differential Equations in Infinite Dimensions, Springer-Verlag.Google Scholar
[341] Gaveau, B. (1981) Noyau de probabilite de transition de certains operateurs d'Ornstein Uhlenbeck dans les espaces de Hilbert, C. R. Acad. Sci. Paris Ser. I, Math., 293, no. 9, 469–472.Google Scholar
[342] Gaveau, B. & Moulinier, J. M. (1985) Regularite des mesures et perturbations stochastiques de champs de dimension infinie, Pub. Res. Inst. Math. Sci., Kyoto Univ., 21, no. 3, 593–616.Google Scholar
[343] Geissert, M., Kovacs, M. & Larsson, S. (2009) Rate of weak convergence of the finite element method for the stochastic heat equation with additive noise, BIT49, no. 2, 343–356.Google Scholar
[344] Gel'fand, M. & Shilov, G. (1964) Generalized Functions I. Properties and Operations, Academic Press.Google Scholar
[345] Gel'fand, M. & Vilenkin, N. (1964) Generalized Functions IV Applications of Harmonic Analysis, Academic Press.Google Scholar
[346] Gess, B., Liu, W. & Rockner, M. (2011) Random attractors for a class of stochastic partial differential equations driven by general additive noise, J. Differential Equations, 251, no. 4-5, 1225–1253.CrossRefGoogle Scholar
[347] Gikhman, I.I. (1946) A method of constructing random processes, Dokl. Acad. Nauk, SSSR, 58, 961–964.Google Scholar
[348] Gikhman, I.I. & Skorokhod, A.V. (1972) Stochastic Differential Equations, Springer-Verlag.CrossRefGoogle Scholar
[349] Glatt-Holtz, N. & Temam, R. (2011) Pathwise solutions of the 2D stochastic primitive equations, Appl. Anal., 90, no. 1, 85–102.Google Scholar
[350] Glatt-Holtz, N. & Ziane, M. (2008) The stochastic primitive equations in two space dimensions with multiplicative noise, Discrete Contin. Dyn. Syst. Ser. B, 10, no. 4, 801–822.Google Scholar
[351] Glimm, J. & Jaffe, A. (1981) Quantum Physics. A Functional Integral Point of View, Springer-Verlag.Google Scholar
[352] Gobet, E., Pages, G., Pham, H. & Printem, J. (2006) Discretization and simulation of the Zakai equation, Siam|J. Numer. Anal., 44, no. 6, 2505–2538 (electronic).Google Scholar
[353] Godunov, A. N. (1975), Peano's theorem in Banach spaces, Functional Anal. Appl., 9, 53–55.CrossRefGoogle Scholar
[354] Goldys, B. & Maslowski, B. (2005) Exponential ergodicity for stochastic Burgers and 2D Navier-Stokes equations, J. Funct. Anal., 226, no. 1, 230–255.CrossRefGoogle Scholar
[355] Goldys, B. & Maslowski, B. (2006) Lower estimates of transition densities and bounds on exponential ergodicity for stochastic PDE's, Ann. Probab., 34, no. 4, 1451–1496.CrossRefGoogle Scholar
[356] Goldys, B. & Maslowski, B. (2006) Exponential ergodicity for stochastic reaction-diffusion equations. In Stochastic Partial Differential Equations and Applications VII, Lecture Notes Pure Appl. Math., no. 245, G. Da, Prato and L., Tubaro (eds.), Chapman & Hall/CRC, 115–131.Google Scholar
[357] Goldys, B., Rockner, M. & Zhan, G. (2009) Martingale solutions and Markov selections for stochastic partial differential equations, Stochastic Process. Appl., 119, no. 5, 1725–1764.CrossRefGoogle Scholar
[358] Gorostiza, L. & Leon, J. A. (1991) A stochastic Fubini theorem and equivalence of extended solutions of stochastic evolution equations in Hilbert spaces. In Random Partial Differential Equations (Oberwolfach, 1989), 8594, Int. Ser. Numer. Math., 102, Birkhauser.Google Scholar
[359] Goudenege, L. L. (2009) Stochastic Cahn-Hilliard equation with singular nonlinearity and reflection, Stochastic Process. Appl., 119, no. 10, 3516–3548.CrossRefGoogle Scholar
[360] Grecksch, W. & Tudor, C. (1995) Stochastic Evolution Equations. A Hilbert Space Approach, Akademie-Verlag, Berlin.Google Scholar
[361] Grieser, D. (2002) Uniform bounds for eigenfunctions of the Laplacian on manifolds with boundary, Commun. Partial Differential Equations, 27, no. 7-8, 1283–1299.CrossRefGoogle Scholar
[362] Grisvard, P. (1966) Commutativite de deux foncteurs d'interpolation et applications, J. Math. Pures Appl., 45, 143–290.Google Scholar
[363] Gross, L. (1967) Potential theory in Hilbert spaces, J. Funct. Anal., 1, 123–181.CrossRefGoogle Scholar
[364] Guatteri, G. (2007) On a class of forward-backward stochastic differential systems in infinite dimensions, J. Appl. Math. Stoch. Anal., article 42640.CrossRefGoogle Scholar
[365] Guatteri, G. (2011) Stochastic maximum principle for SPDEs with noise and control on the boundary, Systems Control Lett., 60, no. 3, 198–204.CrossRefGoogle Scholar
[366] Gubinelli, M. (2004) Controlling rough paths, J. Func. Anal., 216, no. 1, 86–140.CrossRefGoogle Scholar
[367] Gubinelli, M. (2010) Ramification of rough paths, J. Differential Equations, 248, no. 4, 693–721.CrossRefGoogle Scholar
[368] Gubinelli, M. (2012) Rough solutions of the periodic Korteweg-de Vries equation, Commun. Pure Appl. Anal., 11, no. 2, 709–733.Google Scholar
[369] Gubinelli, M. & Tindel, S. (to appear) Non-linear rough heat equations, Probab. Theory Relat. Fields.
[370] Gyongy, I. (1988) On the approximation of stochastic partial differential equations, Stochastics, 25, no. 2, 59–86.CrossRefGoogle Scholar
[371] Gyongy, I. (1989) On the approximation of stochastic partial differential equations, Stochastics, 26, no. 3, 129–164.Google Scholar
[372] Gyongy, I. (1989) The stability of stochastic partial differential equations andapplications. In Stochastic Partial Differential Equationsand Applications II, G. Da, Prato and L., Tubaro (eds.), Lecture Notes in Mathematics, no. 1390, Springer-Verlag, 91–118.Google Scholar
[373] Gyongy, I. (1995) On non-degenerate quasi-linear stochastic parabolic partial differential equations, Potential Anal., 4, no. 2, 157–171.CrossRefGoogle Scholar
[374] Gyongy, I. (1998) Existence and uniqueness results for semilinear stochastic partial differential equations, Stochastic Process. Appl., 73, no. 2, 271–299.CrossRefGoogle Scholar
[375] Gyongy, I. (1998) Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I, Potential Anal., 9, no. 1, 1–25.CrossRefGoogle Scholar
[376] Gyongy, I. (1999) Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II, Potential Anal., 11, no. 1, 1–37.CrossRefGoogle Scholar
[377] Gyongy, I. & Krylov, N. V. (19811982) On stochastic equations with respect to semimartingales II. Ito formula in Banach spaces, Stochastics, 6, no. 3-4, 153–163.Google Scholar
[378] Gyongy, I. & Martinez, T. (2001) On stochastic differential equations with locally unbounded drift, Czech. Math. J., 51, no. 4, 763–783.CrossRefGoogle Scholar
[379] Gyongy, I. & Millet, A. (2005) Implicit scheme for stochastic parabolic partial differential equations driven by space-time white noise, Potential Anal., 7, no. 4, 725–757.Google Scholar
[380] Gyongy, I. & Millet, A. (2009) Rate of convergence of space time approximations for stochastic evolution equations, Potential Anal., 30, no. 1, 29–64.CrossRefGoogle Scholar
[381] Gyongy, I. & Nualart, D. (1997) Implicit scheme for stochastic parabolic partial differential equations driven by space-time white noise, Potential Anal. 7, no. 4, 725–757.CrossRefGoogle Scholar
[382] Gyongy, I. & Nualart, D. (1999) On the stochastic Burgers' equation in the real line, Ann. Probab., 27, no. 2, 782–802.CrossRefGoogle Scholar
[383] Gyongy, I. & Pardoux, E. (1993) On the regularization effect of space-time white noise on quasi-linear parabolic partial differential equations, Probab. Theory Relat. Fields, 97, no. 1-2, 211–229.CrossRefGoogle Scholar
[384] Hairer, M. (2005) Coupling of stochastic PDEs, XIVth International Congress on Mathematical Physics, World Scientific, Hackensack, NJ, 281–289.Google Scholar
[385] Hairer, M. (2009) An introduction to stochastic PDEs, arXiv:0907.4178.Google Scholar
[386] Hairer, M. (2011) Rough stochastic PDEs, Commun. Pure Appl. Math., 64, no. 11, 1547–1585.Google Scholar
[387] Hairer, M. (2012) Solving The Kpz equation, arXiv:1109.6811v1.Google Scholar
[388] Hairer, M. & Mattingly, J. (2006) Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. Math. 164, no. 3, 993–1032.CrossRefGoogle Scholar
[389] Hairer, M. & Mattingly, J. (2008) Spectral gaps in Wasserstein distances and the 2D stochastic Navier-Stokes equations, Ann. Probab., 36, 2050–2091.CrossRefGoogle Scholar
[390] Hairer, M., Mattingly, J. & Pardoux, E. (2004) Calcul de Malliavin pour les Equations de Navier-Stokes 2D stochastiques, hautement degenerees, C. R. Acad. Sci. Paris, 339, no. 11, 793–796.CrossRefGoogle Scholar
[391] Hairer, M., Mattingly, J. & Scheutzow, M. (2011) Asymptotic coupling and a general form of Harris theorem with applications to stochastic delay equations, Probab. Theory Relat. Fields, 149, no. 1-2, 223–259.CrossRefGoogle Scholar
[392] Hale, J. (1977) Theory of Functional Differential Equations, Springer-Verlag.CrossRefGoogle Scholar
[393] Halmos, P. R. (1950) Measure Theory, Van Nostrand.CrossRefGoogle Scholar
[394] Has'Minskii, R. Z. (1980) Stochastic Stability of Differential Equations, Sijthoff & Noordhoff.CrossRefGoogle Scholar
[395] Hausemblas, E. (2002) Numerical analysis of semilinears to chastic evolution equations in Banach spaces, J. Comput. Appl. Math., 147, no. 2, 485–516.Google Scholar
[396] Hausemblas, E. (2003) Approximation for semilinear stochastic evolution equations, Potential Anal., 18, no. 2, 141–186.Google Scholar
[397] Hausemblas, E. & Seidler, J. (2001) A note on maximal inequality for stochastic convolutions, Czech. Math. J., 51(126), no. 4, 785–790.Google Scholar
[398] Haussman, U. G. (1978) Asymptotic stability of the linear Ito equation in infinite dimensions, J. Math. Anal. Appl., 65, no. 1, 219–235.CrossRefGoogle Scholar
[399] Haussmanu, G. & Pardoux, E. (1989) Stochastic variational inequalities of parabolic type, Appl. Math. Optim., 20, no. 2, 163–192.Google Scholar
[400] Heath, D., Jarrow, R. & Morton, A. (1992) Bond pricing and the term structure of internal rates: a new methodology for contingent claims valuation, Econometica, 60, 77–105.CrossRefGoogle Scholar
[401] Henry, D. (1981) Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag.CrossRefGoogle Scholar
[402] Hida, T., Kuo, H., Potthoff, J. & Streit, L. (1993) White Noise. An Infinite-Dimensional Calculus, Kluwer, Dordrecht.Google Scholar
[403] Hida, T. & Streit, L. (1977) On quantum theory in terms of white noise, Nagoya Math. J., 68, 21–34.CrossRefGoogle Scholar
[404] Hino, M. (2002) On short time asymptotic behavior of some symmetric diffusions on general state spaces. Potential Anal., 16, no. 3, 249–264.CrossRefGoogle Scholar
[405] Hino, M. & Ramirez, J. (2003) Small-time Gaussian behavior of symmetric diffusion semigroups, Ann. Probab., 31, no. 3, 1254–1295.Google Scholar
[406] Hogele, M. A. (2010) Metastability of the Chafee-Infante equation with small heavy-tailed Levy noise, PhD Dissertation, Humboldt University.Google Scholar
[407] Holden, H., Øksendal, B., Ubøe, J. & Zhang, T. (2010) Stochastic Partial Differential Equations. A Modeling, White Noise Functional Approach, Universitext, Springer, New York.CrossRefGoogle Scholar
[408] Hu, Y., Kallianpur, G. & Xiong, J. (2002) An approximation of the Zakai equation, Appl. Math. Optim., 45, no. 1, 23–44.CrossRefGoogle Scholar
[409] Hu, Y., Ma, J. & Yong, J. (2002) On semi-linear degenerate backward stochastic partial differential equations, Probab. Theory Relat. Fields, 123, no. 3, 381–411.CrossRefGoogle Scholar
[410] Hu, Y. & Peng, S. (1990) Maximum principle for semilinear stochastic evolution control systems, Stochastics Stochastics Rep., 33, no. 3-4, 159–180.Google Scholar
[411] Hu, Y. & Peng, S. (1991) Adapted solution of a backward semilinear stochastic evolution equation, Stochastic Anal. Appl., 9, no. 4, 445–459.CrossRefGoogle Scholar
[412] Ichikawa, A. (1978) Linear stochastic evolution equations in Hilbert spaces, J. Differential Equations, 28, no. 2, 266–283.CrossRefGoogle Scholar
[413] Ichikawa, A. (1979) Dynamic programming approach to stochastic evolution equations, Siam J. Control Optim., 17, no. 1, 152–174.CrossRefGoogle Scholar
[414] Ichikawa, A. (1982) Stability of semilinear stochastic evolution equations, J. Math. Anal. Appl., 90, no. 1, 12–44.CrossRefGoogle Scholar
[415] Ichikawa, A. (1984) Semilinear stochastic evolution equations. Boundedness, stability and invariant measure, Stochastics, 12, no. 1, 1–39.CrossRefGoogle Scholar
[416] Ichikawa, A. (1986) Some inequalities for martingales and stochastic convolutions, Stochastic Anal. Appl., 4, 329–339.CrossRefGoogle Scholar
[417] Ichikawa, A. (1987) The separation principle for stochastic differential equations with unbounded coefficients. In Stochastic Partial Differential Equations and Applications, G. Da, Prato and L., Tubaro (eds.), Lecture Notes in Mathematics, no. 1236, Springer-Verlag, 164–171.Google Scholar
[418] Ikeda, N. & Watanabe, S. (1981) Stochastic Differential Equations and Diffusion Processes, North-Holland.Google Scholar
[419] Il'in, A.M. & Has'minskii, R.Z. (1963) Asymptotic behavior of solutions of parabolic equations and an ergodic property of non-homogeneous diffusion processes, Mat. Sb. (Russian), 60, 366–392.Google Scholar
[420] Iljasovi, S. & Komiec, A. I. (1987) Girsanov theorem and ergodic properties of stochastic solutions of nonlinear parabolic equations, Trudy Sem. Petrovsk.(Russian), 12, 88–117.Google Scholar
[421] Imajkxnv, M. & Komiec, A. I. (1988) On large deviations for solutions of nonlinear stochastic equations, Trudy Sem. Petrovsk.(Russian), 13, 177–196.Google Scholar
[422] Iscoe, I., Marcus, M. B., McDonald, D., Talagrand, M. & Zinn, J. (1990) Continuity of £2-valued Ornstein-Uhlenbeckprocesses, Ann. Probab., 18, no. 1, 68–84.CrossRefGoogle Scholar
[423] Ito, K. (1942) Differential equations determining Markov processes, Zenkoku Shijo Sugaku Danwakai, no. 1077, 1352–1400.Google Scholar
[424] Ito, K. (1982) Infinite dimensional Ornstein-Uhlenbeck processes, Taniguchi Symposium, FA, Katata, 197–224.Google Scholar
[425] Ito, K. (1984) Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces, CBMS Notes, Baton Rouge 1983, SIAM.CrossRefGoogle Scholar
[426] Iturriaga, R. & Khanin, K. (2003) Burgers turbulence and random Lagrangian systems, Commun. Math. Phys., 232, no. 3, 377–428.CrossRefGoogle Scholar
[427] Iwata, K. (1987) An infinite dimensional stochastic equation with state space C(R), Probab. Theory Relat. Fields, 74, no. 1, 141–159.CrossRefGoogle Scholar
[428] Jacod, J. (1979) Calcul Stochastique et Probleme de Martingales, Lecture Notes in Mathematics, no. 714, Springer-Verlag.CrossRefGoogle Scholar
[429] Jentzen, A. (2009) Pathwise numerical approximation of SPDEs with additive noise under non-global Lipschitz coefficients, Potential Anal., 31, no. 4, 375–404.CrossRefGoogle Scholar
[430] Jentzen, A. (2010) Taylor expansions of solutions of stochastic partial differential equations, Discrete Contin. Dyn. Syst., Ser. B, 14, no. 2, 515–557.CrossRefGoogle Scholar
[431] Jentzen, A. & Kloeden, P. (2010) Taylor expansions of solutions of partial differential equations with additive noise, Ann. Probab., 38, no. 2, 532–569.CrossRefGoogle Scholar
[432] Jona Lasinio, G. & Mitter, S. K. (1985) On the stochastic quantization of field theory, Commun. Math. Phys., 101, no. 3, 409–436.CrossRefGoogle Scholar
[433] Kallenberg, O. (2001) Foundations of Modern Probability, Springer-Verlag.Google Scholar
[434] Kallianpur, G. & Odaira, H. (1978) Freidlin-Ventzell type estimates for abstract linear spaces, Sankhya: Indian J. Statistics, 40, no. 2, 116–135.Google Scholar
[435] Kallianpur, G. & Perez-Abreu, V. (1988) Stochastic evolution equations driven by nuclear space valued martingales, Appl. Math. Optim., 17, no. 3, 237–272.CrossRefGoogle Scholar
[436] Kallianpur, G. & Perez-Abreu, V. (1989) Weak convergence of solutions of stochastic evolution equations. In Stochastic Partial Differential Equations and Applications II, G. Da, Prato and L., Tubaro (eds.), Lecture Notes in Mathematics, no. 1390, Springer-Verlag, 119–131.Google Scholar
[437] Kallianpur, G. & Volpert, R. (1984) Infinite dimensional stochastic differential equations modelled for spatially distributed neurons, Appl. Math. Optim., 12, no. 2, 125–172.CrossRefGoogle Scholar
[438] Kallianpur, G. & Xiong, J. (1996), Large deviations for a class of stochastic partial differential equations, Ann. Probab., 24, no. 1, 320–345.Google Scholar
[439] Kalpinelli, E. A., Frangos, N. E. & Yannacopoulos, A. N. (2011) A Wiener chaos approach to hyperbolic spdes, Stochastic Anal. Appl., 29, no. 2, 237–258.CrossRefGoogle Scholar
[440] Karczewska, A. & Zabczyk, J. (2000) Stochastic PDEs with function-valued solutions. In Infinite Dimensional Stochastic Analysis, Amsterdam 1999, Ph., Clement, F., Den Hollander, J. Van, Neerven and B. De, Pagter (eds.), Royal Netherlands Academy of Arts and Sciences, Amsterdam, 197–216.Google Scholar
[441] Karczewska, A. & Zabczyk, J. (2001) A note on stochastic wave equations. In Proc. Conf. on Evolution Equations and their Applications in Physical and Life Sciences (Bad Herrenhalb 1998), G., Lumer and L., Weis (eds.), Dekker, 501–511.Google Scholar
[442] Kardar, M., Parisi, G. & Zhang, J. C. (1986) Dynamical scaling of growing interfaces, Phys. Rev. Lett., 56, 889–892.CrossRefGoogle Scholar
[443] Kato, T. (1962) Fractional powers of dissipative Operators Ii, J. Math. Soc. Jpn., 14, 242–248.CrossRefGoogle Scholar
[444] Kato, T. (1984) Strong Lp-solutions of the Navier-Stokes equation in Rm with applications to weak solutions, Math. Z., 187, no. 4, 471–480.CrossRefGoogle Scholar
[445] Keller, J. B. (1964) Stochastic equations and wave propagation in random media, Proc. Symp. Appl. Math., no. 16, 145–170.Google Scholar
[446] Kenig, C. E., Ponce, G. & Vega, L. (2003) On unique continuation for nonlinear Schrodinger equations, Commun. Pure Appl. Math., 56, no. 9, 1247–1262.CrossRefGoogle Scholar
[447] Kim, J. U. (2003) On a stochastic scalar conservation law, Indiana Univ. Math. J. 52, no. 1, 227–256.CrossRefGoogle Scholar
[448] Kim, J. U. (2005) On the stochastic Burgers equations with a polynomial nonlinearity in the real line, Discrete Contin. Dyn. Syst, Ser. B, 6, no. 4, 835–866.Google Scholar
[449] Kim, J. U. (2011) On the stochastic quasi-linear symmetric hyperbolic system, J. Differential Equations, 250, no. 3, 1650–1684.CrossRefGoogle Scholar
[450] Kobilanski, M. (2000) Backward stochastic differential equations and partial differential equations with quadratic growth, Ann. Probab., 28, no. 2, 55–602.Google Scholar
[451] Komorowski, T., Peszat, S. & Szarek, T. (2010) On ergodicity of some Markov processes, Ann. Probab., 38, no. 4, 1401–1443.CrossRefGoogle Scholar
[452] Koski, T. & Loges, W. (1985) Asymptotic statistical inference for stochastic heat flow problem, Statist. Probab. Lett., 3, no. 4, 185–189.CrossRefGoogle Scholar
[453] Kotelenez, P. (1982) A submartingale type inequality with applications to stochastic evolution equations, Stochastics, 8, no. 2, 139–151.CrossRefGoogle Scholar
[454] Kotelenez, P. (1984) A stopped Doob inequality for stochastic convolution integrals and stochastic evolution equations, Stochastic Anal. Appl., 2, no. 3, 245–265.CrossRefGoogle Scholar
[455] Kotelenez, P. (1985) On the semigroup approach to stochastic evolution equations. In Stochastic Space Time Models and Limit Theorems, L., Arnold and P., Kotelenez (eds.), Reidel, 95–139.Google Scholar
[456] Kotelenez, P. (1987) A maximal inequality for stochastic convolution integrals on Hilbert space and space-time regularity of linear stochastic partial differential equations, Stochastics, 21, no. 4, 345–458.CrossRefGoogle Scholar
[457] Kotelenez, P. (1989) A stochastic reaction-diffusion model. In Stochastic Partial Differential Equations and Applications II, G. Da, Prato and L., Tubaro (eds.), Lecture Notes in Mathematics, no. 1390, Springer-Verlag, 132–137.Google Scholar
[458] Kotelenez, P. (2008) Stochastic Ordinary and Stochastic Partial Differential Equations, Springer-Verlag.Google Scholar
[459] Kovacs, M., Larsson, S. & Saedpanah, F. (2010) Finite element approximation of the linear stochastic wave equation with additive noise, Siam J. Numer. Anal., 48, no. 2, 408–427.CrossRefGoogle Scholar
[460] Kozlov, S. M. (1977) Equivalence of measures for linear stochastic Ito equations with partial derivatives, West. Moscow University, Sov. Math. Mech., 4, 47–52 (in Russian).Google Scholar
[461] Kozlov, S. M. (1978) Some questions of stochastic equations with partial derivatives, Trudy Sem. Petrovsk, 4, 147–172, (in Russian).Google Scholar
[462] Krein, S. G. (1971) Linear differential equations in Banach spaces, Trans. Am. Math. Soc., 29.Google Scholar
[463] Kruzkov, S. (1972) First order quasilinear equations in several independent variables, Math. USSR Sb., 10, 217–243.Google Scholar
[464] Krylov, N. & Bogoliubov, N. (1937), La theorie generale de la mesure dans son application a l'etude des systemes de la mecanique nonlineaire, Ann. Math., 38, 65–113.Google Scholar
[465] Krylov, N. V. (1973) The selection of a Markov process from a Markov system of processes, and the construction of quasidiffusion processes, Izv. Akad. Nauk SSSR Ser. Mat., 37, 691–708.Google Scholar
[466] Krylov, N. V. (1996) On Lp theory of stochastic partial differential equations in the whole space, Siam J. Math. Anal., 27, no. 2, 313–340.CrossRefGoogle Scholar
[467] Krylov, N. V. (1999) An analytic approach to SPDE's. In Stochastic Partial Differential Equations: Six Perspectives, R. A., Carmona and B., Rozoskii (eds.), Mathematical Surveys and Monograph no. 64, Am. Math. Soc., 183–242.Google Scholar
[468] Krylov, N. V. & Rockner, M. (2005) Strong solutions to stochastic equations with singular time dependent drift, Probab. Theory Relat. Fields, 131, no. 2, 154–196.CrossRefGoogle Scholar
[469] Krylov, N. V. & Rozovskii, B. L. (1981) Stochastic evolution equations, translated from Itogi Naukii Tekhniki, Seriya Sovremennye Problemy Matem-atiki, 14 (1979), 71–146, Plenum Publishing Corp.Google Scholar
[470] Kuksin, S. (2004) The Eulerian limit for 2D statistical hydrodynamics, J. Statist. Phys., 115, no. 1-2, 469–492.CrossRefGoogle Scholar
[471] Kuksin, S. (2008) On distribution of energy and vorticity for solutions of 2D Navier-Stokes equation with small viscosity, Commun. Math. Phys., 284, no. 2, 407–424.CrossRefGoogle Scholar
[472] Kuksin, S., Piatnitski, A. & Shirikyan, A. (2002) A coupling approach to randomly forced Nonlinear PDEs II., Commun. Math. Phys., 230, no. 1, 81–85.CrossRefGoogle Scholar
[473] Kuksin, S. & Shirikyan, A. (2001) A coupling approach to randomly forced nonlinear PDE'S I, Commun. Math. Phys., 221, no. 2, 351–366.CrossRefGoogle Scholar
[474] Kuksin, S. B. & Shirikyan, A. (2012) Mathematics of Two-Dimensional Turbulence, Cambridge Tracts in Mathematics, Cambridge University Press.CrossRefGoogle Scholar
[475] Kunita, H. (1981) Densities of a measure valued process governed by a stochastic partial differential equation, Systems Control Lett., 1, no. 1, 37-41, 1, no. 2, 100–104.CrossRefGoogle Scholar
[476] Kunita, H. (1990) Stochastic Flows and Stochastic Differential Equations, Cambridge University Press.Google Scholar
[477] Kuo, H. H. (1965) Gaussian Measures in Banach Spaces, Springer-Verlag.Google Scholar
[478] Kuo, H. H. (1980) Integration in Banach spaces. In Notes in Banach Spaces, H. Elton, Lacey (ed.), University of Texas Press, 1–38.Google Scholar
[479] Kuo, H. H. (1989) Stochastic partial differential equations of generalized Brownian functionals. In Stochastic Partial Differential Equations and Applications II, G. Da, Prato and L., Tubaro (eds.), Lecture Notes in Mathematics, no. 1390, Springer-Verlag, 138–146.Google Scholar
[480] Kuratowski, K. & Ryll-Nardzewski, C. (1965) A general theorem on selectors, Bull. Acad. Pol. Sci., 13, 397–403.Google Scholar
[481] Kushner, H. J. (1978) On the optimal control of a system governed by a linear parabolic equation with white noise inputs, SIAM J. Control Optim., 6, no. 4, 596–614.Google Scholar
[482] Ladyzhenskaya, O. A. (1969) The Mathematical Theory of Viscous Incompressible Flow, Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, Vol. 2, Gordon and Breach.Google Scholar
[483] Landau, L. & Lifshitz, E. (1969) Electrodynamique des Milieux Continus, Physique Theorique, Vol. VIII, MIR, Moscow.Google Scholar
[484] Landkoff, N. (1972) Foundations of Modern Potential Theory, Springer-Verlag, Berlin.CrossRefGoogle Scholar
[485] Larsson, S. & Mesforoush, A. (2011) Finite element approximation of the linearized Cahn-Hilliard-Cook equation, Ima|J. Numer. Anal., 31, no. 4, 1315–1333.Google Scholar
[486] Lasiecka, I. & Triggiani, R. (1983) Regularity of hyperbolic equations under L2(0, T; L2(Γ))-Dirichlet boundary terms, Appl. Math. Optim, 10, no. 3, 275–286.CrossRefGoogle Scholar
[487] Lauritsen, K. B., Cuerno, R. & Makse, H. A. (1996) Noisy Kuramoto-Sivashinsky equation for an erosion model, Phys.Rev. E, 54.Google ScholarPubMed
[488] Lee, Y. J. (1986) Sharp Inequalities and Regularity of Heat Semigroup on Infinite Dimensional Spaces, IMA Preprint Series 217, University of Minnesota.Google Scholar
[489] Leha, G. & Ritter, G. (1984) On diffusion processes and their semigroups in Hilbert spaces with an application to interacting stochastic systems, Ann. Probab., 12, no. 4, 1077–1112.CrossRefGoogle Scholar
[490] Lenglart, E., Lepingle, D. & Pratelli, M. (1981) Presentation unifiée de certaines inegalitees de la theorie des martingales, Séminaire des Probabilités 14, Lecture Notes in Mathematics, no. 784, Springer-Verlag, 110–119.Google Scholar
[491] Leon, J. A. (1989) Stochastic evolution equations with respect to semimartin-gales in Hilbert spaces, Stochastics Stochastics Rep., 27, no. 1, 1–21.Google Scholar
[492] Leon, J. A. (1990) Stochastic Fubini theorem for semi-martingales in Hilbert spaces, Can. J. Math., 52, no. 5, 890–901.Google Scholar
[493] Leray, J. (1934) Sur le mouvement d'un liquide visqueux remplissant l'espace, Acta Mathematica, 63, 193–248.CrossRefGoogle Scholar
[494] Levieux, F. (1973) Un theoreme d'existence et unicite delasolutiond';une equation integro-differentielle stochastique, C. R. Acad. Sci. Paris, Ser. A-B, 277, 281–284.Google Scholar
[495] Li, X.-M. (1992) Stochastic flows on noncompact manifolds, Ph.D. Thesis, Warwick University.Google Scholar
[496] Lix, T. (1994) Maximum principle for optimal control of distributed parameter stochastic systems with random jumps. In Differential Equations, Dynamical Systems, and Control Science, Lecture Notes in Pure and Applied Mathematics, no. 152, Dekker, 867–890.Google Scholar
[497] Lindvall, T. (1992) Lectures on the Coupling Method, John Wiley & Sons.Google Scholar
[498] Lions, J. L. & Magenes, E. (1968) Problèmes aux Limites Nonhomogenes et Applications, Dunod.Google Scholar
[499] Lions, J. L. & Peetre, J. (1964) Sur une Classe d'Espaces d'Interpolation, Institut des Hautes Etudes Scientifiques, Publications Mathematiques no. 19, 5–68.Google Scholar
[500] Lions, J. L. & Strauss, W. (1965) Some nonlinear evolution equations, Bull. Soc. Math. Fr., 93, 43–96.Google Scholar
[501] Liptser, R. S. & Shiryayev, A. N. (2001) Statistics of Random Processes. I. General Theory. Translated from the 1974 Russian original By A. B. Aries. Second, revised and expanded edition. Applications of Mathematics (New York), 5. Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin.Google Scholar
[502] Liskevich, V. & Rockner, M. (1998) Strong uniqueness for a class of infinite dimensional Dirichlet operators and application to stochastic quantization, Ann. Scuola Norm. Sup. Pisa, 27, no. 4, 69–91.Google Scholar
[503] Liu, W. (2011) Ergodicity of transition semigroups for stochastic fast diffusion equations, Front. Math. China, 6, no. 3, 449–472.CrossRefGoogle Scholar
[504] Liu, W., Rockner, M. & Zhu, X. (2013) Large deviation principles for the stochastic quasi-geostrophic equation, Stochastic Process Appl., 123, no. 8, 3299–3327.CrossRefGoogle Scholar
[505] Lord, G. & Shardlow, T. (2007) Postprocessing for stochastic parabolic partial differential equations, Siam J. Numer. Anal., 45, no. 2, 870–889.CrossRefGoogle Scholar
[506] Lototsky, S. V. (2006) Wiener chaos and nonlinear filtering, Appl. Math. Optim., 54, no. 3, 265–291.CrossRefGoogle Scholar
[507] Lototsky, S. V. (2009) Stochastic partial differential equations driven by purely spatial noise, Siam J. Math. Anal., 41, no. 4, 1295–1322.CrossRefGoogle Scholar
[508] Lototsky, S. V. & Rozovskii, B. (2006) Wiener chaos solutions of linear stochastic evolution equations, Ann. Probab., 34, no. 2, 638–662.CrossRefGoogle Scholar
[509] Lototsky, S. V. & Rozovskii, B. (2006) Stochastic differential equations: a Wiener chaos approach. In From Stochastic Calculus to Mathematical Finance, Springer, 433–506.Google Scholar
[510] Lunardi, A. (1985) Interpolation spaces between domains of elliptic operators and spaces of continuous functions with applications to nonlinear parabolic equations, Math. Nachr., 121, 323–349.CrossRefGoogle Scholar
[511] Lunardi, A. (1987) On the evolution operator for abstract parabolic equations, Isr. J. Math., 60, no. 3, 281–314.CrossRefGoogle Scholar
[512] Lunardi, A. (1995) Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhauser.Google Scholar
[513] Lyons, T. (1998) Differential equations driven by rough signals, Rev. Mat. Iberoamericana, 14, no. 2, 215–310.Google Scholar
[514] Lyons, T., Caruana, M. & Levy, T. (2007) Differential Equations Driven by Rough Paths: Ecole d'Ete de Probabilites De Saint-Flour XXXIV-2004, Springer-Verlag.Google Scholar
[515] Lyons, T. & Qian, Z. (2002) System Control and Rough Paths, Oxford Mathematical Monographs, Oxford University Press.CrossRefGoogle Scholar
[516] Ma, Z. & Rockner, M. (1992) Introduction to the (Non Symmetric) Theory of Dirichlet Forms, Springer-Verlag.CrossRefGoogle Scholar
[517] Ma, J. & Yong, J. (1999) Forward-Backward Stochastic Differential Equations and their Applications, Lecture Notes in Mathematics, no. 1702, Springer-Verlag.Google Scholar
[518] Malliavin, P. (1978) Stochastic calculus of variations and hypoelliptic operators. In Proceedings of International Symposium SDE, Iyoto, K., Ito (ed.), Kinokuniya, Tokyo, 195–263.Google Scholar
[519] Malliavin, P. (1997) Stochastic Analysis, Springer-Verlag.CrossRefGoogle Scholar
[520] Manthey, R. (1986) Existence and uniqueness of a solution of a reaction-diffusion equation with polynomial nonlinearity and white noise disturbance, Math. Nachr., 125, 121–133.CrossRefGoogle Scholar
[521] Manthey, R. (1988) On the Cauchy problem for reaction-diffusion equations with white noise, Math. Nachr., 136, 209–228.CrossRefGoogle Scholar
[522] Marcus, R. (1974) Parabolic Ito equations, Trans. Am. Math. Soc., 198, 177–190.Google Scholar
[523] Marcus, R. (1974) Parabolic Ito equations with monotone nonlinearities, J. Funct. Anal., 29, no. 3, 257–287.Google Scholar
[524] Mariani, M. (2010) Large deviation principles for stochastic scalar conservation laws, Probab. Theory Relat. Fields, 147, no. 3-4, 607–648.CrossRefGoogle Scholar
[525] Marinelli, C. (2010) Local well-posedness of Musiela's SPDEs with Levy noise, Math. Finance, 20, no. 3, 341–362.CrossRefGoogle Scholar
[526] Marinelli, C., Prevot, C. & Rockner, M. (2010) Regular dependence on initial data for stochastic evolution equations with multiplicative Poisson noise, J. Funct. Anal., 258, no. 2, 616–649.CrossRefGoogle Scholar
[527] Marinoschi, G. (2006) Functional Approach to Nonlinear Models of Water Flow in Soils, Springer.Google Scholar
[528] Martin, R. (1970) A global existence theorem for autonomous differential equations in a Banach spaces, Proc. Am. Math. Soc., 26, 307–314.CrossRefGoogle Scholar
[529] Masiero, F. (2008) Stochastic optimal control problems and parabolic equations in Banach spaces, Siam J. Control Optim., 47, no. 1, 25–300.CrossRefGoogle Scholar
[530] Masiero, F. (2012) Hamilton Jacobi Bellman equations in infinite dimensions with quadratic and superquadratic Hamiltonian, Discrete Contin. Dyn. Syst., 32, no. 1, 223–263.Google Scholar
[531] Maslowski, B. (1989) Strong Feller property for semilinear stochastic evolution equations. In Stochastic Partial Differential Equations and Applications, G. Da, Prato and L., Tubaro (eds.), Lecture Notes in Mathematics, no. 1236, Springer-Verlag, 210–224.Google Scholar
[532] Maslowski, B. (1989) Uniqueness and stability of invariant measures for stochastic differential equations in Hilbert spaces, Stochastics Stochastics Rep., 28, no. 2, 85–114.Google Scholar
[533] Maslowski, B. (1991) On ergodic behaviour of solutions to systems of stochastic reaction-diffusion equations with correlated noise. In Stochastic Processes and Related Topics (Georgenthal, 1990), Math. Res., no. 61, Akademie-Verlag, 93–102.Google Scholar
[534] Maslowski, B. & Nualart, D. (2003) Evolution equations driven by a fractional Brownianmotion, J. Funct. Anal., 202, no. 1, 277–305.CrossRefGoogle Scholar
[535] Maslowski, B. & Pospisil, J. (2008) Ergodicity and parameter estimates for infinite-dimensional fractional Ornstein-Uhlenbeck process, Appl. Math. Optim., 57, no. 3, 401–429.CrossRefGoogle Scholar
[536] Maslowski, B. & Seidler, J. (1998) Invariant measures for nonlinear SPDE's: uniqueness and stability, Arch. Math. (Brno), 34, no. 1, 153–172.Google Scholar
[537] Maslowski, B. & Seidler, J. (2001) Strong Feller solutions to SPDE's are strong Feller in the weak topology, Studia Math., 148, no. 2, 111–129.CrossRefGoogle Scholar
[538] Maslowski, B. & Seidler, J. (2002) Strong Feller infinite-dimensional diffusions. In Stochastic Partial Differential Equations and Applications, G. Da, Prato and L., Tubaro (eds.), Lecture Notes in Pure and Applied Mathematics, Dekker, 373–387.Google Scholar
[539] Mckean, H. P. Jr. (1969) Stochastic Integrals, Academic Press.Google Scholar
[540] Mckean, H. P. Jr. (1970) Nagumo's equation, Adv. Math. 4, 209–423.CrossRefGoogle Scholar
[541] Medjo, T. (2011) The exponential behavior of the stochastic three-dimensional primitive equations with multiplicative noise, Nonlinear Anal., 12, no. 2, 799–810.Google Scholar
[542] Metivier, M. (1988) Stochastic Partial Differential Equations in Infinite Dimensional Spaces, Quaderni Scuola Normale Superiore di Pisa.Google Scholar
[543] Metivier, M. & Pellaumail, J. (1980) Stochastic Integration, Academic Press.Google Scholar
[544] Metivier, M. & Pistone, G. (1975) Une formule d'isometrie pour l'integral stochastique Hilbertienne et equations d'evolution lineaires stochastiques, Z. Wahrsch. Verw. Gebiete, 33, no. 1, 1–11.CrossRefGoogle Scholar
[545] Mikulevicius, R. & Rozovskii, B. (1999) Martingale problems for stochastic PDE's. In Stochastic Partial Differential Equations: Six Perspectives, R. A., Carmona and B., Rozoskii (eds.), Mathematical Surveys and Monographs, no. 64, Am. Math. Soc., 243–325.Google Scholar
[546] Mikulevicius, R. & Rozovskii, B. (2004) Stochastic Navier-Stokes equations for turbulent flows, Siam J. Math. Anal., 35, no. 5, 1250–1310.CrossRefGoogle Scholar
[547] Millet, A. & Sanz Sole, M. (1994) The support of an hyperbolic stochastic partial differential equation, Probab. Theory Relat. Fields, 98, no. 3, 361–387.Google Scholar
[548] Millet, A. & Sanz Sole, M. (2000) Approximation and support theorem for a wave equation in two space dimensions, Bernoulli, 6, no. 5, 887–915.CrossRefGoogle Scholar
[549] Millet, A. & Smolensk, W. (1992) On the continuity of Ornstein-Uhlenbeck processes in infinite dimensions, Probab. Theory Relat. Fields, 92, no. 4, 529–547.CrossRefGoogle Scholar
[550] Mizohata, S. (1973) The Theory of Partial Differential Equations, Cambridge University Press.Google Scholar
[551] Mohammed, S. A. E. (1984) Stochastic Functional Differential Equations, Pitman.Google Scholar
[552] Morton, M. I. (1989) Arbitrage and martingales, PhD Thesis, Cornell University.Google Scholar
[553] Mueller, C. & Tribe, R. (1995) Stochastic P.D.E.'s arising from the long range contact and long range voter processes, Probab. Theory Relat. Fields, 102, no. 4, 519–545.Google Scholar
[554] Mueller, C. (1998) The heat equation with Levy noise, Stochastic Process. Appl., 74, no. 1, 67–82.CrossRefGoogle Scholar
[555] Musiela, M. (1993) Stochastic PDEs and Term Structure Models, Journees Internationales de Finance, Association Francaise de Finance, IGR-AFFI, vol. 1, La Baule.Google Scholar
[556] Nagase, N. (1992) Note on stochastic partial differential equations, Sci. Rep. Hirosaki Univ., 39, no. 2, 73–87.Google Scholar
[557] Nagase, N. & Nisio, M. (1990) Optimal controls for stochastic partial differential equations, Siam J. Control Optim., 28, no. 1, 186–213.CrossRefGoogle Scholar
[558] Neidhart, A.L. (1978) Stochastic integrals in 2-uniformly smooth Banach spaces, Ph.D. Thesis, University of Winsconsin.Google Scholar
[559] Neveu, J. (1970) Bases Mathematiques du Calcul des Probabilites, Masson.Google Scholar
[560] Novikov, E. A. (1965) Functionals and the random-force method in turbulence theory, Sov. Phys. JETP, 20, 1290–1294.Google Scholar
[561] Nualart, D. & Pardoux, E. (1988) Stochastic calculus with anticipating integrands, Probab. Theory Relat. Fields, 78, no. 4, 535–581.CrossRefGoogle Scholar
[562] Nualart, D. & Pardoux, E. (1992) White noise driven by quasilinear SPDE's with reflection, Probab. Theory Relat. Fields, 93, no. 1, 77–89.CrossRefGoogle Scholar
[563] Nualart, D. & Ustunel, A. S. (1989) Mesures cylindriques et distributions sur l'espace de Wiener. In Stochastic Partial Differential Equations and Applications II, G. Da, Prato and L., Tubaro (eds.), Lecture Notes in Mathematics, no. 1390, Springer-Verlag, 186–191.Google Scholar
[564] Nualart, D. & Zakai, M. (1986) Generalized stochastic integrals and the Malliavin calculus, Probab. Theory Relat. Fields, 73, no. 2, 255–280.CrossRefGoogle Scholar
[565] Ocone, D. (1984) Malliavin calculus and stochastic integral representation of diffusion processes, Stochastics, 12, no. 3-4, 161–185.CrossRefGoogle Scholar
[566] Ogawa, S. (1973) A partial differential equation with the white noise as a coefficient, Z. Wahrsch. Verw. Gebiete, 28, 53–71.CrossRefGoogle Scholar
[567] Øksendal, B. (1998) Stochastic Differential Equations. An Introduction with Applications, Fifth edition, Universitext, Springer-Verlag.Google Scholar
[568] Ondrejat, M. (2004) Existence of global mild and strong solutions to stochastic hyperbolic evolution equations driven by a spatially homogeneous Wiener process, J. Evol. Equations, 4, no. 2, 169–191.CrossRefGoogle Scholar
[569] Ondrejat, M. (2004) Uniqueness for stochastic evolution equations in Banach spaces, Dissertationes Math. (Rozprawy Mat.), no. 426.Google Scholar
[570] Ondrejat, M. (2006) Existence of global martingale solutions to stochastic hyperbolic equations driven by a spatially homogeneous Wiener process, Stoch. Dyn., 6, no. 1, 23–52.CrossRefGoogle Scholar
[571] Ondreját, M. (2007) Uniqueness for stochastic non-linear wave equations, Nonlinear Anal, 67, no. 12, 3287–3310.CrossRefGoogle Scholar
[572] Ondreját, M. (2010) Stochastic nonlinear wave equations in local Sobolev spaces, Electron. J. Probab., 15, no. 33, 1041–1091.CrossRefGoogle Scholar
[573] Ondreját, M. (2010) Stochastic wave equation with critical nonlinearities: temporal regularity and uniqueness, J. Differential Equations, 248, no. 7, 1579–1602.CrossRefGoogle Scholar
[574] Ortiz-Lopez, V. and Sanz-Sole, M. (2011) Laplace principle for a stochastic wave equation in spatial dimension three, Stochastic Analysis, 31–49.Google Scholar
[575] Pardoux, E. (1975) Equations aux derivees partielles stochastiques non-lineaires monotones, These, Universite Paris XI.Google Scholar
[576] Pardoux, E. (1976) Integrales Stochastiques Hilbertiennes, Cahiers Mathematiques de la Decision, no. 7617, Universite Paris Dauphine.Google Scholar
[577] Pardoux, E. (1979) Stochastic partial differential equations and filtering of diffusion processes, Stochastics, 3, 127–167.Google Scholar
[578] Pardoux, E. (1982) Equations du filtrage nonlineaire, de la prediction et du lissage, Stochastics, 6, no. 3-4, 193–131.CrossRefGoogle Scholar
[579] Pardoux, E. (1985) Asymptotic analysis of a Semilinear PDE with wideband noise disturbances. In Stochastic Space Time Models and Limit Theorems, L., Arnold and P., Kotelenez (eds.), Reidel, 95–139.Google Scholar
[580] Pardoux, E. (1987) Two-sided stochastic calculus for SPDEs. In Stochastic Partial Differential Equations and Applications, G. Da, Prato and L., Tubaro (eds.), Lecture Notes in Mathematics, no. 1236, Springer-Verlag, 200–207.Google Scholar
[581] Pardoux, E. (1998) BSDE's and semilinear PDE's. Stochastic Analysis and Related Topics VI. In The Geilo Workshop 1996, Progress in Probability, Vol. 42, Birkhauser, 79–127.Google Scholar
[582] Pardoux, E. (1999) BSDE's, weak convergence and homogenization of semilinear PDE's. In Nonlinear Analysis, Differential Equations and Control, F. H., Clarke and R. J., Stern (eds.), Kluwer, 503–549.Google Scholar
[583] Pardoux, E. & Peng, S. (1992) Backward SDEs and quasilinear PDEs. In Stochastic Partial Differential Equations and Their Applications, B. L., Rozovskii and R. B., Sowers (eds.), Lecture Notes in Control and Information Science, no. 176, Springer-Verlag.Google Scholar
[584] Pardoux, E. & Rascanu, A. (1999) Backward stochastic variational inequalities, Stochastics Stochastic Rep., 67, no. 3-4, 159–167.Google Scholar
[585] Parisi, G. & Wu, Y. S. (1981), Perturbation theory without gauge fixing, Sci. Sinica, 24, no. 4, 483–496.Google Scholar
[586] Partasarathy, K. R. (1967) Probability Measures in Metric Spaces, Academic Press.CrossRefGoogle Scholar
[587] Pazy, A. (1983) Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag.CrossRefGoogle Scholar
[588] Peng, S. (1991) Probabilistic interpretation for systems of quasilinear parabolic partial differential equations, Stochastics Stochastics Rep., 37, no. 1-2, 61–74.Google Scholar
[589] Peng, S. (1993) Backward stochastic differential equations and applications to optimal control, Appl. Math. Optim., 27, no. 2, 125–144.CrossRefGoogle Scholar
[590] Peszat, S. (1992) Equivalence of distribution of some Ornstein-Uhlenbeck processes taking values in Hilbert space, Probab. Mat. Statis., 13, no. 1, 7–17.Google Scholar
[591] Peszat, S. (1992) Large deviation principle for stochastic evolution equations, Probab. Theory Relat. Fields, 98, no. 1, 113–136.Google Scholar
[592] Peszat, S. (1992) Law equivalence of solutions of linear stochastic equations driven by cylindrical Wiener process, Studia Math., 101, no. 3, 269–284.CrossRefGoogle Scholar
[593] Peszat, S. (1995) Existence and uniqueness of the solution for stochastic equations on Banach spaces, Stochastics Stochastics Rep., 55, no. 3-4, 167–193.Google Scholar
[594] Peszat, S. (2002) The Cauchy problem for a nonlinear stochastic wave equation in any dimension, J. Evol. Equations, 2, no. 3, 383–394.CrossRefGoogle Scholar
[595] Peszat, S. & Tindel, S. (2010) Stochastic heat and wave equations on a Lie group, Stochastic Anal. Appl., 28, no. 4, 662–695.CrossRefGoogle Scholar
[596] Peszat, S. & Zabczyk, J. (1995) Strong Feller property and irreducibility for diffusions on Hilbert spaces, Ann. Probab., 23, no. 1, 157–172.CrossRefGoogle Scholar
[597] Peszat, S. & Zabczyk, J. (1997) Stochastic evolution equations with a spatially homogeneous Wiener process, Stochastic Process. Appl., 72, no. 2, 187–204.CrossRefGoogle Scholar
[598] Peszat, S. & Zabczyk, J. (2000) Nonlinear stochastic wave and heat equations, Probab. Theory Relat. Fields, 116, no. 3, 421–443.CrossRefGoogle Scholar
[599] Peszat, S. & Zabczyk, J. (2007) Stochastic Partial Differential Equations with Levy Noise, Cambridge University Press.CrossRefGoogle Scholar
[600] Polyanin, A. D. & Zaitsev, V. F. (2004) Handbook of Nonlinear Partial Differential Equations, Chapman and Hall.Google Scholar
[601] Pratelli, M. (1988) Integration stochastique et geometrie des espaces de Banach. In Seminaire des Probabilitees 22, in Mathematics, no. 1321, Springer-Verlag, 129–137.Google Scholar
[602] Prevot, C. & Rockner, M. (2007) A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, no. 1905, Springer-Verlag.Google Scholar
[603] Printems, J. (1999) The stochastic Korteweg-de Vries equation in L2(ℝ), J. Differential Equations, 153, no. 2, 338–373.CrossRefGoogle Scholar
[604] Printems, J. (2001) On the discretization in time of parabolic stochastic partial differential equations, M2AN Math. Model. Numer. Anal., 35, no. 6, 1055–1078.CrossRefGoogle Scholar
[605] Priola, E., Shirikyan, L., Xu, L. & Zabczyk, J. (2012) Exponential ergodicity in variation distance for equations with Levy noise, Stochastic Process. Appl., 122, no. 1, 106–133.CrossRefGoogle Scholar
[606] Priola, E., Xu, L. & Zabczyk, J. (2011) Exponential mixing for some SPDEs with Levy noise, Stoch. Dyn., 11, no. 2-3, 521–534.CrossRefGoogle Scholar
[607] Priola, E. & Zabczyk, J. (2004) Liouville theorems for non-local operators, J. Funct. Anal., 216, no. 2, 455–490.CrossRefGoogle Scholar
[608] Priola, E. & Zabczyk, J. (2011) Structural properties of semilinear SPDEs driven by cylindrical stable processes, Probab. Theory Relat. Fields, 149, no. 1-2, 97–137.CrossRefGoogle Scholar
[609] Protter, P. (1992) Stochastic Integration and Differential Equations, Springer-Verlag.Google Scholar
[610] Raible, M., Linz, S. J. & Hanggi, P. (1961) Amorphous thin film growth: minimal deposition equation, Phys. Rev. E, 62, 1691–1705.Google Scholar
[611] Rascanu, A. (1981) Existence for a class of stochastic parabolic variational inequalities, Stochastics, 5, no. 3, 201–239.CrossRefGoogle Scholar
[612] Ramirez, J. (2001) Short-time asymptotics in Dirichlet spaces., Commun. Pure Appl. Math., 54, no. 3, 259–293.3.0.CO;2-K>CrossRefGoogle Scholar
[613] Ren, J., Rockner, M. & Wang, F. Y. (2007) Stochastic generalized porous media and fast diffusions equations, J. Differential Equations, 238, no. 11, 118–152.CrossRefGoogle Scholar
[614] Riedle, M. (2006) Lyapunov exponents for linear delay equations in arbitrary phase spaces, Integral Equations Oper. Theory, 54, no. 2, 259–278.CrossRefGoogle Scholar
[615] Riedle, M. (2008) Solutions of affine stochastic functional differential equations in the state space, J. Evol. Equations, 8, no. 1, 71–97.CrossRefGoogle Scholar
[616] Rockner, M., Schmuland, B. & Zhang, X. (2008) The Yamada-Watanabe theorem for stochastic evolution equations in infinite dimensions, Commun. Mat. Phys., 11, no. 2, 247–259.Google Scholar
[617] Rockner, M. & Sobol, Z. (2006) Kolmogorov equations in infinite dimensions: well-posedness and regularity of solutions, with applications to stochastic generalized Burgers equations, Ann. Probab., 34, no. 2, 663–727.CrossRefGoogle Scholar
[618] Rockner, M. & Sobol, Z. (2007) A new approach to Kolmogorov equations in infinite dimensions and applications to the stochastic 2D Navier-Stokes equation, C. R. Math. Acad. Sci. Paris, 345, no. 5, 289–292.CrossRefGoogle Scholar
[619] Rockner, M. & Wang, F. Y. (2003) Supercontractivity and ultracontrac-tivity for (non-symmetric) diffusion semigroups on manifolds, Forum Math., 15, no. 6, 893–921.CrossRefGoogle Scholar
[620] Rockner, M. & Wang, F. Y. (2008) On monotone stochastic generalized porous media equations, J. Differential Equations, 245, no. 12, 3898–3935.CrossRefGoogle Scholar
[621] Rockner, M. & Wang, F. Y. (2013) General extinction results for stochastic partial differential equations and applications, J. London Math. Soc., 87, no. 2, 545–560.CrossRefGoogle Scholar
[622] Rockner, M. & Zhang, T. (2007) Stochastic evolution equations of jump type: existence, uniqueness and large deviation principles, Potential Anal., 26, no. 3, 255–279.CrossRefGoogle Scholar
[623] Rockner, M. & Zhang, X. (2009) Stochastic tamed 3D Navier-Stokes equations: existence, uniqueness and ergodicity, Probab. Theory Relat. Fields, 145, no. 1-2, 211–267.CrossRefGoogle Scholar
[624] Rockner, M. & Zhang, X. (2009) Tamed 3D Navier-Stokes equation: existence, uniqueness and regularity, Infin. Dimens. Anal. Quantum Probab. Relat. Topics, 12, no. 4, 525–549.CrossRefGoogle Scholar
[625] Rockner, M., Zhang, T., & Zhang, X. (2010) Large deviations for stochastic tamed 3D Navier-Stokes equations, Appl. Math. Optim., 61, no. 2, 267–285.CrossRefGoogle Scholar
[626] Rockner, M., Zhu, R. & Zhu, X. (2011) The stochastic reflection problem on an infinite dimensional convex set and BV functions in a Gelfand triple, arXiv:1011.3996.
[627] Rockner, M., Zhu, R. & Zhu, X. (2011) Stochastic quasi-geostrophic equation, arXiv:1108.4896.Google Scholar
[628] Rockner, M., Zhu, R. & Zhu, X. (2012) BV functions in a Gelfand triple for differentiable measure and its applications, arXiv:1011.3996.Google Scholar
[629] Romito, M. (2008) Analysis of equilibrium states of Markov solutions of 3D-Navier-Stokes equations driven by additive noise, J. Statist. Phys., 131, no. 3, 415–444.CrossRefGoogle Scholar
[630] Rosemblatt, M. (1971) Markov Processes. Structure and Asymptotic Behaviour, Springer-Verlag.CrossRefGoogle Scholar
[631] Royer, G. (1979) Processus de diffusion associees a certains models d'Ising a spin continu, Z. Wahrsch. Verw. Gebiete, 59, 479–490.Google Scholar
[632] Royer, M. (2004) BSDEs with a random terminal time driven by a monotone generator and their links with PDEs, Stochastics Stochastics Rep., 76, no. 4, 281–307.Google Scholar
[633] Rozovskiib, L. (1990) Stochastic Evolution Equations. Linear Theory and Applications to Non-linear Filtering, Kluwer.Google Scholar
[634] Rozovskii, B. L. & Shimiz, U. (1981) Smoothness of solutions of stochastic evolution equations and the existence of a filtering transition density, Nagoya Math. J., 84, 195–208.CrossRefGoogle Scholar
[635] Rusinek, A. (2010) Mean reversion for HJMM forward rate models, Adv. Appl. Probab., 42, no. 2, 371–391.CrossRefGoogle Scholar
[636] Samarskij, A. and Tychonoff, A. (1963) Equations of Mathematical Physics. Translated by A. R. M., Robson and P., Basu, translation edited by D. M., Brink, Pergamon Press.Google Scholar
[637] Sanz-Sole, M. (2005) Malliavin Calculus with Applications to Stochastic Partial Differential Equations, Fundamental Sciences, Mathematics, EPFL Press.CrossRefGoogle Scholar
[638] Sanz-Sole, M. & Sarra, M. (2002) Holder continuity for the stochastic heat equation with spatially correlated noise. In Stochastic Analysis, Random Fields and Applications, R. C., Dalang, M., Dozzi and F., Russo (eds.), Progress in Probability, no. 52, 259–268.Google Scholar
[639] Schaumlöffel, K. U. (1989) White noise in space and time as the time derivative of a cylindrical Wiener process. In Stochastic Partial Differential Equations and Applications, II, G. Da, Prato and L., Tubaro (eds.), Lecture Notes in Mathematics, no. 1390, Springer-Verlag, 225–229.Google Scholar
[640] Schaumlöffel, K. U. (1990) Zufällige Evolutionsoperatoren fur stoch-astischepartielle Differentialgleichungen, Ph.D. Thesis, Universität Bremen.Google Scholar
[641] Seidler, J. (2010) Exponential estimates for stochastic convolutions in 2-smooth Banach spaces, Electron. J. Probab., 15, no. 50, 1556–1573.CrossRefGoogle Scholar
[642] Seidler, J. & Vrkoc, I. (1990) An averaging principle for stochastic evolution equations, Časopis Pěst. Mat., 115, no. 3, 240–263.Google Scholar
[643] Sell, R. & You, Y. (2002) Dynamics of Evolutionary Equations, Applied Mathematical Sciences, no. 143, Springer-Verlag.CrossRefGoogle Scholar
[644] Sermange, M. & Temam, R. (1983) Some mathematical questions related to The MHD equations, Commun. Pure Appl. Math., 36, no. 5, 635–664.CrossRefGoogle Scholar
[645] Shigekawa, I. (1987) Existence of invariant measures of diffusions on an abstract Wiener space, Osaka J. Math., 24, no. 1, 37–59.Google Scholar
[646] Simon, B. (1974) The P(Ø)2 Euclidean (Quantum) Field Theory, Princeton University Press.Google Scholar
[647] Sinestrari, E. (1976) Accretive differential operators, Boll. Unione Mat. Ital.B, 13, no. 1, 19–31.Google Scholar
[648] Sinestrari, E. (1985) On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. Anal. Appl., 107, no. 1, 16–66.CrossRefGoogle Scholar
[649] Skorohod, A. V. (1961) Stochastic equations for diffusions in a bounded region, Theory Probab. Appl., 6, 264–274.Google Scholar
[650] Skorohod, A. V. (1984) Random Linear Operators, Reidel.CrossRefGoogle Scholar
[651] Smolenski, W., Sztencel, R. & Zabczyk, J. (1986) Large deviation estimates for semilinear stochastic equations. In Stochastic Differential Systems, H. J., Engelbert and W., Schmidt (eds.), Lecture Notes in Control and Information Sciences, no. 96, Springer-Verlag, 218–231.Google Scholar
[652] Souganidis, P. E. & Yip, N. K. (2004) Uniqueness of motion by mean curvature perturbed by stochastic noise, Ann. Inst. H. Poincare, Anal. Non Lineaire, 21, no. 1, 1–23.CrossRefGoogle Scholar
[653] Sowers, R. B. (1991) New asymptotic results for stochastic partial differential equations, Ph.D. Dissertation, University of Maryland.Google Scholar
[654] Sowers, R. (1994) Multi-dimensional reaction-diffusion equations with white noise boundary perturbations, Ann. Probab., 22, no. 4, 2071–2121.CrossRefGoogle Scholar
[655] Spohn, H. (1993) Interface motion in models with stochastic dynamics, J. Statist. Phys., 71, no. 5-6, 1081–1132.CrossRefGoogle Scholar
[656] Sritharan, S. S. & Sundar, P. (2006) Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise, Stochastic Process. Appl., 116, no. 11, 1636–1659.CrossRefGoogle Scholar
[657] Stannat, W. (2003) L1-Uniqueness of regularized 2D-Euler and stochastic Navier-Stokes equations, J. Funct. Anal., 200, no. 1, 101–117.CrossRefGoogle Scholar
[658] Stasi, R. (2007) Maximum principle for infinite dimensional diffusion equations, Potential Anal, 26, no. 3, 213–224.CrossRefGoogle Scholar
[659] Stein, O. & Winkler, M. (2005) Amorphous molecular beam epitaxy: global solutions and absorbing sets, Eur. J. Appl. Math., 16, no. 6, 767–798.CrossRefGoogle Scholar
[660] Stewart, H. B. (1974) Generation of an analytic semigroup by strongly elliptic operators, Trans. Am. Math. Soc., 199, 141–162.CrossRefGoogle Scholar
[661] Stewarth, B. (1980) Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Am. Math. Soc., 259, no. 1, 299–310.Google Scholar
[662] Strauss, W. (1966) On continuity of functions with values in various Banach spaces, Pac. J. Math., 19, 543–551.CrossRefGoogle Scholar
[663] Stroock, D. W. (1981) The Malliavin calculus, a functional analytic approach, J. Funct. Anal., 44, no. 2, 212–257.CrossRefGoogle Scholar
[664] Stroock, D.W. (1983) Some application of stochastic calculus to partial differential equations. In Ecole d'Ete de Probabilite de Saint Flour, Lecture Notes in Mathematics, no. 976, 267–382.Google Scholar
[665] Stroock, D. W. & Varhadan, S. R. S. (1979) Multidimensional Diffusion Processes, Springer-Verlag.Google Scholar
[666] Swiech, A. (2009), A PDE approach to large deviations in Hilbert spaces, Stochastic Process. Appl., 119, no. 4, 1081–1123.CrossRefGoogle Scholar
[667] Swiech, A. & Zabczyk, J. (2011), Large deviations for stochastic PDEs with Levy noise, J. Funct. Anal., 260, no. 3, 674–723.CrossRefGoogle Scholar
[668] Tanabe, H. (1979) Equations of Evolution, Pitman.Google Scholar
[669] Tanaka, H. (1979) Stochastic differential equations with reflecting boundary conditions in convex regions, Hiroshima Math J., 9, no. 1, 163–177.Google Scholar
[670] Teichmann, J. (2011) Another approach to some rough and stochastic partial differential equations, Stoch. Dyn., 11, no. 2-3, 535–550.CrossRefGoogle Scholar
[671] Temam, R. (1977) Navier-Stokes Equations, North-Holland.Google Scholar
[672] Tessitore, G. (1996) Existence, uniqueness and space regularity of the adapted solutions of a backward SPDE, Stochastic Anal. Appl., 14, no. 4, 461–486.CrossRefGoogle Scholar
[673] Tessitore, G. & Zabczyk, J. (1998) Invariant measures for stochastic heat equations, Probab. Math. Statist., 18, no. 2, 271–287.Google Scholar
[674] Tessitore, G. & Zabczyk, J. (1998) Strict positivity for stochastic heat equations, Stochastic Process. Appl., 77, no. 1, 83–98.Google Scholar
[675] Tessitore, G. & Zabczyk, J. (2006) Wong-Zakai approximations of stochastic evolution equations, J. Evol. Equations, 6, no. 4, 621–655.CrossRefGoogle Scholar
[676] Tindel, S. & Viens, F. (1999) On space-time regularity for the stochastic heat equation on Lie groups, J. Funct. Anal., 169, no. 2, 559–603.CrossRefGoogle Scholar
[677] Triebel, H. (1978) Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam.Google Scholar
[678] Tubaro, L. (1983) On abstract differential stochastic equation in Hilbert spaces with dissipative drift, Stochastic Anal. Appl., 1, no. 2, 205–214.Google Scholar
[679] Tubaro, L. (1984) An estimate of Burkholder type for stochastic processes defined by the stochastic integral, Stochastic Anal. Appl., 2, no. 2, 187–192.CrossRefGoogle Scholar
[680] Tubaro, L. (1988) Some results on stochastic partial differential equations by the stochastic characteristic method, Stochastic Anal. Appl., 6, no. 2, 217–230.Google Scholar
[681] Twardowska, K. (1992) An extension of the Wong-Zakai theorem for stochastic equations in Hilbert spaces, Stochastic Anal. Appl., 10, no. 4, 471–500.CrossRefGoogle Scholar
[682] Twardowska, K. & Zabczyk, J. (2004) A note on stochastic Burgers' system of equations, Stochastic Anal. Appl., 22, no. 6, 1641–1670.CrossRefGoogle Scholar
[683] Twardowska, K. & Zabczyk, J. (2006). Qualitative properties of solutions to stochastic Burgers's system of equations. In Stochastic Partial Differential Equations and Applications VII, G. Da, Prato and L., Tubaro (eds.), Lecture Notes in Pure and Applied Mathematics, no. 245, Chapman & Hall/CRC, 311–322.Google Scholar
[684] Vakhania, N. N., Tasieladre, V. I. & Chobanyan, S. (1987) Probability Distributions on Banach Spaces, Reidel.CrossRefGoogle Scholar
[685] Vallet, G. & Wittbold, P. (2009) On a stochastic first-order hyperbolic equation in a bounded domain, Infin. Dimens. Anal. Quantum Probab. Relat. Topics, 12, no. 4, 613–651.CrossRefGoogle Scholar
[686] Van Neerven, J. (2010) Stochastic Evolution Equations, Internet Seminar, http://fa.its.tudelft.nl/isemwiki.Google Scholar
[687] Van Neerven, J. & Riedle, M. (2007) A semigroup approach to stochastic delay equations in spaces of continuous functions, Semigroup Forum, 74, no. 2, 227–239.CrossRefGoogle Scholar
[688] Van Neerven, J. & Veraar, M. (2006) On the stochastic Fubini theorem in infinite dimensions. In Stochastic Partial Differential Equations and Applications VII, G. Da, Prato and L., Tubaro (eds.), Lecture Notes in Pure and Applied Mathematics, no. 245, Chapman & Hall/CRC, 323–336.Google Scholar
[689] Van Neerven, J., Veraar, M. & Weis, L. (2007) Stochastic integration in UMD Banach spaces, Ann. Probab., 35, no. 4, 1438–1478.CrossRefGoogle Scholar
[690] Van Neerven, J., Veraar, M. & Weis, L. (2008) Stochastic evolution equations in UMD Banach spaces, J. Funct. Anal., 255, no 4, 940–993.CrossRefGoogle Scholar
[691] Varadhan, S. S. (1968), Stochastic Processes, Courant Institute, New York University.Google Scholar
[692] Varadhan, S. S. (1983) Large Deviations and Applications, Courant Institute, New York University.Google Scholar
[693] Veraar, M. (2006) Stochastic integration in Banach spaces and applications to parabolic evolution equations, Ph.D. Thesis, Thomas Stieltjes Institute for Mathematics.Google Scholar
[694] Vespri, V. (1989) Linear stochastic integrodifferential equations. In Volterra Integro-Differential Equations in Banach Spaces and Applications, G. Da, Prato and M., Iannelli (eds.), Pitman Research Notes in Mathematics Series, no. 190, Pitman, 387–404.Google Scholar
[695] Viot, M. (1976) Solution faibles d'équations aux dérivées partielles non-linéaires, These, Université Pierreet Marie Curie, Paris.Google Scholar
[696] Viot, M. (1974) Solution en lois d'une equation aux derivees partielles non lineaire: methodes de compacite, C. R. Acad. Sci. Paris, Ser. A, 278, 1185–1188.Google Scholar
[697] Viot, M. (1974) Solution en lois d'une equations aux derivees partielles non lineaire: methode de monotonie, C. R. Acad. Sci. Paris, Ser. A, 278, 1405–1408.Google Scholar
[698] Vinter, R. B. (1975) A representation of solution to stochastic delay equations, Imperial College Department, Computing and Control, Report.Google Scholar
[699] Vinter, R. B. & R. H., Kwong. (1981) The infinite time quadratic control problem for linear systems with state and control delays: an evolution equation approach, Siam J. Control Optim., 19, no. 1, 139–153.CrossRefGoogle Scholar
[700] Vishik, M. I. & Fursikov, A. (1979) Mathematical Problems of Statistical Hydromechanics, Kluwer Academic Press.Google Scholar
[701] Von Wahl, W. (1985) The Equations of Navier-Stokes and Abstract Parabolic Equations, Fried. Vieweg & Sohn.CrossRefGoogle Scholar
[702] Walsh, J. B. (1984) An introduction to stochastic partial differential equations. In Ecole d'Ete de Probabilite de Saint Flour XIV1984, P. L., Hennequin (ed.), Lecture Notes in Mathematics, no. 1180, 265–439.Google Scholar
[703] Walsh, J. B. (2005) Finite element methods for parabolic stochastic PDE's, Potential Anal., 23, no. 1, 1–43.CrossRefGoogle Scholar
[704] Wang, F. Y. (1997), Logarithmic Sobolev inequalities on noncompact Rie-mannian manifolds, Probab. Theory Relat. Fields, 109, no. 3, 417–424.CrossRefGoogle Scholar
[705] Wang, F. Y. (2004) Functional Inequalities, Markov Semigroups and Spectral Theory, Science Press.Google Scholar
[706] Wang, F. Y. (2007) Harnack inequalities and applications for stochastic generalized porous media equations, Ann. Probab., 35, no. 4, 1333–1350.CrossRefGoogle Scholar
[707] Wang, P. K. C. (1966) On the almost sure stability of linear stochastic distributed parameter dynamical systems, ASME Trans. J. Appl. Mech., 182–186.Google Scholar
[708] Webb, G. F. (1972) Continuous nonlinear perturbations of linear accretive operators, J. Funct. Anal., 10, 191–203.CrossRefGoogle Scholar
[709] Weber, H. (2010) On the short time asymptotic of the stochastic Allen-Cahn equation, Ann. Inst. Henri Poincare, Probab. Stat., 46, no. 4, 965–975.Google Scholar
[710] Weber, H. (2010) Sharp interface limit for invariant measures of a stochastic Allen-Cahn equation, Commun. Pure Appl. Math., 63, no. 8, 1071–1109.Google Scholar
[711] Willems, J. C. (1981) Stochastic systems: the mathematics of filtering and identification and applications. In NATO Advanced Study Institute, Les Arcs, France, 1980, M., Hazewinkel and J. C., Willems (eds.), Reidel, 111–134.Google Scholar
[712] Xia, D.-X. (1972) Measure and Integration Theory on Infinite-Dimensional Spaces, Academic Press.Google Scholar
[713] Xu, L. & Zegarlinski, B. (2009) Ergodicity of the finite and infinite dimensional a-stable systems, Stochastic Anal. Appl., 27, no. 4, 797–824.CrossRefGoogle Scholar
[714] Yagi, A. (1984) Coincidence entre des espaces d'interpolation et des domaines de puissances fractionnaires d'operateurs, C. R. Acad. Sci. Paris, Ser. I, 299, no. 6. 173–176.Google Scholar
[715] Yang, D. (to appear) The Kolmogorov equation associated to a stochastic Kuramoto-Sivashinsky equation, J. Funct. Anal.
[716] Yannacopoulos, A. N., Frangos, N. E. & Karatzas, I. (2011) Wiener chaos solutions for linear backward stochastic evolution equations, Siam J. Math. Anal., 43, no. 1, 68–113.CrossRefGoogle Scholar
[717] Yipn, K. (1998) Stochastic motion by mean curvature, Arch. Rational Mech. Anal., 144, no. 4, 313–355.Google Scholar
[718] Yong, J. & Zhou, K. (1999), Stochastic Controls. Hamiltonian Systems and HJB Equations, Applications of Mathematics, no. 43, Springer-Verlag, New York.Google Scholar
[719] Yor, M. (1974) Existence et unicite de diffusions a valeurs dans un espace de Hilbert, Ann. Inst. H. Poincaré, Sec. B, 10, 55–88.Google Scholar
[720] Yor, M. (1974) Sur les integral stochastiques a valeurs dans un espace de Banach, Ann. Inst. H. Poincare Sect. B, 10, 31–36.Google Scholar
[721] Yosida, K. (1965) Functional Analysis, Springer-Verlag.Google Scholar
[722] Yubin, Y. (2004) Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise, BIT Numer. Math, 44, no. 4, 829–847.Google Scholar
[723] Yubin, Y. (2005) Smoothing properties in multistep backward difference method and time derivative approximation for linear parabolic equations, Int. J. Math. Math. Sci., 4, 523–536.Google Scholar
[724] Yubin, Y. (2006) Galerkin finite element methods for stochastic parabolic partial differential equations, Siam J. Numer. Anal., 43, no. 4, 1363–1384.Google Scholar
[725] Zabczyk, J. (1975) Remarks on the algebraic Riccati equation in Hilbert spaces, J. Appl. Math. Optim., 2, no. 3, 251–258.CrossRefGoogle Scholar
[726] Zabczyk, J. (1979) On the Stability of Infinite-Dimensional Linear Stochastic Systems, Banach Center Publications, vol 5, PWN-Polish Scientific Publishers.Google Scholar
[727] Zabczyk, J. (1981) Linear stochastic systems in Hilbert spaces; spectral properties and limit behaviour, Institute of Mathematics, Polish Academy of Sciences, report no. 236. Also in Banach Center Publications, vol. 41 (1985), 591–609.Google Scholar
[728] Zabczyk, J. (1985) Exit problem and control theory, Systems Control Lett., 6, no. 3, 165–172.CrossRefGoogle Scholar
[729] Zabczyk, J. (1987) Exit problem for infinite dimensional systems. In Stochastic Partial Differential Equations and Applications, G. Da, Prato and L., Tubaro (eds.), Lecture Notes in Mathematics, no. 1236, Springer-Verlag, 239–257.Google Scholar
[730] Zabczyk, J. (1987) Stable dynamical systems under small perturbations, J. Math. Anal. Appl., 125, no. 2, 568–588.CrossRefGoogle Scholar
[731] Zabczyk, J. (1988) Topics in Stochastic Systems, Asymptotics and Regularity, Flight Systems Research Laboratory, University of California, Los Angeles, TR No. 1-Z-4015-88.Google Scholar
[732] Zabczyk, J. (1989) Symmetric solutions of semilinears to chastic equations. In Stochastic Partial Differential Equations and Applications II, G. Da, Prato and L., Tubaro (eds.), Lecture Notes in Mathematics, no. 1390, Springer-Verlag, 237–256.Google Scholar
[733] Zabczyk, J. (1989) Law equivalence of Ornstein-Uhlenbeck processes and control equivalence of linear systems, IMPAN preprint, no. 457.Google Scholar
[734] Zabczyk, J. (1991) Law equivalence of Ornstein-Uhlenbeck processes, Gaussian Random Fields (Nagoya, 1990), K., Ito and T., Hida (eds.), Ser. Probab. Statist., 1, World Scientific, River Edge, NJ, 420–432.Google Scholar
[735] Zabczyk, J. (2000) Stochastic invariance and consistency of financial models, Rend. Lincei Math. Appl., 11, no. 2, 67–80.Google Scholar
[736] Zabczyk, J. (2001) A mini course on stochastic partial differential equations, Progr. Probab., 49, 257–284.Google Scholar
[737] Zakai, M. (1969) On the optimal filtering of diffusion processes, Z. Wahrsch. Verw. Gebiete, 11, 230–243.CrossRefGoogle Scholar
[738] Zambotti, L. (2002) Integration by parts formulae on convex sets of paths and applications to SPDEs with reflection, Probab. Theory Relat. Fields, 123, no. 4, 579–600.CrossRefGoogle Scholar
[739] Zambotti, L. (2004) Occupation densities for SPDEs with reflection, Ann. Probab., 32, no. 1A, 191–215.CrossRefGoogle Scholar
[740] Zhang, X. (2010) Stochastic Volterra equations in Banach spaces and stochastic partial differential equation, J. Funct. Anal., 258, no. 4, 1361–1425.CrossRefGoogle Scholar
[741] Zhou, J. & Liu, B. (2010) Optimal control problem for stochastic evolution equations in Hilbert spaces, Int. J. Control, 83, no. 9, 1771–1784.CrossRefGoogle Scholar
[742] Zhou, J. & Zhang, Z. (2011) Optimal control problems for stochastic delay evolution equations in Banach spaces, Int. J. Control, 84, no. 8, 1295–1309.CrossRefGoogle Scholar
[743] Zhou, X. (1993) On the necessary conditions of optimal controls for stochastic partial differential equations, Siam J. Control Optim., 31, no. 6, 1462–1478.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Giuseppe Da Prato, Scuola Normale Superiore, Pisa, Jerzy Zabczyk, Polish Academy of Sciences
  • Book: Stochastic Equations in Infinite Dimensions
  • Online publication: 05 May 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107295513.021
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Giuseppe Da Prato, Scuola Normale Superiore, Pisa, Jerzy Zabczyk, Polish Academy of Sciences
  • Book: Stochastic Equations in Infinite Dimensions
  • Online publication: 05 May 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107295513.021
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Giuseppe Da Prato, Scuola Normale Superiore, Pisa, Jerzy Zabczyk, Polish Academy of Sciences
  • Book: Stochastic Equations in Infinite Dimensions
  • Online publication: 05 May 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107295513.021
Available formats
×