Book contents
- Frontmatter
- Contents
- Notation
- Foreword
- Preface
- Introduction
- 1 Rearrangements
- 2 Main Inequalities on Rn3
- 3 Dirichlet Integral Inequalities
- 4 Geometric Isoperimetric and Sharp Sobolev Inequalities
- 5 Isoperimetric Inequalities for Physical Quantities
- 6 Steiner Symmetrization
- 7 Symmetrization on Spheres, and Hyperbolic and Gauss Spaces
- 8 Convolution and Beyond
- 9 The ⋆-Function
- 10 Comparison Principles for Semilinear Poisson PDEs
- 11 The ⋆-Function in Complex Analysis
- References
- Index
8 - Convolution and Beyond
Published online by Cambridge University Press: 22 February 2019
- Frontmatter
- Contents
- Notation
- Foreword
- Preface
- Introduction
- 1 Rearrangements
- 2 Main Inequalities on Rn3
- 3 Dirichlet Integral Inequalities
- 4 Geometric Isoperimetric and Sharp Sobolev Inequalities
- 5 Isoperimetric Inequalities for Physical Quantities
- 6 Steiner Symmetrization
- 7 Symmetrization on Spheres, and Hyperbolic and Gauss Spaces
- 8 Convolution and Beyond
- 9 The ⋆-Function
- 10 Comparison Principles for Semilinear Poisson PDEs
- 11 The ⋆-Function in Complex Analysis
- References
- Index
Summary
Chapter 8 studies symmetrization and convolution.The Riesz-Sobolev convolution theorem is first proved for functions in the unit circle, and then the real line, and finally in n-dimensional space. The Brunn-Minkowski inequality is proved as an application. The Brascamp-LIeb-Luttinger inequality, which extends the Riesz-Sobolev inequality to multiple integrals,is proved too. It implies that the Dirichlet heat kernel increases under symmetrization of the domain.The chapter includes a variation of the sharp Hardy-Littlewood-Sobolev inequality that implies Beckner's logarithmic Sobolev inequality. The latter result is used to establish hypercontractivity of the Poisson semigroup.
Keywords
- Type
- Chapter
- Information
- Symmetrization in Analysis , pp. 254 - 298Publisher: Cambridge University PressPrint publication year: 2019