Book contents
- Frontmatter
- Contents
- List of contributors
- Foreword
- Preface
- Acknowledgements
- Part I General perspectives
- Part II Regional floristic and animal diversity
- Part III Hydrometeorology of tropical montane cloud forest
- Part IV Nutrient dynamics in tropical montane cloud forests
- Part V Cloud forest water use, photosynthesis, and effects of forest conversion
- 47 Transpiration and microclimate of a tropical montane rain forest, southern Ecuador
- 48 Physiological variation in Hawaiian Metrosideros polymorpha across a range of habitats: from dry forests to cloud forests
- 49 Environmental controls on photosynthetic rates of lower montane cloud forest vegetation in south-western Colombia
- 50 Comparative water budgets of a lower and an upper montane cloud forest in the Wet Tropics of northern Australia
- 51 Effects of forest disturbance and regeneration on net precipitation and soil water dynamics in tropical montane rain forest on Mount Kilimanjaro, Tanzania
- 52 Changes in soil physical properties after conversion of tropical montane cloud forest to pasture in northern Costa Rica
- 53 Hydrology and land-cover change in tropical montane environments: the impact of pattern on process
- Part VI Effects of climate variability and climate change
- Part VII Cloud forest conservation, restoration, and management issues
- References
49 - Environmental controls on photosynthetic rates of lower montane cloud forest vegetation in south-western Colombia
from Part V - Cloud forest water use, photosynthesis, and effects of forest conversion
Published online by Cambridge University Press: 03 May 2011
- Frontmatter
- Contents
- List of contributors
- Foreword
- Preface
- Acknowledgements
- Part I General perspectives
- Part II Regional floristic and animal diversity
- Part III Hydrometeorology of tropical montane cloud forest
- Part IV Nutrient dynamics in tropical montane cloud forests
- Part V Cloud forest water use, photosynthesis, and effects of forest conversion
- 47 Transpiration and microclimate of a tropical montane rain forest, southern Ecuador
- 48 Physiological variation in Hawaiian Metrosideros polymorpha across a range of habitats: from dry forests to cloud forests
- 49 Environmental controls on photosynthetic rates of lower montane cloud forest vegetation in south-western Colombia
- 50 Comparative water budgets of a lower and an upper montane cloud forest in the Wet Tropics of northern Australia
- 51 Effects of forest disturbance and regeneration on net precipitation and soil water dynamics in tropical montane rain forest on Mount Kilimanjaro, Tanzania
- 52 Changes in soil physical properties after conversion of tropical montane cloud forest to pasture in northern Costa Rica
- 53 Hydrology and land-cover change in tropical montane environments: the impact of pattern on process
- Part VI Effects of climate variability and climate change
- Part VII Cloud forest conservation, restoration, and management issues
- References
Summary
ABSTRACT
A variety of microclimatic and edaphic factors have been shown to limit photosynthetic productivity in tropical montane cloud forest (TMCF) ecosystems. It is now understood that multiple controls may limit photosynthesis within individual TMCFs, and that the relative importance of each control varies between sites. This chapter describes the nutrient status, micro-climate, leaf structural traits and photosynthetic gas-exchange characteristics of lower montane cloud forest (LMCF) vegetation at the Centro de Estudios Ambientales Tambito site, a wet LMCF reserve located on the Pacific slopes of Colombia's Western Cordillera. Neither periodic water shortage nor prolonged waterlogging was observed at Tambito. Total soil nitrogen and available phosphorus were above the range typically observed in lowland evergreen rain forests (LERF), while exchangeable calcium levels were lower. In terms of soil nutrient status, total nitrogen and available phosphorus at Tambito were above the range typically observed in more productive LERF, while exchangeable calcium levels were lower. Leaf nutrient contents observed at Tambito were broadly similar to values observed in LERF. Photosynthetic photon flux density (PPFD) remained well below the light-saturation level for leaf-scale photosynthesis (A) throughout the day during the wet season and for 21 hours day−1 during the dry season. Cloudiness may reduce the competitive advantage of high Amax in canopy leaves, thereby increasing the fitness of alternative traits conferred by low specific leaf area, including nutrient-use efficiency and leaf longevity. Therefore, it was concluded that persistent PPFD limitation of photosynthesis may help to explain the prevalence of sclerophylly in tropical montane cloud forests.
- Type
- Chapter
- Information
- Tropical Montane Cloud ForestsScience for Conservation and Management, pp. 465 - 478Publisher: Cambridge University PressPrint publication year: 2011
References
- 1
- Cited by