Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T10:29:06.818Z Has data issue: false hasContentIssue false

4 - Frame transformations and channel interactions

Published online by Cambridge University Press:  07 October 2011

M. S. Child
Affiliation:
University of Oxford
Get access

Summary

The quantum defect and the frame transformation approximation are the two most important components of the MQDT machinery. This chapter starts by examining the validity of the latter approximation. To put the classical argument in Chapter 1 into a quantum mechanical perspective, Section 4.1 demonstrates the insensitivity of the radial wavefunction accompanying energy changes of the order of typical vibrational and rotational energy intervals. Readers who expect to apply the transformation at the core boundary may be surprised to find that it remains valid over often quite a wide range of radial separations, Δr, which varies inversely with the magnitude of the rotational or vibrational energy transfer involved.

A typical transformation element takes the form of the projection, 〈i|α〉 of an uncoupled state |i〉 onto a coupled Born–Oppenheimer state |α〉, the form of which varies according to the nature of the relevant motion. For example, in the rotational case |α〉 = |∧〉 is a specified body-fixed angular momentum projection, while |i〉 = |N+〉 is the positive ion angular momentum after the Rydberg electron has been uncoupled from the molecular frame. Section 4.2 restricts attention to the simplest angular momentum coupling case, with applications chosen to illustrate the quantum defect description of topics in the spectroscopic literature, such as ∧-doubling and ℓ-uncoupling [1, 2, 3]. The angular momentum manipulations required to handle more complicated coupling cases are treated in Appendix C, which also includes an account of the relevant parity and symmetry considerations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] P. R., Bunker and P., Jensen, Molecular Symmetry and Spectroscopy, 2nd edn (NRC Press, 1998).Google Scholar
[2] J. M., Brown and A., Carrington, Rotational Spectroscopy of Diatomic Molecules (Cambridge Molecular Science, 2003).Google Scholar
[3] R. N., Zare, Angular Momentum (Wiley-Interscience, 1988).Google Scholar
[4] U., Fano, Phys. Rev. A 24, 619 (1981).
[5] K., Sakimoto, J. Phys. B 22, 3011 (1986).
[6] P. F. O., Mahony and K. T., Taylor, Phys. Rev. Lett. 57, 2931 (1986).
[7] A., Mank, M., Drescher, T., Huth-Fehreet al., J. Chem. Phys. 95, 1676 (1991).
[8] A., Osterwalder, A., Wüest, F., Merkt and C., Jungen, J. Chem. Phys. 121, 11810 (2004).
[9] C., Jungen and S. T., Pratt, J. Chem. Phys. 129, 16430 (2008).
[10] U., Fano, Phys. Rev. A 2, 353 (1970).
[11] U., Fano, J. Opt. Soc. Am. 65, 979 (1975).
[12] M. S., Child, Semiclassical Mechanics, with Molecular Applications (Oxford University Press, 1991).Google Scholar
[13] C., Jungen and A. L., Roche, J. Chem. Phys. 110, 10791 (1999).
[14] R. W., Field, C. M., Gittins, N. A., Harris and C., Jungen, J. Chem. Phys. 122, 184314 (1979).
[15] H., Lefebvre-Brion and R. W., Field, The Spectra and Dynamics of Diatomic Molecules. (Academic Press, 2005).Google Scholar
[16] C., Jungen and E., Miescher, Can. J. Phys. 47, 1769 (1969).
[17] P., Labastie, M. C., Bordas, B., Tribollet and M., Broyer, Phys. Rev. Lett. 52, 1681 (1984).
[18] F., Hund, Handb. der Physik, Band I. 24, 561 (1933).
[19] E. E., Nikitin and R. N., Zare, Mol. Phys. 82, 85 (1994).
[20] E. S., Chang and U., Fano, Phys. Rev. A 6, 173 (1972).
[21] M. S., Child and C., Jungen, J. Chem. Phys. 93, 7756 (1990).
[22] C., Jungen and G., Raseev, Phys. Rev. A 57, 2407 (1998).
[23] G., Ponzano and T., Regge. In Spectroscopic and Group Theoretical Methods in Phyics, ed. F., Bloch, S. G., Cohen, A., de-Shalit, S., Sambursky and I., Talmi (North Holland, 1968).Google Scholar
[24] S., Martin, J., Chevaleyre, M. C., Bordaset al., J. Chem. Phys. 79, 4132 (1983).
[25] K. T., Lu, Phys. Rev. A 4, 579 (1971).
[26] W., Kolos and L., Wolniewicz, Rev. Mod. Phys. 35, 473 (1963).
[27] A. V., Stolyarov, V. I., Pupyshev and M. S., Child, J. Phys. B 30, 3077 (1997).
[28] N. Y., Du and C. H., Greene, J. Chem. Phys. 85, 5430 (1986).
[29] C., Jungen and O., Atabek, J. Chem. Phys. 66, 5584 (1977).
[30] W., Kolos and L., Wolniewicz, Can. J. Phys. 45, 2189 (1975).
[31] G., Herzberg and C., Jungen, J. Mol. Spec. 41, 425 (1972).
[32] D., Dill and C., Jungen, J. Phys. Chem. 84, 2116 (1980).
[33] C., Jungen and S. T., Pratt, Phys. Rev. Lett. 102, 023201 (2009).
[34] C., Jungen, S. T., Pratt and S. C., Ross, J. Phys. Chem. 99, 1700 (1995).
[35] J. L., Dehmer, P. L., Dehmer, S. T., Pratt, F. S., Tomkins and M. A., O'Halloran, J. Chem. Phys. 90, 6243 (1989).
[36] S. C., Ross and C., Jungen, Phys. Rev. A 49, 4364 (1994).
[37] S., Yu, K., Dressler and L., Wolniewicz, J. Chem. Phys. 101, 7692 (1994).
[38] H. J., Worner, X., Qian and F., Merkt, J. Chem. Phys. 126, 144305 (2007).
[39] A., Staib, W., Domke and A. L., Sobolewski, Z. Physik D 16, 49 (1990).
[40] A., Staib and W., Domke, Z. Physik D 16, 275 (1990).
[41] J. A., Stephens and C. H., Greene, J. Chem. Phys. 102, 1579 (1995).
[42] H. C., Longet-Higgins. In Advances in Spectroscopy II, ed. H. W., Thompson (Interscience, 1961).Google Scholar
[43] R., Englman, The Jahn–Teller Effect in Molecules and Crystals (Wiley, 1972).Google Scholar
[44] G., Herzberg and J. K. G., Watson, Can. J. Phys. 58, 1250 (1980).
[45] H. F., King and K., Morokuma, J. Chem. Phys. 71, 3213 (1979).
[46] J. K. G., Watson, J. Mol. Spec. 103, 350 (1984).
[47] V., Spirko, P., Jensen, P. R., Bunker and A., Cejchan, J. Mol. Spec. 112, 183 (1985).
[48] M. C., Bordas, L. J., Lembo and H., Helm, Phys. Rev. A 44, 1817 (1991).
[49] S., Pan and K. T., Lu, Phys. Rev. A 37, 299 (1988).

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×