Book contents
- Frontmatter
- Contents
- List of contributors
- Foreword
- Preface
- Acknowledgements
- Part I General perspectives
- Part II Regional floristic and animal diversity
- Part III Hydrometeorology of tropical montane cloud forest
- 20 Hydrometeorological patterns in relation to montane forest types along an elevational gradient in the Yungas of Bolivia
- 21 Structure and dynamics of tropical montane cloud forests under contrasting biophysical conditions in north-western Costa Rica
- 22 Quantitative measures of immersion in cloud and the biogeography of cloud forests
- 23 Understanding the role of fog in forest hydrology: stable isotopes as tools for determining input and partitioning of cloud water in montane forests
- 24 Using stable isotopes to identify orographic precipitation events at Monteverde, Costa Rica
- 25 Using “biosensors” to elucidate rates and mechanisms of cloud water interception by epiphytes, leaves, and branches in a sheltered Colombian cloud forest
- 26 Water dynamics of epiphytic vegetation in a lower montane cloud forest: fog interception, storage, and evaporation
- 27 Epiphyte biomass in Costa Rican old-growth and secondary montane rain forests and its hydrological significance
- 28 Comparison of passive fog gages for determining fog duration and fog interception by a Puerto Rican elfin cloud forest
- 29 Fog interception in a Puerto Rican elfin cloud forest: a wet-canopy water budget approach
- 30 Fog gage performance under conditions of fog and wind-driven rain
- 31 The wet-canopy water balance of a Costa Rican cloud forest during the dry season
- 32 Measured and modeled rainfall interception in a lower montane forest, Ecuador
- 33 Measuring cloud water interception in the Tambito forests of southern Colombia
- 34 Relationships between rainfall, fog, and throughfall at a hill evergreen forest site in northern Thailand
- 35 History of fog and cloud water interception research in Hawai'i
- 36 Interpreting canopy water balance and fog screen observations: separating cloud water from wind-blown rainfall at two contrasting forest sites in Hawai'i
- 37 Historical background of fog water collection studies in the Canary Islands
- 38 Effects of fog on climatic conditions at a sub-tropical montane cloud forest site in northern Tenerife (Canary Islands, Spain)
- Part IV Nutrient dynamics in tropical montane cloud forests
- Part V Cloud forest water use, photosynthesis, and effects of forest conversion
- Part VI Effects of climate variability and climate change
- Part VII Cloud forest conservation, restoration, and management issues
- References
27 - Epiphyte biomass in Costa Rican old-growth and secondary montane rain forests and its hydrological significance
from Part III - Hydrometeorology of tropical montane cloud forest
Published online by Cambridge University Press: 03 May 2011
- Frontmatter
- Contents
- List of contributors
- Foreword
- Preface
- Acknowledgements
- Part I General perspectives
- Part II Regional floristic and animal diversity
- Part III Hydrometeorology of tropical montane cloud forest
- 20 Hydrometeorological patterns in relation to montane forest types along an elevational gradient in the Yungas of Bolivia
- 21 Structure and dynamics of tropical montane cloud forests under contrasting biophysical conditions in north-western Costa Rica
- 22 Quantitative measures of immersion in cloud and the biogeography of cloud forests
- 23 Understanding the role of fog in forest hydrology: stable isotopes as tools for determining input and partitioning of cloud water in montane forests
- 24 Using stable isotopes to identify orographic precipitation events at Monteverde, Costa Rica
- 25 Using “biosensors” to elucidate rates and mechanisms of cloud water interception by epiphytes, leaves, and branches in a sheltered Colombian cloud forest
- 26 Water dynamics of epiphytic vegetation in a lower montane cloud forest: fog interception, storage, and evaporation
- 27 Epiphyte biomass in Costa Rican old-growth and secondary montane rain forests and its hydrological significance
- 28 Comparison of passive fog gages for determining fog duration and fog interception by a Puerto Rican elfin cloud forest
- 29 Fog interception in a Puerto Rican elfin cloud forest: a wet-canopy water budget approach
- 30 Fog gage performance under conditions of fog and wind-driven rain
- 31 The wet-canopy water balance of a Costa Rican cloud forest during the dry season
- 32 Measured and modeled rainfall interception in a lower montane forest, Ecuador
- 33 Measuring cloud water interception in the Tambito forests of southern Colombia
- 34 Relationships between rainfall, fog, and throughfall at a hill evergreen forest site in northern Thailand
- 35 History of fog and cloud water interception research in Hawai'i
- 36 Interpreting canopy water balance and fog screen observations: separating cloud water from wind-blown rainfall at two contrasting forest sites in Hawai'i
- 37 Historical background of fog water collection studies in the Canary Islands
- 38 Effects of fog on climatic conditions at a sub-tropical montane cloud forest site in northern Tenerife (Canary Islands, Spain)
- Part IV Nutrient dynamics in tropical montane cloud forests
- Part V Cloud forest water use, photosynthesis, and effects of forest conversion
- Part VI Effects of climate variability and climate change
- Part VII Cloud forest conservation, restoration, and management issues
- References
Summary
ABSTRACT
Epiphyte biomass and associated canopy water storage capacity may vary greatly in tropical montane forests depending on climate, forest structure, and stand age. This study compares old-growth and secondary forests in the upper montane belt of the Cordillera de Talamanca (Costa Rica) with respect to biomass of non-vascular and vascular epiphytes and their effect on water fluxes in the canopies of an old-growth forest, an early-successional stand (10–15 years of age), and a mid-successional stand (c. 40 years). Irrespective of stand age, epiphyte communities were strongly dominated by non-vascular plants (70–99% of total epiphytic biomass). Epiphyte biomass in the old-growth forest (3400 kg ha−1) was more than 20 times that of the youngest stand (160 kg ha−1) and more than six times that of the intermediate stand (520 kg ha−1). Consequently, the water storage capacity of non-vascular epiphytes and canopy humus increased from 0.06 mm in the early-successional, via 0.18 mm in the mid-successional, to 0.97 mm in the old-growth stand. Thus, the recolonization by epiphytes of tropical successional forests after clear-cutting, and the restoration of epiphytic water storage capacity will require many decades if not centuries.
- Type
- Chapter
- Information
- Tropical Montane Cloud ForestsScience for Conservation and Management, pp. 268 - 274Publisher: Cambridge University PressPrint publication year: 2011
References
- 2
- Cited by