Book contents
- Frontmatter
- Contents
- List of contributors
- Foreword
- Preface
- Acknowledgements
- Part I General perspectives
- Part II Regional floristic and animal diversity
- Part III Hydrometeorology of tropical montane cloud forest
- Part IV Nutrient dynamics in tropical montane cloud forests
- 39 Spatial and temporal dynamics of atmospheric water and nutrient inputs in tropical mountain forests of southern Ecuador
- 40 Fog deposition and chemistry in a sub-tropical montane cloud forest in Taiwan
- 41 Fog and rain water chemistry in the seasonal tropical rain forest of Xishuangbanna, south-west China
- 42 Spatial heterogeneity of throughfall quantity and quality in tropical montane forests in southern Ecuador
- 43 Effect of topography on soil fertility and water flow in an Ecuadorian lower montane forest
- 44 Human impacts on stream-water chemistry in a tropical montane cloud forest watershed, Monteverde, Costa Rica
- 45 Is there evidence for limitations to nitrogen mineralization in upper montane tropical forests?
- 46 Fine root mass and fine root production in tropical moist forests as dependent on soil, climate, and elevation
- Part V Cloud forest water use, photosynthesis, and effects of forest conversion
- Part VI Effects of climate variability and climate change
- Part VII Cloud forest conservation, restoration, and management issues
- References
41 - Fog and rain water chemistry in the seasonal tropical rain forest of Xishuangbanna, south-west China
from Part IV - Nutrient dynamics in tropical montane cloud forests
Published online by Cambridge University Press: 03 May 2011
- Frontmatter
- Contents
- List of contributors
- Foreword
- Preface
- Acknowledgements
- Part I General perspectives
- Part II Regional floristic and animal diversity
- Part III Hydrometeorology of tropical montane cloud forest
- Part IV Nutrient dynamics in tropical montane cloud forests
- 39 Spatial and temporal dynamics of atmospheric water and nutrient inputs in tropical mountain forests of southern Ecuador
- 40 Fog deposition and chemistry in a sub-tropical montane cloud forest in Taiwan
- 41 Fog and rain water chemistry in the seasonal tropical rain forest of Xishuangbanna, south-west China
- 42 Spatial heterogeneity of throughfall quantity and quality in tropical montane forests in southern Ecuador
- 43 Effect of topography on soil fertility and water flow in an Ecuadorian lower montane forest
- 44 Human impacts on stream-water chemistry in a tropical montane cloud forest watershed, Monteverde, Costa Rica
- 45 Is there evidence for limitations to nitrogen mineralization in upper montane tropical forests?
- 46 Fine root mass and fine root production in tropical moist forests as dependent on soil, climate, and elevation
- Part V Cloud forest water use, photosynthesis, and effects of forest conversion
- Part VI Effects of climate variability and climate change
- Part VII Cloud forest conservation, restoration, and management issues
- References
Summary
ABSTRACT
Fog water, fog drip, and rainfall chemistry were examined at a seasonal tropical rain forest site in Xishuangbanna, south-west China between November 2001 and October 2002. During this period, radiation fog occurred on 204 days, with a total duration of 1949 hours of which 1618 hours (37% of the total time) occurred during the dry season (November to April). Mean pH values of fog water, fog drip, and rain were 6.78, 7.30, and 6.13, respectively. The ion with the highest concentration in both fog and rain water was bicarbonate (HCO3–), followed by calcium, magnesium, and ammonium. Concentrations of nitrate, HCO3–, ammonium, calcium, and potassium in fog water collected in the latter half of the dry season were significantly higher (p < 0.05) than earlier in the dry season. Ionic concentrations in fog drip were higher than those in fog water, except for ammonium and hydrogen. This is attributed to the washing-off of dust and ash-derived nutrients deposited on the leaves and by the leaching of alkaline ions from the leaves. Dry deposition of ash and dust is most probably related to biomass burning and road construction activity.
- Type
- Chapter
- Information
- Tropical Montane Cloud ForestsScience for Conservation and Management, pp. 387 - 392Publisher: Cambridge University PressPrint publication year: 2011