Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T18:39:35.512Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  19 April 2019

Kai Liu
Affiliation:
Tianjin Normal University, China
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, N. U. Semigroups Theory with Applications to Systems and Control. Longman Scientific and Technical, London, (1991).Google Scholar
Albeverio, S. and Cruzerio, A. B. Global flows with invariant (Gibbs) measures for Euler and Navier–Stokes two dimensional fluids. Comm. Math. Phys. 129 (1990), 432444.CrossRefGoogle Scholar
Arnold, L. Stochastic Differential Equation: Theory and Applications. Wiley, New York, (1974).Google Scholar
Arnold, L. A formula connecting sample and moment stability of linear stochastic systems. SIAM J. Appl. Math. 44 (1984), 793802.CrossRefGoogle Scholar
Arnold, L. Stabilization by noise revisited. Z. Angew. Math. Mech. 70 (1990), 235246.CrossRefGoogle Scholar
Arnold, L., Crauel, H., and Wihstutz, V. Stabilization for linear systems by noise. SIAM J. Control Optim. 21 (1983), 451461.CrossRefGoogle Scholar
Arnold, L., Kliemann, W., and Oeljeklaus, E. Lyapunov Exponents of Linear Stochastic Systems. Arnold, L. and Wihstutz, V., Ed. Lecture Notes in Mathematics 1186, Springer-Verlag, New York, (1984), 85–128.Google Scholar
Arnold, L., Oeljeklaus, E., and Pardoux, E. Almost Sure and Moment Stability for Linear Itô Equations. Arnold, L and Wihstutz, V., Ed. Lecture Notes in Mathematics 1186, Springer-Verlag, New York, (1984), 129–159.Google Scholar
Arnold, L. and Wihstutz, V. Lyapunov, Exponents: A Survey. Arnold, L. and Wihstutz, V., Ed. Lecture Notes in Mathematics 1186, Springer-Verlag, New York, (1984), 1–26.Google Scholar
Bao, J. H., Truman, A., and Yuan, C. G. Almost sure asymptotic stability of stochastic partial differential equations with jumps. SIAM J. Control Optim. 49 (2011), 771787.CrossRefGoogle Scholar
Bátkai, A. and Piazzera, S. Semigroups and linear partial differential equations with delay. J. Math. Anal. Appl. 264 (2001), 120.CrossRefGoogle Scholar
Bátkai, A. and Piazzera, S. Semigroups for Delay Equations. Research Notes in Mathematics, A. K. Peters, Wellesley, (2005).CrossRefGoogle Scholar
Bell, D. R. and Mohammed, S. E. On the solution of stochastic ordinary differential equations via small delays. Stochastics. 29 (1989), 293299.Google Scholar
Benchimol, C. D. Feedback stabilizability in Hilbert spaces. Appl. Math. Optim. 4 (1978), 225248.CrossRefGoogle Scholar
Bensoussan, A. and Temam, R. É quations aux dérivées partielles stochastiques non linéaires. Israel J. Math. 11 (1972), 95121.CrossRefGoogle Scholar
Bensoussan, A. and Temam, R. Equations stochastiques du type Navier–Stokes. J. Funct. Anal. 13 (1973), 195222.CrossRefGoogle Scholar
Bensoussan, A. and Viot, M. Optimal control of stochastic linear distributed parameter systems. SIAM J. Control. 13 (1975), 904926.CrossRefGoogle Scholar
Bezandry, P. and Diagana, T. Almost Periodic Stochastic Processes. Springer-Verlag, New York, (2011).CrossRefGoogle Scholar
Bierkens, J. Pathwise stability of degenerate stochastic evolutions. Integral Equations and Operator Theory. 23 (2010), 127.Google Scholar
Bierkens, J. and van Gaans, O. Dissipativity of the delay semigroup. J. Differential Equations. 257 (2014), 24182429.CrossRefGoogle Scholar
Brzeźniak, Z., Maslowski, B., and Seidler, J. Stochastic nonlinear beam equations. Probab. Theory Relat. Fields. 132 (2005), 119149.CrossRefGoogle Scholar
Butkovskii, A. G. Theory of Optimal Control of Distributed Parameter Systems. Elsevier, New York, (1969).Google Scholar
Capiński, M. and Cutland, N. Stochastic Navier–Stokes equations. Acta. Appl. Math. 25 (1991), 5985.CrossRefGoogle Scholar
Caraballo, T. Asymptotic exponential stability of stochastic partial differential equations with delay. Stochastics. 33 (1990), 2747.Google Scholar
Caraballo, T., Garrido-Atienza, M. J., and Taniguchi, T. The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion. Nonlinear Anal. TMA. 74 (2011), 36713684.CrossRefGoogle Scholar
Caraballo, T., Garrido-Atienza, M., and Real, J. Asymptotic stability of nonlinear stochastic evolution equations. Stoch. Anal. Appl. 21 (2003), 301327.CrossRefGoogle Scholar
Caraballo, T., Kloeden, P. E., and Schmalfuß, B. Exponentially stable stationary solutions for stochastic evolution equations and their perturbation. Appl. Math. Optim. 50 (2004), 183207.CrossRefGoogle Scholar
Caraballo, T. and Langa, J. Comparison of the long-time behavior of linear Itô and Stratonovich partial differential equations. Stoch. Anal. Appl. 19 (2001), 183195.CrossRefGoogle Scholar
Caraballo, T., Langa, J., and Taniguchi, T. The exponential behaviour and stabilizability of stochastic 2D–Navier–Stokes equations. J. Differential Equations. 179 (2002), 714737.CrossRefGoogle Scholar
Caraballo, T. and Liu, K. Exponential stability of mild solutions of stochastic partial differential equations with delays. Stoch. Anal. Appl. 17(1999), 743764.CrossRefGoogle Scholar
Caraballo, T. and Liu, K. On exponential stability criteria of stochastic partial differential equations. Stoch. Proc. Appl. 83 (1999), 289301.CrossRefGoogle Scholar
Caraballo, T. and Liu, K. Asymptotic exponential stability property for diffusion processes driven by stochastic differential equations in duals of nuclear spaces. Publ. RIMS, Kyoto Univ. 37 (2001), 239254.Google Scholar
Caraballo, T., Liu, K., and Mao, X. R. Stabilization of partial differential equations by stochastic noise. Nagoya Math. J. 161 (2001), 155170.CrossRefGoogle Scholar
Caraballo, T., Liu, K., and Truman, A. Stochastic functional partial differential equations: existence, uniqueness and asymptotic stability. Proc. Royal Soc. London A. 456 (2000), 17751802.CrossRefGoogle Scholar
Caraballo, T., Márquez-Durán, A., and Real, J. The asymptotic behaviour of a stochastic 3D LANS-α model. Appl. Math. Optim. 53 (2006), 141161.CrossRefGoogle Scholar
Caraballo, T., Real, J., and Taniguchi, T. The exponential stability of neutral stochastic delay partial differential equations. Discrete and Continuous Dynamical Systems: A 18 (2007), 295313.Google Scholar
Caraballo, T. and Robinson, J. C. Stabilisation of linear PDEs by Stratonovich noise. Systems & Control Letters. 53 (2004), 4150.CrossRefGoogle Scholar
Cerrai, S. Stabilization by noise for a class of stochastic reaction-diffusion equations. Probab. Theory Relat. Fields. 133 (2005), 190214.CrossRefGoogle Scholar
Chojnowska-Michalik, A. and Goldys, B. Existence, uniqueness and invariant measures for stochastic semilinear equations on Hilbert spaces. Probab. Theory Relat. Fields. 102 (1995), 331356.CrossRefGoogle Scholar
Chow, P. Stability of nonlinear stochastic evolution equations. J. Math. Anal. Appl. 89 (1982), 400419.CrossRefGoogle Scholar
Chow, P. Stochastic Partial Differential Equations. Chapman & Hall/CRC, New York, (2007).CrossRefGoogle Scholar
Chow, P. and Khas’minskii, R. Z. Stationary solutions of nonlinear stochastic evolution equations. Stoch. Anal. Appl. 15 (5) (1997), 671699.CrossRefGoogle Scholar
Chueshov, I. and Vuillermot, P. Long time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Itô’s case. Stoch. Anal. Appl. 18 (2000), 581615.CrossRefGoogle Scholar
Cui, J., Yan, L. T., and Sun, X. C. Exponential stability for neutral stochastic partial differential equations with delays and Poisson jumps. Statist. Probab. Lett. 81 (2011), 19701977.CrossRefGoogle Scholar
Curtain, R. F. Stochastic distributed systems with point observation and boundary control: an abstract theory. Stochastics. 3 (1979), 85104.CrossRefGoogle Scholar
Curtain, R. F. Stability of stochastic partial differential equation. J. Math. Anal. Appl. 79 (1981), 352369.CrossRefGoogle Scholar
Curtain, R. F. and Ichikawa, A. The separation principle for stochastic evolution equations. SIAM J. Control Optim. 15 (1977), 367383.CrossRefGoogle Scholar
Curtain, R. F. and Pritchard, A. Infinite Dimensional Linear Systems Theory. Lecture Notes in Control and Information Science, 8, Springer-Verlag, New York, (1978).CrossRefGoogle Scholar
Curtain, R. F. and Zwart, H. J. Introduction to Infinite Dimensional Linear Systems Theory. Springer-Verlag, New York, (1985).Google Scholar
Da Prato, G., Ga¸tarek, D., and Zabczyk, J. Invariant measures for semilinear stochastic equations. Stoch. Anal. Appl. 10 (1992), 387408.CrossRefGoogle Scholar
Da Prato, G. and Ichikawa, A. Stability and quadratic control for linear stochastic equations with unbounded coefficients. Boll. Un. Mat. It. 4(1985), 9871001.Google Scholar
Da Prato, G. and Zabczyk, J. Ergodicity for Infinite Dimensional Systems. London Mathematical Society Lecture Note Series. 229, Cambridge University Press, Cambridge, (1996).CrossRefGoogle Scholar
Da Prato, G. and Zabczyk, J. Stochastic Equations in Infinite Dimensions. Second Edition, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, (2014).CrossRefGoogle Scholar
Daletskii, L. and Krein, G. Stability of Solutions of Differential Equations in Banach Spaces. Trans. Amer. Math. Soc. 43, Providence, (1974).Google Scholar
Datko, R. Extending a theorem of A. Lyapunov to Hilbert space. J. Math. Anal. Appl. 32 (1970), 610616.CrossRefGoogle Scholar
Datko, R. Uniform asymptotic stability of evolutionary processes in a Banach space. SIAM J. Math. Anal. 3 (1973), 428445.CrossRefGoogle Scholar
Datko, R. Representation of solutions and stability of linear differential-difference equations in a Banach space. J. Differential Equations. 29(1978), 105166.CrossRefGoogle Scholar
Datko, R. Lyapunov functionals for certain linear delay differential equations in a Hilbert space. J. Math. Anal. Appl. 76 (1980), 3757.CrossRefGoogle Scholar
Datko, R. The uniform exponential stability of a class of linear differential-difference equations in a Hilbert space. Proc. Royal Soc. Edinburgh,89 A (1981), 201215.CrossRefGoogle Scholar
Datko, R. An example of an unstable neutral differential equation. International J. Control. 20 (1983), 263267.CrossRefGoogle Scholar
Datko, R. The Laplace transform and the integral stability of certain linear processes. J. Differential Equations. 48 (1983), 386403.CrossRefGoogle Scholar
Datko, R. Remarks concerning the asymptotic stability and stabilization of linear delay differential equations. J. Math. Anal. Appl. 111 (1985), 571584.CrossRefGoogle Scholar
Datko, R., Lagnese, J., and Polis, M. An example on the effect of time delays in boundary feedback of wave equations. SIAM J. Control Optim. 24 (1986), 152156.CrossRefGoogle Scholar
Davies, E. B. Spectral Theory and Differential Operators. Cambridge Studies in Advanced Mathematics, Vol. 42, Cambridge University Press, Cambridge, (1996).Google Scholar
Delfour, M., McCalla, C., and Mitter, S. Stability and the infinite-time quadratic cost problem for linear hereditary differential systems. SIAM J. Control. 13 (1975), 4888.CrossRefGoogle Scholar
Drozdov, A. Stability of a class of stochastic integro-differential equations. Stoch. Anal. Appl. 13 (5) (1995), 517530.CrossRefGoogle Scholar
Duncan, T., Maslowski, B., and Duncan, B. Stochastic equations in Hilbert space with a multiplicative fractional Gaussian noise. Stoch. Proc. Appl. 115 (2005), 13571383.CrossRefGoogle Scholar
Dunford, N. and Schwartz, J. T. Linear Operators, Part I: General Theory. Interscience Publishers, Inc., New York, (1958).Google Scholar
Dunford, N. and Schwartz, J. T. Linear Operators, Part II: Spectral Theory. Interscience Publishers, Inc., New York, (1963).Google Scholar
Engel, K-J. and Nagel, R. One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Math. 194, Springer-Verlag, New York, (2000).Google Scholar
Ethier, S. N. and Kurtz, T. G. Markov Processes: Characterization and Convergence. Wiley and Sons, New York, (1986).CrossRefGoogle Scholar
Fattorini, H. Second Order Linear Differential Equations in Banach Spaces. North Holland Math. Studies Series. 108, (1985).Google Scholar
Flandoli, F. Riccati equation arising in a stochastic control problem. Boll. Un. Mat. Ital., Anal. Funz. Appl. 1 (1982), 377393.Google Scholar
Flandoli, F. and Ga¸tarek, D. Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Relat. Fields. 102(1995), 367406.CrossRefGoogle Scholar
Flandoli, F. and Maslowski, B. Ergodicity of the 2-D Navier–Stokes equations under random perturbations. Comm. Math. Phys. 171 (1995), 119141.CrossRefGoogle Scholar
Friedman, A. Stochastic Differential Equations and Applications. Vols. I and II, Academic Press, New York, (1975).Google Scholar
Furstenberg, H. Noncommuting random products. Trans. Amer. Math. Soc. 108 (1963), 377428.CrossRefGoogle Scholar
Furstenberg, H. A Poisson formula for semi-simple Lie group. Ann. Math. 77 (1963), 335386.CrossRefGoogle Scholar
Gawarecki, L. and Mandrekar, V. Stochastic Differential Equations in Infinite Dimensions with Applications to Stochastic Partial Differential Equations. Springer-Verlag, New York, (2011).CrossRefGoogle Scholar
Gihman, I. J. and Skorokhod, A. V. Stochastic Differential Equations. Springer-Verlag, Berlin, New York, (1972).CrossRefGoogle Scholar
Govindan, E. Almost sure exponential stability for stochastic neutral partial functional differential equations. Stochastics. 77 (2005), 139154.CrossRefGoogle Scholar
Hahn, W. Stability of Motion. Springer-Verlag, Berlin, New York, (1967).CrossRefGoogle Scholar
Hairer, M. and Mattingly, J. Ergodicity of the 2D Navier–Stokes equations with degenerate stochastic forcing. Ann. Math. 164 (2006), 9931032.CrossRefGoogle Scholar
Hale, J. Theory of Functional Differential Equations. Springer-Verlag, Berlin, New York, (1977).CrossRefGoogle Scholar
Hale, J. and Lunel, S. Introduction to Functional Differential Equations. Springer-Verlag, Berlin, New York, (1993).CrossRefGoogle Scholar
Has’minskii, R. Z. Stochastic Stability of Differential Equations. Sijtjoff and Noordhoff, Alphen, (1980) (translation of the Russian edition, Nauka, Moscow, (1969)).Google Scholar
Haussmann, U. G. Asymptotic stability of the linear Itô equation in infinite dimensional. J. Math. Anal. Appl. 65 (1978), 219235.CrossRefGoogle Scholar
Hille, E. and Phillips, R. S. Functional Analysis and Semigroups. Amer. Math. Soc., Providence, (1957).Google Scholar
Ichikawa, A. Optimal control of a linear stochastic evolution equation with state and control dependent noise. Proc. IMA Conference: Recent Theoretical Developments in Control, Academic Press, Leicester, (1970).Google Scholar
Ichikawa, A. Dynamic programming approach to stochastic evolution equations. SIAM J. Control Optim. 17 (1979), 152174.CrossRefGoogle Scholar
Ichikawa, A. Stability of semilinear stochastic evolution equations. J. Math. Anal. Appl. 90 (1982), 1244.CrossRefGoogle Scholar
Ichikawa, A. Absolute stability of a stochastic evolution equation. Stochastics. 11 (1983), 143158.CrossRefGoogle Scholar
Ichikawa, A. Semilinear stochastic evolution equations: boundedness, stability and invariant measure. Stochastics. 12 (1984), 139.CrossRefGoogle Scholar
Ichikawa, A. Equivalence of Lp stability and exponential stability for a class of nonlinear semilinear semigroups. Nonlinear Anal. TMA. 8(1984), 805815.CrossRefGoogle Scholar
Ichikawa, A. A semigroup model for parabolic equations with boundary and pointwise noise. In: Stochastic Space-Time Models and Limit Theorems, Reidel, D. Publishing Company, Dordrecht, (1985), 8194.CrossRefGoogle Scholar
Ichikawa, A. Stability of parabolic equations with boundary and pointwise noise. In: Stochastic Differential Systems, Lecture Notes in Control and Information Science 69, Springer-Verlag, Berlin, (1985), 5566.Google Scholar
Ichikawa, A. and Pritchard, A. J. Existence, uniqueness and stability of nonlinear evolution equations. J. Math. Anal. Appl. 68 (1979), 454476.CrossRefGoogle Scholar
Ikeda, N. and Watanabe, S. Stochastic Differential Equations and Diffusion Processes. Second Edition, North-Holland, Kodansha, Amsterdam, Tokyo, (1989).Google Scholar
Jahanipur, R. Stability of stochastic delay evolution equations with monotone nonlinearity. Stoch. Anal. Appl. 21 (2003), 161181.CrossRefGoogle Scholar
Karatzas, I. and Shreve, S. E. Brownian Motion and Stochastic Calculus. Second Edition, Springer-Verlag, Berlin, Heidelberg, New York, (1991).Google Scholar
Kats, I. I. and Krasovskii, N.N. On the stability of systems with random parameters. Prkil. Met. Mek. 24, (1960), 256270.Google Scholar
Khas’minskii, R. Necessary and sufficient condition for the asymptotic stability of linear stochastic systems. Theory Probab. Appl. 12 (1967), 144147.CrossRefGoogle Scholar
Khas’minskii, R. Stochastic Stability of Differential Equations. Second Edition, Springer-Verlag, Berlin, Heidelberg, New York, (2012).CrossRefGoogle Scholar
Khas’minskii, R. On robustness of some concepts in stability of SDE. Stochastic Modeling and Nonlinear Dynamics, Kliemann, W. and Namachchivaya, N.S., Eds., Chapman & Hall/CRC, London, New York, (1996), 131137.Google Scholar
Khas’minskii, R. and Mandrekar, V. On the stability of solutions of stochastic evolution equations. The Dynkin Festschrift: Markov Processes and their Applications, Progress in Probability, 34, Freidlin, M. I., Ed. Birkha¨user, Boston, (1994), 185197.CrossRefGoogle Scholar
Kolmanovskii, V. B. and Myshkis, A. Introduction to the Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht, (1999).CrossRefGoogle Scholar
Kolmanovskii, V. B. and Nosov, V. R. Stability of Functional Differential Equations. Academic Press, New York, (1986).Google Scholar
Kozin, F. On almost surely asymptotic sample properties of diffusion processes defined by stochastic differential equations. J. Math. Kyoto Univ. 4 (1965), 515528.Google Scholar
Kozin, F. A survey of stability of stochastic systems. Automatica. 5 (1969), 95112.CrossRefGoogle Scholar
Kozin, F. Stability of the Linear Stochastic System. Lecture Notes in Mathematics 294, Springer-Verlag, New York, (1972), 186229.Google Scholar
Krasovskii, N. N. Stability of Motions. Stanford University Press, Stanford, (1963).Google Scholar
Kreyszig, E. Introductory Functional Analysis with Applications. John Wiley & Sons. Inc., New York (1978).Google Scholar
Krylov, N. V. and Rozovskii, B. L. Stochastic evolution equations. J. Sov. Math. 16 (1981), 12331277.CrossRefGoogle Scholar
Kushner, H. Stochastic Stability and Control. Academic Press, New York, (1967).Google Scholar
Kushner, H. Introduction to Stochastic Control Theory. Holt, Rinehart and Winston, New York, (1971).Google Scholar
Kwiecińska, A. Stabilization of partial differential equations by noise. Stoch. Proc. Appl. 79 (1999), 179184.CrossRefGoogle Scholar
Kwiecińska, A. Stabilization of evolution equations by noise. Proc. Amer. Math. Soc. 130 (2001), 30673074.CrossRefGoogle Scholar
Lakshmikantham, V. and Leela, S. Differential and Integral Inequalities: Theory and Applications, Vol. II, Academic Press, New York, (1969).Google Scholar
Lasiecka, I. and Triggiani, R. Feedback semigroups and cosine operators for boundary feedback parabolic and hyperbolic equations, J. Differential Equations. 47 (1983), 246272.CrossRefGoogle Scholar
Lasiecka, I. and Triggiani, R. Dirichlet boundary control problem for parabolic equations with quadratic cost: analyticity and Riccati feedback synthesis, SIAM J. Control Optim. 21 (1983), 4167.CrossRefGoogle Scholar
Leha, G. and Ritter, G. Lyapunov type of conditions for stationary distributions of diffusion processes on Hilbert spaces. Stochastics. 48 (1994), 195225.Google Scholar
Leha, G., Ritter, G., and Maslowski, B. Stability of solutions to semilinear stochastic evolution equations. Stoch. Anal. Appl. 17 (1999), 10091051.CrossRefGoogle Scholar
Lenhart, S. M. and Travis, C. C. Stability of functional partial differential equations. J. Differential Equations. 58 (1985), 212227.CrossRefGoogle Scholar
Levin, J. and Nohel, J. On a nonlinear delay equation. J. Math. Anal. Appl. 8 (1964), 3144.CrossRefGoogle Scholar
Li, P. and Ahmed, N. U. Feedback stabilization of some nonlinear stochastic systems on Hilbert space. Nonlinear Anal. TMA. 17 (1991), 3143.CrossRefGoogle Scholar
Li, P. and Ahmed, N. U. A note on stability of stochastic systems with unbounded perturbations. Stoch. Anal. Appl. 7 (4) (1989), 425434.CrossRefGoogle Scholar
Liang, F. and Gao, H. J. Stochastic nonlinear wave equation with memory driven by compensated Poisson random measures. J. Math. Phys. 55(2014), 033503: 1–23.CrossRefGoogle Scholar
Liang, F. and Guo, Z. H. Asymptotic behavior for second order stochastic evolution equations with memory. J. Math. Anal. Appl. 419 (2014), 13331350.CrossRefGoogle Scholar
Lions, J. L. Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin, New York, (1971).CrossRefGoogle Scholar
Lions, J. L. and Magenes, E. Nonhomogeneous Boundary Value Problems and Applications. Vols. I, II, and III. Springer-Verlag, Berlin, New York, (1972).Google Scholar
Liu, K. On stability for a class of semilinear stochastic evolution equations. Stoch. Proc. Appl. 70 (1997), 219241.CrossRefGoogle Scholar
Liu, K. Carathéodory approximate solutions for a class of semilinear stochastic evolution equations with time delays. J. Math. Anal. Appl. 220(1998), 349364.CrossRefGoogle Scholar
Liu, K. Lyapunov functionals and asymptotic stability of stochastic delay evolution equations. Stochastics. 63 (1998), 126.Google Scholar
Liu, K. Necessary and sufficient conditions for exponential stability and ultimate boundedness of systems governed by stochastic partial differential equations. J. London Math. Soc. 62 (2000), 311320.CrossRefGoogle Scholar
Liu, K. Some remarks on exponential stability of stochastic differential equations. Stoch. Anal. Appl. 19 (1) (2001), 5965.CrossRefGoogle Scholar
Liu, K. Uniform L2-stability in mean square of linear autonomous stochastic functional differential equations in Hilbert spaces. Stoch. Proc. Appl. 116 (2005), 11311165.CrossRefGoogle Scholar
Liu, K. Stability of Infinite Dimensional Stochastic Differential Equations with Applications. Chapman & Hall/CRC, London, New York, (2006).Google Scholar
Liu, K. Stochastic retarded evolution equations: green operators, convolutions and solutions. Stoch. Anal. Appl. 26 (2008), 624650.CrossRefGoogle Scholar
Liu, K. Stationary solutions of retarded Ornstein–Uhlenbeck processes in Hilbert spaces. Statist. Probab. Lett. 78 (2008), 17751783.CrossRefGoogle Scholar
Liu, K. The fundamental solution and its role in the optimal control of infinite dimensional neutral systems. Appl. Math. Optim. 60 (2009), 138.CrossRefGoogle Scholar
Liu, K. A criterion for stationary solutions of retarded linear equations with additive noise. Stoch. Anal. Appl. 29 (2011), 799823.CrossRefGoogle Scholar
Liu, K. Existence of invariant measures of stochastic systems with delay in the highest order partial derivatives. Statist. Probab. Lett. 94 (2014), 267272.CrossRefGoogle Scholar
Liu, K. On stationarity of stochastic retarded linear equations with unbounded drift operators. Stoch. Anal. Appl. 34 (4) (2016), 547572.CrossRefGoogle Scholar
Liu, K. Almost sure exponential stability sensitive to small time delay of stochastic neutral functional differential equations. Appl. Math. Lett. 77(2018), 5763.CrossRefGoogle Scholar
Liu, K. Sensitivity to small delays of pathwise stability for stochastic retarded evolution equations. J. Theoretical Probab. 31 (2018), 16251646.CrossRefGoogle Scholar
Liu, K. Stationary solutions of neutral stochastic partial differential equations with delays in the highest-order derivatives. Discrete and Continuous Dynamical Systems: B. 23 (9) (2018), 39153934.CrossRefGoogle Scholar
Liu, K. and Mao, X. R. Exponential stability of non-linear stochastic evolution equations. Stoch. Proc. Appl. 78 (1998), 173193.CrossRefGoogle Scholar
Liu, K. and Mao, X. R. Large time decay behaviour of dynamical equations with random perturbation features. Stoch. Anal. Appl. 19 (2) (2001), 295327.CrossRefGoogle Scholar
Liu, K. and Shi, Y. F. Razumikhin-type stability theorems of stochastic functional differential equations in infinite dimensions. In: Proc. 22nd IFIP TC 7: Systems, Control, Modeling and Optimization, Ceragioli, F., Dontchev, A., Ed., Springer-Verlag, New York. (2005), 237247.Google Scholar
Liu, K. and Truman, A. Lyapunov function approaches and asymptotic stability of stochastic evolution equations in Hilbert spaces – a survey of recent developments. In: Stochastic Partial Differential Equations and Applications, De Prato, G. and Dubaro, L., eds. Lecture Notes in Pure and Applied Math. 27 (2002), 337371. Dekker, New York.CrossRefGoogle Scholar
Liu, K. and Truman, A. Moment and almost sure Lyapunov exponents of mild solutions of stochastic evolution equations with variable delays via approximation approaches. J. Math. Kyoto Univ. 41 (2002), 749768.Google Scholar
Liu, K. and Xia, X. W. On the exponential stability in mean square of neutral stochastic functional differential equations. Systems & Control Lett. 37 (1999), 207215.CrossRefGoogle Scholar
Liu, R. and Mandrekar, V. Ultimate boundedness and invariant measures of stochastic evolution equations. Stochastics. 56 (1996), 75101.Google Scholar
Liu, R. and Mandrekar, V. Stochastic semilinear evolution equations: Lyapunov function, stability and ultimate boundedness. J. Math. Anal. Appl. 212 (1997), 537553.CrossRefGoogle Scholar
Luo, J. W. Exponential stability for stochastic neutral partial functional differential equations. J. Math. Anal. Appl. 355 (2009), 414425.CrossRefGoogle Scholar
Luo, J. W. and Liu, K. Stability of infinite dimensional stochastic evolution equations with memory and Markovian jumps. Stoch. Proc. Appl. 118 (2008), 864895.CrossRefGoogle Scholar
Luo, J. W. and Taniguchi, T. Fixed points and stability of stochastic neutral partial differential equations with infinite delays. Stoch. Anal. Appl. 27 (2009), 11631173.CrossRefGoogle Scholar
Luo, Z. H., Guo, B. Z., and Morgul, O. Stability and Stabilization of Infinite Dimensional with Applications. Springer-Verlag, London, Berlin, Heidelberg, (1999).CrossRefGoogle Scholar
Lyapunov, A. M. Probléme générale de la stabilité du muvement. Comm. Soc. Math. Kharkov. 2, (1892). Reprint Ann. Math. Studies. 17, Princeton University Press, Princeton, (1949).Google Scholar
Mandrekar, V. On Lyapounov stability theorems for stochastic (deterministic) evolution equations. In Proc. of the NATO-ASI School on: Stochastic Analysis and Applications in Physics, Streit, L., Ed., Springer-Verlag, New York (1994), 219237.CrossRefGoogle Scholar
Manthey, R. and Maslowski, B. A random continuous model for two interacting populations. Appl. Math. Optim. 45 (2) (2002), 213236.CrossRefGoogle Scholar
Manthey, R. and Mittmann, K. On the qualitative behaviour of the solution to a stochastic partial functional differential equation arising in population dynamics. Stochastics. 66 (1999), 153166.Google Scholar
Manthey, R. and Zausinger, T. Stochastic evolution equations in L2(2ν)p. Stochastics. 66 (1999), 3785.Google Scholar
Mao, X. R. Almost sure polynomial stability for a class of stochastic differential equations. Quart. J. Math. Oxford (2). 43 (1992), 339348.CrossRefGoogle Scholar
Mao, X. R. Exponental Stability of Stochastic Differential Equations. Marcel Dekker, New York (1994).Google Scholar
Mao, X. R. Razumikhin-type theorems on exponential stability of neutral stochastic functional differential equations. SIAM J. Math. Anal. 28 (2)(1997), 389401.CrossRefGoogle Scholar
Mao, X. R. Stochastic Differential Equations and Applications. Second Edition, Woodhead Publishing, Oxford, (2007).Google Scholar
Maslowski, B. Uniqueness and stability of invariant measures for stochastic differential equations in Hilbert spaces. Stochastics. 28 (1989), 85114.Google Scholar
Maslowski, B. Stability of semilinear equations with boundary and pointwise noise. Annali Scuola Normale Superiore di Pisa, IV, (1995), 5593.Google Scholar
Maslowski, B., Seidler, J., and Vrkocˇ, I. Integral continuity and stability for stochastic hyperbolic equations. Differential Integral Equations. 6(1993), 355382.CrossRefGoogle Scholar
Métivier, M. Semimartingales. Walter de Gruyter, Berlin, New York, (1982).CrossRefGoogle Scholar
Métivier, M. and Pellaumail, J. Stochastic Integration. Academic Press, New York, (1980).Google Scholar
Miyahara, Y. Ultimate boundedness of the systems governed by stochastic differential equations. Nagoya Math. J. 47 (1972), 111144.CrossRefGoogle Scholar
Miyahara, Y. Invariant measures of ultimately bounded stochastic processes. Nagoya Math. J. 49 (1973), 149153.CrossRefGoogle Scholar
Mizel, V. and Trutzer, V. Stochastic hereditary equations: existence and asymptotic stability. J. Integral Equations. 7 (1984), 172.Google Scholar
Mohammed, S. E. Stochastic Functional Differential Equations. Pitman, London, (1984).Google Scholar
Mohammed, S. E. and Scheutzow, M. Lyapunov exponents of linea stochastic functional differential equations driven by semimartingales. Part I. The multiplicative ergodic theory. Ann. Inst. H. Poincaré Probab. Statist. 32 (1996), 69105.Google Scholar
Mohammed, S. E. and Scheutzow, M. Lyapunov exponents of linea stochastic functional differential equations driven by semimartingales. Part II. Examples and case studies. Ann. Probab. 25 (1997), 12101240.CrossRefGoogle Scholar
Morozan, T. Boundedness properties for stochastic systems. In: Stability of Stochastic Dynamical Systems, Curtain, R. F., Ed. Lecture Notes in Mathematics 294, Springer-Verlag, New York, (1972), 2134.CrossRefGoogle Scholar
Murray, J. D. Mathematical Biology I: An Introduction. Springer-Verlag, New York, (2001).Google Scholar
Nakagiri, S. Structural properties of functional differential equations in Banach spaces. Osaka. J. Math. 25 (1988), 353398.Google Scholar
Oseledec, V. A multiplicative ergodic theorem Lyapunov characteristic number for dynamical systems. Trans. Moscow Math. Soc. 19 (1969), 197231.Google Scholar
Parthasarathy, K. P. Probability Measures on Metric Spaces. Academic Press, New York, (1967).CrossRefGoogle Scholar
Pardoux, E. É quations aux dérivées partielles stochastiques non linéaires monotones. Thesis, Université Paris XI, (1975).Google Scholar
Pardoux, E. Stochastic partial differential equations and filtering of diffusion processes. Stochastics. 3 (1979), 127167.CrossRefGoogle Scholar
Pazy, A. On the applicability of Lyapunov’s theorem in Hilbert space. SIAM J. Math. Anal. Appl. 3 (1972), 291294.CrossRefGoogle Scholar
Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences 44. Springer-Verlag, New York, (1983).CrossRefGoogle Scholar
Pinsky, M. A. Stochastic stability and the Dirichlet problem. Comm. Pure Appl. Math. 34 (4) (1978), 311–35.Google Scholar
Plaut, R. and Infante, E. On the stability of some continuous systems subject to random excitation. Trans. ASME J. Appl. Mech. (1970), 623627.CrossRefGoogle Scholar
Prévôt, C. and Röckner, M. A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics 1905, Springer-Verlag, New York, (2007).Google Scholar
Pritchard, A. J. and Zabczyk, J. Stability and stabilizability of infinite dimensional systems. SIAM Review. 23 (1981), 2552.CrossRefGoogle Scholar
Razumikhin, B. S. On stability of systems with a delay. Prikl. Mat. Meh. 20 (1956), 500512.Google Scholar
Razumikhin, B. S. Application of Liapunov’s methods to problems in stability of systems with a delay. Automat. i Telemeh. 21 (1960), 740749.Google Scholar
Real, J. Stochastic partial differential equations with delays. Stochastics. 8 (1982), 81102.CrossRefGoogle Scholar
Reed, M. and Simon, B. Methods of Modern Mathematical Physics I: Functional Analysis. Revised and Enlarged Edition, New York, Academic Press, (1980).Google Scholar
Ren, Y. and Sun, D. Second-order neutral impulsive stochastic evolution equations with delay. J. Math. Phys. 50 (2009), 102709: 1–12.CrossRefGoogle Scholar
Revuz, D. and Yor, M. Continuous Martingales and Brownian Motion. Third Edition, Springer-Verlag, Berlin Heidelberg, (1999).CrossRefGoogle Scholar
Rogers, L. and Williams, D. Diffusion, Markov Processes and Martingales. Second Edition. Vol. I, New York, Wiley, (1994)Google Scholar
Rozovskii, B. L. Stochastic Evolution Systems: Linear Theory and Applications to Non-Linear Filtering. Kluwer Academic Publishers, Dordrecht, (1990).CrossRefGoogle Scholar
Scheutzow, M. Stabilization and destabilization by noise in the plane. Stoch. Anal. Appl. 11 (1993), 97113.CrossRefGoogle Scholar
Shiga, T. Ergodic theorems and exponential decay of sample paths for certain interactive diffusion systems. Osaka J. Math. 29 (1992), 789807.Google Scholar
Skorokhod, A. V. Asymptotic Methods in the Theory of Stochastic Differential Equations. American Mathematical Society, Providence, (1989).Google Scholar
Tanabe, H. Equations of Evolution. Monographs and Studies in Mathematics, 6, Pitman, London, (1979).Google Scholar
Taniguchi, T. Asymptotic stability theorems of semilinear stochastic evolution equations in Hilbert spaces. Stochastics. 53 (1995), 4152.Google Scholar
Taniguchi, T. Moment asymptotic behavior and almost sure Lyapunov exponent of stochastic functional differential equations with finite delays via Lyapunov Razumikhin method. Stochastics. 58 (1996), 191208.Google Scholar
Taniguchi, T. The existence and asymptotic behaviour of energy solutions to stochastic 2D functional Navier–Stokes equations driven by Lévy processes. J. Math. Anal. Appl. 385 (2012), 634654.CrossRefGoogle Scholar
Taniguchi, T., Liu, K., and Truman, A. Existence, uniqueness and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces. J. Differential Equations. 181 (2002), 7291.CrossRefGoogle Scholar
Temam, R. Navier–Stokes Equations, Theory and Numerical Analysis. Third Revised Edition, North-Holland, Amsterdam, (1984).Google Scholar
Temam, R. Infinite Dimensional Dynamical Systems in Mechanics and Physics. Second Edition, Springer-Verlag, New York, (1988).CrossRefGoogle Scholar
Travis, C. C. and Webb, G. F. Existence and stability for partial functional differential equations. Trans. Amer. Math. Soc. 200 (1974), 395418.CrossRefGoogle Scholar
Travis, C. C. and Webb, G. F. Existence, stability and compactness in the α-norm for partial functional differential equations. Trans. Amer. Math. Soc. 240 (1978), 129143.Google Scholar
Tubaro, L. An estimate of Burkholder type for stochastic processes defined by the stochastic integral. Stoch. Anal. Appl. 2 (1984), 187192.CrossRefGoogle Scholar
Vinter, R. B. Filter stability for stochastic evolution equations. SIAM J. Control Optim. 15 (1977), 465485.CrossRefGoogle Scholar
Vishik, M. J. and Fursikov, A. V. Mathematical Problems in Statistical Hydromechanics. Kluwer Academic Publishers, Dordrecht (1988).CrossRefGoogle Scholar
Walsh, J. B. An Introduction to stochastic partial differential equations. In: École d’eté de Probabilité de Saint Flour XIV, Hennequin, P. L., Ed., Lecture Notes in Mathematics. 1180, (1984), 265439 Springer-Verlag, New York.Google Scholar
Wan, L. and Duan, J. Q. Exponential stability of non-autonomous stochastic partial differential equations with finite memory. Statist. Probab. Lett. 78 (2008), 490498.CrossRefGoogle Scholar
Wang, P. K. On the almost sure stability of linear stochastic distributed parameter dynamical systems. Trans. ASME J. Appl. Mech. (1966), 182186.CrossRefGoogle Scholar
Wonham, W. M. Random differential equations in control theory. In Probabilistic Methods in Applied Mathematics. 2, Bharucha-Reid, A., Ed., Academic Press, New York, (1970), 131212.Google Scholar
Wonham, W. M. Lyapunov criteria for weak stochastic stability. J. Differential Equations. 2 (1966), 195207.CrossRefGoogle Scholar
Wu, J. H. Theory and Applications of Partial Functional Differential Equations. Appl. Math. Sci. 119, Springer-Verlag, New York, (1996).CrossRefGoogle Scholar
Xie, B. The moment and almost surely exponential stability of stochastic heat equations. Proc. Amer. Math. Soc. 136 (2008), 36273634.CrossRefGoogle Scholar
Yavin, Y. On the stochastic stability of a parabolic type system. International J. Syst. Sci. 5 (1974), 623632.CrossRefGoogle Scholar
Yavin, Y. On the modelling and stability of a stochastic distributed parameter system. International J. Syst. Sci. 6 (1975), 301311.CrossRefGoogle Scholar
Yosida, Y. Functional Analysis. Sixth Edition, Springer-Verlag, New York, (1980).Google Scholar
Zabczyk, J. Remarks on the control of discrete-time distributed systems. SIAM J. Control Optim. 12 (1974), 721735.CrossRefGoogle Scholar
Zabczyk, J. A note on C0 semigroups. Bull. Polish Acad. Sci. (Math.) 162 (1975), 895898.Google Scholar
Zabczyk, J. On optimal stochastic control of discrete-time systems in Hilbert space. SIAM J. Control Optim. 13 (1975), 12171234.CrossRefGoogle Scholar
Zabczyk, J. On stability of infinite dimensional stochastic systems. Probab. Theory, Z. Ciesislski, Ed., Banach Center Publications, 5, Warsaw, (1979), 273–281.CrossRefGoogle Scholar
Zabczyk, J. A comment on the paper “Stability and stabilizability of infinite dimensional systems” by A.J. Pritchard and J. Zabczyk, SIAM Review, 23 (1981), 25–52. Bull. Polish Acad. Sci. (Math.). Private Communication.CrossRefGoogle Scholar
Zakai, M. On the ultimate boundedness of moments associated with solutions of stochastic differential equations. SIAM J. Control. 5 (1967), 588593.CrossRefGoogle Scholar
Zakai, M. A Lyapunov criterion for the existence of stationary probability distributions for systems perturbed by noise. SIAM J. Control. 7(1969), 390397.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Kai Liu, Tianjin Normal University, China
  • Book: Stochastic Stability of Differential Equations in Abstract Spaces
  • Online publication: 19 April 2019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Kai Liu, Tianjin Normal University, China
  • Book: Stochastic Stability of Differential Equations in Abstract Spaces
  • Online publication: 19 April 2019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Kai Liu, Tianjin Normal University, China
  • Book: Stochastic Stability of Differential Equations in Abstract Spaces
  • Online publication: 19 April 2019
Available formats
×