Published online by Cambridge University Press: 05 July 2011
553.] In the fourth section of the second part of his Mécanique Analytique, Lagrange has given a method of reducing the ordinary dynamical equations of the motion of the parts of a connected system to a number equal to that of the degrees of freedom of the system.
The equations of motion of a connected system have been given in a different form by Hamilton, and have led to a great extension of the higher part of pure dynamics.
As we shall find it necessary, in our endeavours to bring electrical phenomena within the province of dynamics, to have our dynamical ideas in a state fit for direct application to physical questions, we shall devote this chapter to an exposition of these dynamical ideas from a physical point of view.
554.] The aim of Lagrange was to bring dynamics under the power of the calculus. He began by expressing the elementary dynamical relations in terms of the corresponding relations of pure algebraical quantities, and from the equations thus obtained he deduced his final equations by a purely algebraical process. Certain quantities (expressing the reactions between the parts of the system called into play by its physical connexions) appear in the equations of motion of the component parts of the system, and Lagrange's investigation, as seen from a mathematical point of view, is a method of eliminating these quantities from the final equations.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.